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Abstract Survival of Trypanosoma brucei depends upon switches in its protective Variant

Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent

homologous recombination, which is thought to require locus-specific initiation. Here, we show that

a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG

expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG

switching by recombination, arguing against models for VSG switch initiation through direct

generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct

recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that

the transcribed VSG expression site is the only telomeric site that is early replicating – a differential

timing only seen in mammal-infective parasites. Specific association between VSG transcription and

replication timing reveals a model for antigenic variation based on replication-derived DNA

fragility.

DOI: 10.7554/eLife.12765.001

Introduction
The growth and propagation of pathogens in vertebrates requires strategies to survive the host

immune responses, in particular adaptive immunity. One such survival strategy, found widely in biol-

ogy, is antigenic variation, which involves periodic switches in exposed pathogen antigens, thereby

allowing a fraction of the infecting population to escape immune clearance. A number of strategies

for antigenic variation have been described, though normally only one is employed in any given

pathogen. In this regard, antigenic variation in the African trypanosome, Trypanosoma brucei, is

unusual, since here two apparently distinct approaches are adopted: recombination and transcrip-

tion. Antigenic variation in T. brucei involves switches in the identity of the Variant Surface Glycopro-

tein (VSG) expressed on the cell surface, where the protein forms a dense ‘coat’ that is believed to

shield invariant antigens from immune recognition (Higgins et al., 2013). At any given time an indi-

vidual T. brucei cell in the mammal expresses only one VSG gene, due to transcriptional control

mechanisms that ensure only one of ~15 VSG transcription sites, termed bloodstream expression

sites (BES), is active. Such monoallelic expression is found in other antigenic variation systems, such

as that involving the ~60 var genes in Plasmodium falciparum (Guizetti and Scherf, 2013), as is the

ability to switch the gene that is actively transcribed, eliciting antigenic variation. The nature of the

monoallelic control and transcriptional switch mechanisms in T. brucei, and whether they share fea-

tures with other pathogens, are still being unraveled (Horn, 2014). One complexity in understanding
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VSG transcriptional switching is the elaborate structure of the BES (Hertz-Fowler et al., 2008),

where the VSG is co-transcribed with many other genes, termed expression site-associated genes

(ESAGs), from an RNA Polymerase I promoter. Despite some variation in ESAG composition

between BES, two features appear invariant in all these sites: the VSG is always proximal to the telo-

mere and is separated from the upstream ESAGs by an array of 70 bp repeats (which appear to be

only found adjacent to VSGs in the T. brucei genome)(Marcello and Barry, 2007). Transcriptional

switching occurs between the VSGs that occupy the BES, and is therefore limited by BES number.

However, a second route of VSG switching relies upon recombination and can over-write the BES-

resident VSGs, generating new VSG coats from a genomic archive of ~2000 VSGs (Cross et al.,

2014; Marcello and Barry, 2007). In numerical terms, therefore, recombination is the major route

for VSG switching. Indeed, recombination is a very widespread strategy for antigenic variation in

eukaryotic and bacterial pathogens (Palmer and Brayton, 2007), most likely because it drives anti-

gen diversity, which prolongs infection and facilitates transmission (Hall et al., 2013; Mugnier et al.,

2015).

The VSG archive is distributed across the three chromosome classes that comprise the T. brucei

nuclear genome. A small part of the archive is the BES (Hertz-Fowler et al., 2008), which are found

in the 11 diploid megabase chromosomes as well as in the ~5 aneuploid intermediate chromosomes.

A larger part of the archive is found at the telomeres of ~100 minichromosomes (Wickstead et al.,

2004), where ESAGs and BES promoters have not been found, suggesting this part of the archive is

simply a store of silent VSGs for recombination. The largest silent store is composed of arrays of

VSGs in the subtelomeres of the megabase chromosomes, where the majority of the VSGs are pseu-

dogenes or partial genes (Berriman et al., 2005). The strategies for VSG recombination in antigenic

variation reflect the archive location and gene composition (McCulloch et al., 2015). A minor route

for switching is termed reciprocal VSG recombination, where telomeres are exchanged between two

chromosomes, moving the VSG out of the active BES and moving a previously silent VSG into the

active BES (Rudenko et al., 1996). More common is VSG gene conversion, which can involve both

intact and impaired VSGs, and involves deletion of the VSG in the BES and replacement by VSG

sequence copied from the silent archive. Early in infections gene conversion of intact VSGs predomi-

nates (Marcello and Barry, 2007; Morrison et al., 2005) and, since the VSGs share little sequence

homology, the reaction relies on flanking homology. ~90% of VSGs are flanked by 70 bp repeats

eLife digest The African trypanosome, Trypanosoma brucei, is a parasite that is transmitted

between mammals by the tsetse fly, and causes a disease known as sleeping sickness in humans.

Like many other parasites, trypanosomes have evolved ways to avoid being killed by their hosts.

One such survival strategy involves the parasites constantly changing the molecules that coat their

surface, which are the main targets recognized by their hosts’ immune systems. Switching one coat

protein for another similar protein, a process called antigenic variation, allows a parasite to evade an

attack and establish a persistent infection. Antigenic variation also makes it almost impossible to

develop a vaccine that will offer lasting protection against the parasite.

Previous research suggested that a trypanosome might deliberately break its own DNA and then

exploit a repair process to switch its current coat protein-encoding gene for another one located

elsewhere within its genetic material. Devlin, Marques et al. now reveal that it is unlikely that

trypanosomes use a specific enzyme to break DNA deliberately during coat switching. Instead,

experiments using whole-genome sequencing suggest that coat-gene-switching might arise from

the strategies trypanosomes use to copy their genetic material during cell division.

These findings bring researchers closer to understanding how trypanosomes start antigenic

variation in order to evade their hosts’ immune responses. In addition, the findings suggest a new

model that could help researchers answer an important question: how does the timing of genome

copying vary from cell to cell? Nevertheless, the hypothesis proposed by Devlin, Marques et al. will

now require rigorous testing. Future studies could also ask if other parasites use similar strategies to

survive being attacked by their host’s immune systems.

DOI: 10.7554/eLife.12765.002
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(Marcello and Barry, 2007), which provide upstream homology to guide recombination of virtually

all genes in the archive. In addition, gene conversion of VSGs between BES can use extensive

upstream homology: gene conversion can extend to downstream homology within and around the

VSG open reading frame (ORF) or, if the silent VSG is telomeric, to the chromosome end. Impaired

VSGs are seen as recombination substrates later in infections and here gene conversion differs from

intact VSGs, since the reaction involves the production of a functional gene using homology within

the ORF; indeed, multiple VSG donors are frequently recombined to generate novel ‘mosaic’ VSGs

in a reaction termed segmental gene conversion (Hall et al., 2013; Mugnier et al., 2015).

All available evidence suggests switching of intact VSGs by recombination is catalyzed by homol-

ogous recombination (HR), a universally conserved reaction that directs repair of DNA damage and

maintains replication fork progression genome-wide. Mutation of the central catalytic enzyme of HR,

RAD51, impairs (but does not abolish) VSG recombination, including gene conversion

(McCulloch and Barry, 1999). Consistent with that phenotype, mutation of T. brucei BRCA2

(Hartley and McCulloch, 2008) and at least one of four RAD51 paralogues (Dobson et al., 2011) -

factors that aid RAD51 function - has the same outcome. More recently, mutation of TOP3a or

RMI1, which interact and may be components of the T. brucei RTR (RecQ/Sgs1-Top3/TOPO3a-

Rmi1/BLAP75/18) complex (Mankouri and Hickson, 2007), was shown to result in increased VSG

switching, an effect that is RAD51-dependent (Kim and Cross, 2010; 2011). The conclusion that

antigenic variation can be executed by a non-specific, general repair pathway is not limited to T. bru-

cei, as similar gene knockout studies in Neisseria gonorrhoeae implicate HR in pilin antigenic varia-

tion (Cahoon and Seifert, 2011). However, VSG switching can occur at rates substantially higher

than might be predicted for background mutation (Turner, 1997) and may be focused to target the

active BES, features that may suggest some mechanistic specialization or locus-specificity. As a

result, recent work has explored how VSG switching might be initiated in T. brucei, leading to an

association between elevated rates of switching and DNA double strand breaks (DSBs). The evi-

dence for this association is two-fold. First, controlled induction of the endonuclease I-SceI to specifi-

cally generate a DSB adjacent to the 70 bp in the active BES leads to a ~250 fold increase in VSG

switching by recombination (Boothroyd et al., 2009), an effect not seen when a DSB is induced in

other locations in the active BES (Boothroyd et al., 2009; Glover et al., 2013) or when the 70 bp

repeats have been deleted from the active BES (Boothroyd et al., 2009). Second, ligation-mediated

PCR is able detect DNA breaks in the BES, with the lesions initially reported to be limited to the

vicinity of the 70 bp repeats in the active BES (Boothroyd et al., 2009), though later also reported

in the silent BES (Glover et al., 2013; Jehi et al., 2014) and found to be more widely distributed in

the transcription units (Glover et al., 2013).

Despite the emerging association between DNA DSBs and VSG switching, questions remain

about the detailed mechanism(s) of VSG switch initiation. For instance, are DSBs generated directly

in the active BES, such as through the action of an endonuclease, as occurs during Saccharomyces

cerevisiae mating type switching (Lee and Haber, 2015)? Alternatively, might other processes lead

more indirectly to break formation and elicit switching, such as the transcription, replication and

DNA nicking events that initiate locus-directed recombination reactions during, respectively, immu-

noglobulin gene switching in mammals (Roth, 2014), mating type switching in Schizosaccharomyces

pombe (Klar et al., 2014) and pilin antigenic variation in N. gonorrhoeae (Obergfell and Seifert,

2015)? In this study, we have examined VSG switch initiation in two ways. First, we describe the

impact on DNA repair and VSG switching caused by mutation of one of two T. brucei RecQ-like heli-

cases, which we have named TbRECQ2. We show that loss of TbRECQ2 impairs DSB repair, consis-

tent with the observation that the protein localizes to such lesions. Conversely, TbRECQ2 mutants

display elevated rates of VSG switching, indicating it is unlikely that the direct formation of DSBs is

the initiating event in VSG switching. Second, we provide evidence for strong association between

replication timing and BES transcription, indicating that VSG switch initiation may be mechanistically

linked to DNA replication.
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Results

T. brucei RECQ2 is non-essential in bloodstream form cells and acts in
DNA damage repair
Helicases are molecular motors that use energy released from nucleoside triphosphate hydrolysis to

unwind RNA, DNA or RNA:DNA hybrids. RecQ-like helicases are widespread Superfamily 2 DNA

helicases (Fairman-Williams et al., 2010), identifiable by homology with the first RecQ helicase

described in Escherichia coli (Umezu et al., 1990). S. pombe and S. cerevisiae, single-celled

yeast, encode a single RecQ helicase: Rqh1 and Sgs1, respectively. In contrast, multicellular eukar-

yotes such as humans and Drosophila menaogaster possess multiple RecQ helicases, with five dis-

cernible in mammals (Bernstein et al., 2010; Hickson, 2003). RecQ helicases function in diverse

aspects of genome maintenance. For example, human RECQ4 interacts with the replication factors

MCM10 and MCM2-7, while RECQL4 interacts with CDC45 and GINS (Im et al., 2009; Xu et al.,

2009). RecQ helicases also play roles in non-homologous end-joining, since human WRN interacts

with XRCC4-ligase IV (Kusumoto et al., 2008), while human RECQ1 binds Ku70/80 and its depletion

leads to reduced repair (Parvathaneni et al., 2013). Finally, RecQ helicases act in both the initiation

and execution of HR (Haber, 2015), since the RTR complex promotes DNA DSB resection

(Mimitou and Symington, 2008; Zhu et al., 2008), controls DNA annealing during strand invasion

(Fasching et al., 2015; Spell and Jinks-Robertson, 2004), and ‘dissolves’ Holliday junction inter-

mediates to limit crossover genetic exchange between chromosomes (Cejka et al., 2010;

Hickson and Mankouri, 2011).

BLAST searches with multiple eukaryotic RecQ helicase sequences consistently revealed two well-

aligned proteins encoded in the T. brucei genome, which we arbitrarily named TbRECQ1 (TriTrypDB

gene accession number Tb427.06.3580) and TbRECQ2 (Tb427.08.6690). RNAi analysis suggests that

TbRECQ1, which appears more distantly related to eukaryotic RecQ helicases than TbRECQ2, is

essential (Devlin et al, unpublished). Protein domain predictions (Figure 1A) suggest that TbRECQ2

contains a conserved DEAD/DEAH box helicase domain, indicating potential ATP and nucleic acid

binding activity, and a more C-terminal helicase domain that is found in helicases of multiple families

(Linder, 2006). In addition, an HRDC (helicase and RNaseD C-terminal) domain is predicted close to

the C-terminus. In contrast to the two other domains, the HRDC domain appears limited to some

RecQ helicases and RNase D homologues (Morozov et al., 1997), where it is probably involved in

DNA binding (Bachrati and Hickson, 2003). However, HRDC domains are not found in all RecQ heli-

cases; for example, three human RecQ helicases, WRN, BLM and RECQ1, each contain an HRDC,

but it is absent in human RECQ4 and RECQ5 (Bernstein et al., 2010).Thus, the prediction that

TbRECQ2 contains an HRDC might suggest a function closer to the former human RecQ helicases.

One domain that is limited to RecQ helicases is termed RQC (RecQ C-terminal), which may be

involved in protein-protein interactions (Bernstein et al., 2010), as well as in binding and unwinding

dsDNA at branch points (Kitano et al., 2010). Though this domain could not be predicted in

TbRECQ2, it is also absent from or highly diverged in some other validated RecQ proteins

(Bachrati and Hickson, 2003) and the evolutionary distance between T. brucei and the most charac-

terised model eukaryotes may confound identification.

To evaluate the role of TbRECQ2 in T. brucei bloodstream form (BSF) cells, heterozygous (+/-)

and homozygous (-/-) knockout mutants were generated by sequential transformation with con-

structs that replace nearly all of the TbRECQ2 ORF with cassettes that express resistance to blastici-

din or G418 (Figure 1—figure supplement 1A). Integration of the constructs and deletion of both

wild type (WT) TbRECQ2 alleles in the -/- mutants was confirmed by PCR (Figure 1—figure supple-

ment 1B), while reverse transcription PCR (RT-PCR) (Figure 1—figure supplement 1C) showed no

intact TbRECQ2 mRNA could be detected in the -/- mutants. The successful generation of null

mutants shows TbRECQ2 is not essential in BSF T. brucei, though growth analysis revealed that the

recq2-/- mutants had an increased population doubling time compared with WT cells (Figure 1B).

Indeed, slowed growth was also apparent in the req2+/- mutants, suggesting a growth impediment

after loss of one allele that becomes more severe in the null mutant. To ask if the growth change

results from an impediment in completing a cell cycle stage or traversing between sequential stages,

cells were stained with DAPI to visualise nuclear (N) and kinetoplast (K) DNA. Counting the relative

numbers of the two T. brucei genomes allows a cytological assessment of the cell cycle stage of indi-

vidual cells in the population (McKean, 2003), and we found no change in the proportion of 1N1K
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(G1-S phase), 1N2K (G2-M phase) or 2N2K (post M phase) cells in mutants relative to WT

(Figure 1C). Thus, the growth impairment of the RECQ2 mutants is not due to detectable stalling at

a discernible cell cycle stage or transition. Western blotting to detect the levels of Thr130 phosphor-

ylated histone H2A (g-H2A) revealed an increased signal in the recq2-/- mutants relative to WT

(Figure 1D), indicating this modification accumulates in the absence of the helicase to an extent

Figure 1. T. brucei RECQ2 is non-essential and acts in genome repair. (A) Representation of predicted protein domains in TbRECQ2. Approximate

position (in amino acids, aa, from the N-terminus, N) of predicted functional domains (boxed) is shown underneath the diagram (not to scale). (B) The

cell density of wild type (WT) cells and recq2 +/- and -/- mutants cultures was counted every 24 hr up to a maximum of 96 hr, starting from a cell

density of 1 x 104 cells.mL1. The mean cell density from three independent experiments is shown on a Log10 Y-axis graph; error bars depict standard

error of the mean. (C) Cell cycle analysis of WT cells and recq2 +/- and -/- mutants. DNA content was evaluated after DAPI staining of fixed cells and

the number of cells with one nucleus and one kinetoplast (1N1K, white box), one nucleus and two kinetoplasts (1N2K, hatched box), two nuclei and two

kinetoplasts (2N2K, black box) and cells that did not fit into any of these categories (other, grey box) were counted. The proportion of each cell type is

represented as a percentage of the total cells counted (N).(D) Western blotting of whole cell extracts from WT and recq2-/- mutants grown in the

absence (-) of methyl methane sulphonate (MMS), or for 18 hr in media containing 0.0003% MMS (+). Blots were probed with peptide antiserum

recognizing Thr130 phosphorylated T. brucei histone H2A (g-H2A) and, as loading control, polyclonal antiserum recognizing T. brucei EF1a. (E) Clonal

survival ofwild type (wt) cells and recq2 heterozygous (+/-) or homozygous (recq2-/-) mutants is shown in the presence of varying concentrations of

MMS, phleomycin or hydroxyurea (HU). Mean survival (%) is plotted of the treated cells relative to untreated from three independent experiments, with

vertical lines representing standard error of the mean.

DOI: 10.7554/eLife.12765.003

The following figure supplement is available for figure 1:

Figure supplement 1. Generation of recq2 null mutants in bloodstream form T. brucei.

DOI: 10.7554/eLife.12765.004
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comparable to that seen in WT or -/- mutants cells grown for 18 hr in 0.0003% MMS (see below).

This form of phosphorylation of histone H2A is a modification seen after various genotoxic treat-

ments in T. brucei (Glover and Horn, 2012), suggesting it is the kinetoplastid variant of a conserved

eukaryotic chromatin alteration that acts a prelude to repair. Thus, accumulation of the histone vari-

ant in the recq2-/- mutants indicates an increased level of nuclear DNA damage, which appears not

to impair cell cycle progression but may impede cell growth or survival.

To ask if TbRECQ2 contributes to genome repair in T. brucei survival of the mutants was com-

pared with WT cells following exposure to three DNA damaging compounds: hydroxyurea (HU),

methyl methanesulfonate (MMS) and phleomycin. HU depletes the cellular dNTP pool

(Bianchi et al., 1986), resulting in stalled replication forks that can subsequently collapse and gener-

ate DNA breaks. MMS methylates purines (Brookes and Lawley, 1961), which causes DNA breaks,

at least in part through DNA repair activities targeting the alkylation (Lundin et al., 2005;

Wyatt and Pittman, 2006). MMS damage also perturbs replication, due to alkylated nucleotides

blocking replication fork progression (Groth et al., 2010). Phleomycin blocks the activity of DNA

polymerase, inhibiting DNA synthesis and resulting in the formation of, primarily, DNA DSBs

(Falaschi and Kornberg, 1964; Reiter et al., 1972). Figure 1E shows clonal survival assays, which

revealed that the recq2-/- cells displayed a much increased sensitivity to MMS compared with WT.

Indeed, at MMS concentrations at and above 0.0002%, recq2+/- survival was lower than WT. These

data are consistent with the increased MMSsensitivity previously reported in S. cerevisiae SGS1

mutants (Mullen and Brill, 2000), as well as human and chicken DT40 blm-/- mutants

(Imamura et al., 2001), and indicate TbRECQ2 is involved in the T. brucei response to MMS-induced

damage. Clonal survival showed that TbRECQ2 also contributes to the T. brucei response to phleo-

mycin and HU damage, since in both cases the recq2-/- mutants were more sensitive than WT cells

(Figure 1E). However, in neither case was there clear evidence that the recq2+/- cells were more

sensitive than WT, perhaps indicating a more pronounced role for the putative helicase in tackling

MMS damage.

T. brucei RECQ2 localises in nuclear foci after the induction of DNA
breaks
To examine the subcellular localisation of TbRECQ2, the protein was N-terminally tagged with 12

copies of the myc epitope (12myc) using a modified version (gift, A.Trenaman) of the pEnT6B con-

struct (Kelly et al., 2007), which allowed the variant protein to be expressed from the endogenous

TbRECQ2 locus. A western blot of a cell lysate from a transformant clone showed expression of a

myc-tagged protein of the expected size (182 kDa; Figure 2A). To test the functionality of the

12myc-TbRECQ2 variant, the untagged TbRECQ2 allele was deleted by replacement with a G418-

resistance cassette (Figure 1—figure supplement 1A). MMS sensitivity of the resulting recq2

12myc/- cells was then assessed by clonal survival (Figure 2B). As survival of the cells expressing

only the 12myc tagged variant of TbRECQ2 was comparable with WT cells and recq2+/- mutants in

the presence of MMS, and notably better than recq2-/- mutants, addition of the epitope does not

impair TbRECQ2 function in repair.

Localisation of 12myc-TbRECQ2 was examined by direct immunofluorescence with anti-myc anti-

serum conjugated with Alexa-Fluor 488 (Figure 2C). In most cells no signal could be detected,

though in the very small proportion (0.2%) that did show a signal (Figure 2D), this was seen as a dis-

crete puncta in the nucleus (data not shown). Such a pattern is reminiscent of localisation described

for T. brucei RAD51 (Dobson et al., 2011; Glover et al., 2008; Hartley and McCulloch, 2008;

Proudfoot and McCulloch, 2005; Trenaman et al., 2013), which is normally not seen in the cell, but

localises in what have been described as foci in a small number of cells in the absence of induced

damage. RAD51 foci are thought to be repair-related structures, as their numbers increase after

damage, both in T. brucei and in many other cells (Bergink et al., 2013; Haaf et al., 1995;

Tarsounas et al., 2004). As a result, we examined co-localisation of 12myc-TbRECQ2 and TbRAD51,

detecting the latter by indirect immunofluorescence with polyclonal anti-RAD51 antiserum. To ask if

the 12myc-TbRECQ2 signals might represent repair–related foci and, indeed, might be structurally

associated with TbRAD51 foci, the cells were treated for 18 hr with phleomycin at 1 mg.mL-1, which

has been shown to generate a majority of cells with TbRAD51 foci (Dobson et al., 2011;

Hartley and McCulloch, 2008; Trenaman et al., 2013). TbRAD51 foci were observed in ~2% of

untreated cells (Figure 2D), which is similar to previous studies and comparable with 12myc-
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TbRECQ2. After growth in phleomycin, 47% of cells contained one or more 12myc-TbRECQ2 foci

and 44% of cells contained one or more TbRAD51 foci (Figure 2D). Indeed, not only was the relative

proportion of cells with 12myc-TbRECQ2 and TbRAD51 foci comparable in these conditions, but the

pattern of foci accumulation was highly related: most cells contained a single focus of either protein,

though some contained 2 or 3 discrete foci, while others had larger numbers (difficult to count accu-

rately). Moreover, there was substantial overlap in the two signals, examples of which are shown in

Figure 2C. In the majority of cells in which 12myc-TbRECQ2 and TbRAD51 foci were seen (irrespec-

tive of the number of foci), the signals co-localised fully (~60% of cells with both foci, Figure 2E). In

~20% of cells with foci, the signal overlap was partial because the numbers of 12myc-TbRECQ2 and

Figure 2. TbRECQ2 is a nuclear factor that relocalises to foci in the presence of DNA damage, when it colocalises with RAD51. (A) Western blot

analysis of WT cells relative to cells expressing 12myc-tagged RECQ2 from the endogenous locus; size markers are shown (kDa). (B) Clonal survival of

cells expressing myc-tagged RECQ2 (12myc and 12myc/-) is shown relative to WT, recq2+/- and recq2-/- cells in the presence of varying concentrations

of MMS. Mean survival (%) is plotted of the treated cells relative to untreated from three independent experiments, with vertical lines representing

standard error of the mean. (C) Representative examples of 12myc-RECQ2 and RAD51 cellular localisation in fixed cells, including after 18 hr growth in

the presence or absence of phleomycin (1 mg.mL-1); bar: 13 mm. The tagged protein was detected by direct immunofluorescence using an anti-myc

antiserum coupled with the Alexa Fluor 488 flurophore (myc, green), while RAD51 was localised by indirect immunofluorescence using a rabbit anti-

RAD51 antisera and an Alexa Fluor 594 goat anti-rabbit IgG antiserum; DNA was visualized with DAPI, and differential interference contrast (DIC) was

used to visualise whole cells. (D) Percentage of cells containing 12myc-TbRECQ2 and RAD51 foci, as well as the number of detectable foci either in the

absence (- phleomycin) or presence (+ phleomycin) of phleomycin is shown. (E) Cells containing 12myc-RECQ2 and RAD51 foci following phleomycin

treatment were categorised according to the degree of foci co-localisation, represented as percentage of cells that contained foci.

DOI: 10.7554/eLife.12765.005
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TbRAD51 foci were not equivalent in a single cell. Finally, in ~20% of cells there was no overlap,

because 12myc-TbRECQ2 displayed foci but TbRAD51 did not, or vice versa. In summary, there

appears to be pronounced similarity in behaviour and overlap in signal between 12myc-TbRECQ2

and TbRAD51 before and after phleomycin- induced damage. Whether the non-overlapping signals

merely reflect incomplete resolution of one or other signal, or tell us that the proteins can act in sub-

tly different manners (perhaps temporally or spatially), is unclear.

Loss of TbRECQ2 impairs survival of T. brucei cells after DNA double
strand break induction
In order to test directly if TbRECQ2 acts in DNA DSB repair, we utilised two cell lines (Figure 3A) in

which a single DNA DSB can be controllably induced in the genome (gift, David Horn). Both the HR1

(or INT) (Glover and Horn, 2014; Glover et al., 2008) and HRES (or TEL, VSGup)(Glover et al.,

2013; Glover and Horn, 2014) cells have been modified such that expression of the I-SceI meganu-

clease is dependent upon addition of tetracycline (Tet) to alleviate transcriptional repression by the

Tet repressor. HR1 and HRES cells differ in the location of the I-SceI recognition site (Figure 3A). In

HR1, the I-SceI site is located on chromosome 11, between genes Tb927.11.4530 and

Tb927.11.4540 (tritrydb.org), and >1 Mbp from the nearest telomere. Here, the I-SceI site is embed-

ded within an RFP (red fluorescent protein):PUR (puromycin N-acetyl transferase) fusion gene. The

RFP:PUR gene is flanked by tubulin sequences for mRNA transplicing and polyadenylation. Thus,

HR-directed repair after I-SceI-induced DSB formation could occur by recombination between chro-

mosome 11a (containing the I-SceI site) and its homologue (11b), but could also occur ectopically

with chromosome 1 (where the tubulin locus is found) using the short tubulin sequences on the RFP:

PUR cassette (Glover et al., 2008). In HRES, the I-SceI recognition site is located upstream of

VSG221 and downstream of the 70 bp repeats in the active BES (BES1), fused to a PUR gene

(Glover et al., 2013), an organisation similar to that described by Boothroyd et al. (2009). Here,

DSB induction has been proposed to mimic VSG switching, by initiating HR through available homol-

ogy (e.g. other VSGs, 70 bp repeats, telomere repeats, ESAGs)(Boothroyd et al., 2009;

Glover et al., 2013). In both HR1 and HRES, the presence or absence of the PUR gene at the I-SceI

recognition site provides a means to assay for repair after Tet induction: due to the proximity of the

PUR gene to the I-SceI target, the PUR sequence must be degraded after I-SceI cutting by DSB end

resection to access the flanking homology that drives HR-directed DSB repair DNA, resulting in

puromycin sensitivity.

TbRECQ2 mutants were generated in HR1 and HRES BSF cells as before, with integration of the

constructs and loss of intact RECQ2 in two -/- mutant clones confirmed by PCR (Figure 3—

figure supplement 1A) and RT-PCR (Figure 3—figure supplement 1B). In order to understand if

loss of TbRECQ2 affected DSB repair, cell survival following Tet induction was assayed by determin-

ing clonal survival efficiency relative to uninduced cells. The survival rate of HR1 WT cells following

I-SceI induction was ~60% (Figure 3B), equivalent to that reported previously (Glover and Horn,

2014; Glover et al., 2008). In the absence of TbRECQ2, the survival rate decreased 2-fold, with

only ~30% of wells displaying growth in both of the two HR1 recq2-/- clones examined. These data

indicate that recq2-/-mutants are less able to survive a chromosome-internal DNA DSB than WT T.

brucei cells. Analysis of the puromycin sensitivity of surviving clones showed, for both WT and

recq2-/- HR1 cells, that all Tet-induced clones (n = 25) were puromycin sensitive and all uninduced

clones (n = 6) were puromycin resistant (Figure 3B). Thus, a functional PUR gene was lost in all cases

after I-SceI expression was induced, showing that DSB formation was successful and indicating repair

is possible, though less efficient, in the absence of TbRECQ2. Broadly the same outcome was seen

for the HRES cells (Figure 3C). Consistent with previous observations (Glover et al., 2013), the sur-

vival rate of HRES WT cells after I-SceI induction (~24%) was >2-fold lower than HR1 cells

(Figure 3C), indicating greater lethality when a DSB is made in the active BES. Nonetheless, the sur-

vival rate of the two HRES recq2-/- clones (13% and 14.8%) was again ~50% of HRES WT cells, sug-

gesting loss of TbRECQ2 impairs survival in both loci. In fact, the level of impairment after loss of

TbRECQ2 may be greater than the clonal survival assay predicts since, unlike in HR1, evaluating the

puromycin sensitivity of recovered clones showed that 14% of survivors (n = 7) in one HRES recq2-/-

clone and 70% (n = 10) in the other were puromycin resistant (Figure 3C). These data are most sim-

ply explained by a greater number of HRES recq2-/- mutants being recovered (relative to HR1

mutants) in which a DSB has not been induced, reflecting the very limited survival capacity of
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recq2-/- mutants after a DSB is made in the active BES. Despite this, PCR of the puromycin sensitive

recq2-/- survivor clones showed that all had lost the VSG221 gene (also called VSG 427–2) (Hertz-

Fowler et al., 2008) and most had retained the ESAG1 gene variant specific to the targeted BES

(Figure 3D), a pattern consistent with previous analysis in WT HRES (Glover et al., 2013) cells and

relatives (Boothroyd et al., 2009). Thus, loss of TbRECQ2 does not result in a major shift in repair

pathway after induction of a DNA DSB in the BES, meaning reduced survival in the mutants is best

explained by less efficient execution of a predominant repair reaction.

Figure 3. Mutation of TbRECQ2 impairs survival of T. brucei after induction of a DNA double strand break, either in the active telomeric VSG

expression site or in the core of a chromosome. (A) I-SceI target sequences in HR1 and HRES cells. HR1 cells contain an I-SceI recognition site

embedded within an RFP:PUR fusion gene (black), flanked by tubulin sequences (white), located between genes Tb.11.02.2110 and Tb.11.02.2020 on

one copy of chromosome 11; HRES cells contain an I-SceI recognition site upstream of a PUR gene, flanked by tubulin sequences, located downstream

of the 70 bp repeats of the active VSG221 expression site on chromosome 6. B and C show clonal survival following I-SceI induction in HR1 and HRES

cells, respectively. In both cases, wild type and two recq2-/- clones were distributed in three 96 well plates at a concentration of 0.26 cells per well

either in the absence (I-SceI uninduced) or presence (I-SceI induced) of 2 mg.mL-1 tetracycline. The number of wells with surviving cells after 7–10 days

growth is depicted as percentage of survivors following I-SceI induction relative to survivors without I-SceI induction; error bars represent standard error

of the mean between three experimental repeats. Puromycin sensitivity of surviving I-SceI induced and uninduced clones was then tested, and is

represented as the percentage of tested clones that grew in the presence (+) or absence (-) of 1 mg.mL-1 puromycin (N: number of clones analysed). (D)

Clones from (C), excluding those that were puromycin resistant, were assayed for ESAG1 and VSG221 presence by PCR; data are shown as the

percentage that were PCR positive (N: number of clones analysed).

DOI: 10.7554/eLife.12765.006

The following figure supplement is available for figure 3:

Figure supplement 1. Generation of TbRECQ2 mutants in T. brucei HR1 and HRES cells.

DOI: 10.7554/eLife.12765.007
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Loss of TbRECQ2 increases VSG switching by elevated telomeric
recombination
In order to analyse the effect of TbRECQ2 loss onVSG switching we adapted an in vitro strategy of

Povelones et al (Povelones et al., 2012), which is conceptually related to an assay established by

Kim and Cross (Kim and Cross, 2010; 2011). In this strategy, a herpes simplex virus thymidine

kinase (TK) gene fused to a hygromycin resistance gene (HYG-TK) was inserted between the 70 bp

repeats and VSG221 in the active BES (Figure 4A). Additionally, enhanced GFP and PUR genes

were integrated downstream of the active BES promoter. Integration of the marker genes and the

expected expression of GFP and VSG221 protein was confirmed by PCR and western blotting (Fig-

ure 4—figure supplement 1A).The parental cell line generated by these manipulations,

GFP221hygTK, allows the nucleotide analogue ganciclovir (GCV) to be used to eliminate cells from

the population that have not inactivated TK, which can occur through VSG switching events that can

be distinguished by the presence and expression of the VSG221 and GFP genes in the BES

(Figure 4A). In a transcriptional (in situ) switch VSG221 and GFP proteins are no longer expressed

from the BES but both genes are retained. In contrast, cells that have switched by a gene conversion

downstream of PUR-GFP (here termed VSG GC) retain GFP expression from the BES but have

deleted TK and VSG221 from the transcription unit. Longer range gene conversions are also possible

that encompass the whole BES and lead to removal of both GFP and VSG221, though in the

approach used here this reaction cannot be distinguished from events in which the BES is deleted

without gene conversion and cells survive through a transcriptional switch (ES GC or in situ+ES del,

respectively)(Cross et al., 1998; Rudenko et al., 1998). Finally, in VSG switching by telomere

exchange (telomere XO) GFP continues to be expressed from the BES, whereas VSG221 protein

expression is silenced by moving the gene to another telomere. Cells that have inactivated TK

through mutation, rather than VSG switching, can also be selected for in this assay

(Povelones et al., 2012). However, such cells, which can be identified by continued expression of

VSG221, were rare in this study (Figure 4C).

To assess the contribution of TbRECQ2 to VSG switching, req2+/- and req2-/- mutants were gen-

erated in the GFP221hygTK cells, with integration of the constructs and loss of intact TbRECQ2 in

the -/- mutants confirmed by PCR, and continued expression of GFP and VSG221 shown by western

blotting (Figure 4—figure supplement 1B). The switching rate of the WT cells was then compared

with the TbRECQ2 mutants: cultures were grown for 48 hr in media lacking hygromycin or puromy-

cin (allowing switch variants to arise) and then cloned by limiting dilution in antibiotic-free media

containing GCV, allowing measurement of the number of cells in the diluted population that had

inactivated TK. In the WT cells GCV resistant clones arose at a rate of ~1.5 x 10–5cells/generation

(Figure 4B), consistent with rates determined in comparable studies Kim and Cross, 2010a, 2011a;

Povelones et al., 2012b). No change in rate was seen in the recq2+/- mutants (Figure 4B), but GCV

resistant cells arose around 2-fold more frequently in the recq2-/- mutants (~3.2 x 10–5 resistant

cells/generation). To ask if this change could be explained by an alteration in VSG switching strategy,

we used PCR and western blotting to determine the profile of GFP and VSG gene presence and pro-

tein expression in a selection of GCV resistant clones for each cell line (Figure 4C; Figure 4—figure

supplement 2). In broad agreement with observations made by Povelones et al. (2012), in WT cells

most GCV resistant clones had arisen either by in ES GC or in situ+ES del (~60%), with in situ switch-

ing the next most common process (~25%); VSG GC was rare (~10%), and we found no examples of

telomere XO events. A virtually identical pattern of events was seen in the recq2+/- cells, consistent

with the unaltered rate at which GCV resistant cells arose. In contrast, ~90% of GCV resistant clones

in the recq2-/- mutants arose either by VSG GC (~50% of total) or telomere XO (~45%), indicating

that the elevated rate in the null mutants is due to increased use of these recombination strategies.

To test this interpretation further, the switching experiment was conducted in the presence of puro-

mycin, which should prevent any events that inactivate expression of PUR (Figure 4B). In these con-

ditions, GCV resistant cells arose ~2–3 fold less frequently in the WT and recq2+/- cells (Figure 4C),

consistent with their predominant use of in situ and ES GC or in situ+ES del events, whilst there was

less impact on the recq2-/- cells, where VSG switching is largely downstream of PUR. Taken

together, these data indicate that loss of TbRECQ2 results in increased VSG switching by a change

in repair strategy.
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A DNA double strand break in the VSG expression site is inefficiently
repaired
Given the dichotomy between the effects of TbRECQ2 loss on DNA DSB repair and VSG switching,

we next characterised in more detail the response of T. brucei BSF cells to induction of an I-SceI-

mediated DSB. We first compared the cell cycle response to DSB induction in HR1 and HRES cells

(Figure 5A,B). Expression of I-SceI was induced with Tet and, 12 and 24 hrlater, cells were stained

with DAPI to visualize N and K DNA. Virtually all cells were categorised as either 1N1K, 1N2K or

2N2K, irrespective of whether I-SceI expression was induced or not. However, consistent with

Figure 4. Mutation of TbRECQ2 leads to elevated VSG switching and increased recombination. (A) Strategy for determining VSG switching

mechanisms; adapted from Povelones et al. (2012). The active VSG BES of GFP221hygTK cells is shown, within which the PUR, eGFP, HYG-TK and

VSG221 genes are represented as coloured boxes. In addition, one of the ~14 silent BES containing a distinct VSG (turquoise box) is shown, as are

multiple silent VSGs elsewhere in the genome (various colours; for convenience these are shown as a single array, but could also be at the telomere of

silent mini-chromosomes). 70 bp repeats upstream of the VSGs are denoted by hatched boxes. Different switching strategies allow survival after

ganciclovir treatment and can be distinguished by analysis of VSG221 and GFP presence by PCR, and expression of the proteins by western blot

(profiles detailed under each mechanism). Switchers that arise by in situ switching, telomere crossover (XO) or VSG gene conversion (VSG GC) can be

detected unambiguously, while events that occur by BES gene conversion or in situ switching coupled with BES deletion (ES GC/ in situ+ES del) are

indistinguishable. Note, only in situ+ES del reaction is shown, and not ES GC (where all sequence of a silent BES is duplicated and replaces the VSG221

BES); in addition, for VSG GC the silent grey array donor VSG gene is shown as being copied, but the reaction could also use a BES VSG gene. Non-

switcher TK mutants can also allow ganciclovir survival. (B) The mean switching rate of GFP221hygTK WT and recq2 mutants (+/- and -/-) was inferred

from the mean number of survivors from two experiments, each with three replicates, following treatment with ganciclovir and after culture with (+) or

without (-) puromycin; error bars represent standard error of the mean. (C) Profiles of WT and recq2 mutants (+/- and -/-) survivors in the non-puromycin

experiments, represented as a percentage of total surviving clones analysed from the two datasets; number of clones (N) analysed is indicated.

DOI: 10.7554/eLife.12765.008

The following figure supplements are available for figure 4:

Figure supplement 1. Generation of TbRECQ2 mutants in T. brucei GFP221hygTK cells.

DOI: 10.7554/eLife.12765.009

Figure supplement 2. Summary table of ganciclovir survival mechanisms.

DOI: 10.7554/eLife.12765.010
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previous reports (Glover et al., 2013; Glover and Horn, 2014; Glover et al., 2008), addition of Tet

resulted in increased numbers of 1N2K cells, indicating impaired G2-M cell cycle progression

(Figure 5A,B). In HR1, 1N2K cell numbers increased (from ~10% of the uninduced population) to

~20% 12 hr after Tet induction and then returned to ~10% after 24 hr (Figure 5A), indicating the cell

cycle impairment was transient. In contrast, increased 1N2K cell numbers (~20% of the population)

persisted until 24 hr after Tet addition in HRES (Figure 5B), suggesting the response to a DSB differs

if the lesion is in the active BES or a chromosome-internal site (Glover and Horn, 2014). To examine

this further, we used quantitative real-time PCR (qPCR) to assess the dynamics of I-SceI site

cleavage.

Genomic DNA was prepared at multiple timepoints after Tet induction in HR1 or HRES cells and

qPCR was performed with primers spanning the I-SceI target sequence, determining the amount of

PCR product after Tet induction relative to uninduced cells and normalized by a control locus (DDCt

Figure 5. Analysis of cell cycle progression, DNA repair kinetics and VSG expression after I-SceI-mediated DNA double strand break formation. Cell

cycle analysis of HRES (A) and HR1 (B) cells following I-SceI induction. DNA content is shown 12 and 24 hr post I-SceI induction (+T) after visualisation

by DAPI staining of fixed cells; uninduced cells (-T) were analysed as a control. The number of cells with one nucleus and one kinetoplast (1N1K), one

nucleus and two kinetoplasts (1N2K), two nuclei and two kinetoplasts (2N2K) and cells that did not fit into any of these categories (other) were counted.

The proportion of each cell type is represented as a percentage of the total cells counted (N). (C) Relative efficiency of PCR amplification of the I-SceI

target sequence is shown at various time points after induction of I-SceI in HR1 and HRES cells; values are shown at each post-induction time point as a

percentage of the amount of PCR product generated at 0 hr; values are the mean of three experimental repeats and vertical lines denote standard

deviation. (D) Relative PCR amplification of the VSG221 gene downstream of the I-SceI target is shown after I-SceI induction in HRES cells; values were

determined and are represented as in C. (E) VSG221 expression in HRES cells 24 hr post I-SceI induction was visualised by indirect immunofluorescence

of fixed cells with anti-VSG221 antiserum (+), and are compared with control cells in which only secondary antiserum was used (-). The graphs below

show the proportion of cells expressing VSG221 on their surface 24 hr post I-SceI induction (+T), or without I-SceI induction (-T); data are represented

as the percentage of total cells counted (N).

DOI: 10.7554/eLife.12765.011

The following figure supplement is available for figure 5:

Figure supplement 1. Break formation over 72 hr after ISceI induction in T. brucei HR1 cells.

DOI: 10.7554/eLife.12765.012
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method)(Livak and Schmittgen, 2001). In HR1 (Figure 5C), a reduction in product was seen from

2 hr after Tet addition (20%) and this effect increased until around 8 hr (80%), with little change in

PCR efficiency thereafter (8–72 hr; Figure 5C and Figure 5—figure supplement 1). These data

suggest that I-SceI cleavage in HR1 cells is rapid and reaches a maximum within a cell cycle (~8 hr),

an interpretation consistent with the timing of single-stranded DNA formation at I-SceI breaks

detected by Southern blotting (Glover and Horn, 2014; Glover et al., 2008). Southern blotting sug-

gests that allelic repair products in HR1 accumulate slowly over ~16–72 hr (Glover et al., 2008), con-

sistent with qPCR to detect duplication of the intact allele (data not shown). I-SceI target qPCR

revealed a different response to I-SceI induction in HRES cells (Figure 5C). Early in the time course,

loss of PCR product was more rapid and more complete, with <10% of uninduced product by 2–3 hr

after Tet addition, suggesting I-SceI cleavage was at least as efficient in HRES cells as in HR1. How-

ever, in contrast with HR1, the levels of PCR product later in the reaction increased, in two distinct

peaks (at ~20 and 30 hr post induction), to levels approaching that of the uninduced cells. Given

that I-SceI cleavage is rapid, these data either suggest repair occurs efficiently in a manner that

regenerates the I-SceI target, or repair is inefficient and cells that are subjected to I-SceI cleavage

are killed, allowing those that have not suffered a DNA DSB to outgrow. Unlike for HR1, where most

repair is mediated by allelic HR, I-SceI cleavage in HRES (or related cells) predominantly results in

cells expressing a new VSG, whose identity cannot be easily predicted (Figure 3)(Boothroyd et al.,

2009; Glover et al., 2013). Thus, we used qPCR to ask about the fate of the BES VSG (VSG221)

after I-SceI cleavage (Figure 5D). The abundance of the VSG221 PCR product very closely matched

that of the I-SceI target over the timecourse, and the recurrence of product indicates the initial, rapid

loss of VSG221 is not due to replacement by another VSG. To test this further, we performed immu-

nofluorescence with anti-VSG221 antiserum, revealing that virtually all cells retained VSG221 on their

surface 24 hr after Tet induction (Figure 5E). Taken together, these data indicate that induction of a

DSB by I-SceI in the active BES does not elicit rapid repair (within 32 hr) that removes the down-

stream VSG.

MFAseq reveals early replication of the single actively transcribed VSG
expression site in mammal-infective T. brucei
The analyses above question the association between an induced DNA DSB and VSG switch initia-

tion. In order to ask if any other feature of genome maintenance might correlate with antigenic varia-

tion, we examined the dynamics of T. brucei nuclear DNA replication using marker frequency

analysis coupled with next generation sequencing (MFAseq) (Tiengwe et al., 2012). MFAseq com-

pares the relative depth of sequence read mapping in replicating (S phase) and non-replicating

(here, G2) cells, allowing the sites and relative efficiencies of origins of replication to be determined,

as well as inference on the timing and direction of replication genome-wide. In T. brucei, MFAseq

has so far only been performed in procyclic cell forms (PCF), the insect stage of the parasite, and in

the strain TREU927 (Tiengwe et al., 2012), in which the repertoire of telomeric BES has not been

characterized. Here, we performed MFAseq in PCF and BSF cells of T. brucei strain Lister 427, where

all BES have been sequenced (Hertz-Fowler et al., 2008), allowing us to ask if differences between

the life cycle stages, including gene expression changes, result in alterations in replication dynamics.

Figure 6 shows MFAseq mapping for the eleven megabase chromosomes of T. brucei, excluding

the BES, and comparing the patterns seen when early S or late S cells are compared with G2 phase

cells. The MFAseq pattern of peak location was invariant when comparing early S BSF and PCF cells,

and when comparing late S phase BSF and PCF cells. Even more strikingly, the relative heights of

the MFAseq peaks in each chromosome were invariant between the two life cycle stages (Figure 6),

as well as being invariant between T. brucei strains Lister427 and TREU927 (data not shown). Thus,

neither differentiation between life cycle stages in T. brucei, nor extended growth of different T. bru-

cei strains, leads to changes in the genomic sites used as origins, or changes in the timing pro-

gramme of origin activation in the chromosome cores. Late S MFAseq has not previously been

reported for T. brucei, though it was inferred that the number of origins (42) mapped using early-

mid S phase cells might be an underestimate of ~2-fold, due to replication initiation at late acting

origins (Tiengwe et al., 2012). This prediction appears to be inaccurate, as most of the peaks

detected in the late S samples were merely wider than the early S peaks; indeed, in several locations

early S peaks had merged as replication forks converged (Figure 6). Only five origins (dashed lines,

Figure 6) were observed in the present data, both in the BSF and PCF cells, which were not

Devlin et al. eLife 2016;5:e12765. DOI: 10.7554/eLife.12765 13 of 30

Research article Genes and Chromosomes Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.12765


predicted previously (Tiengwe et al., 2012). All these were ‘weak’ origins, with low MFAseq peak

heights, and it is possible that they were observed here due to the more compressed graphical

representation, rather than being origins that are active in Lister 427 cells and not in TREU927. Using

the localisation of TbORC1/CDC6 (Tiengwe et al., 2012) and histone H4K10Ac (Siegel et al., 2009)

binding sites in the TREU927 genome as a guide (Figure 6), it is clear these five origins localise to

the boundaries of the polycistronic transcription units, as expected. Taken as a whole, the above

MFAseq analysis suggests pronounced rigidity in the coordination of nuclear DNA replication in T.

brucei.

The BES repertoire of T. brucei Lister 427 is composed of 14 distinct BES (Hertz-Fowler et al.,

2008), most of which have not been allocated to specific megabase or intermediate chromosomes.

The PCF and BSF S and G2 sequence reads were used to perform MFAseq mapping to the 16 avail-

able contigs representing the 14 different BES, as shown in Figure 7. In these data, peaks cannot

Figure 6. Replication timing throughout the core genome is stringently conserved between BSF and PCF T. brucei cells. Each set of four graphs shows

the distribution of replication origins in the 11 megabase chromosomes (depicted as Chr1 to Chr11), assessed by MFAseq (Tiengwe et al., 2012). At

the top of each set of graphs is a track representing the genes in the chromosome: in blue the open reading frames (ORFs) are transcribed from the

left to the right, and in red they are transcribed from right to left. Below each set of graphs is a track depicting histone H4K10ac-enriched sites

(Siegel et al., 2009). The four graphs in each case show the ratio between the coverage (read-depth) of DNA derived from Illumina sequencing of early

S phase and G2 phase cells, or late S phase and G2 phase cells, where each point represents the median S/G2 ratio (y-axis) in 2.5 Kbp bins across the

chromosome (x-axis; bars indicate 500 Kbp intervals). All graphs are scaled according to chromosome size. The light red graph shows MFAseq for BSF

early S cells, while dark red represents the data from late S phase. PCF MFAseq data is shown for early S cells in light green, and in dark green for late

S. Vertical, solid grey lines represent the origins identified previously (Tiengwe et al., 2012), while dashed lines highlight replication origins only

observed in this study.

DOI: 10.7554/eLife.12765.013
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be discerned, as the sizes of the BESs are smaller than the distance covered by the replication forks

at most origins (Figure 6). Thus, at the higher resolution used here, the MFAseq mapping is seen as

multiple discrete points, corresponding to the median S/G2 read depth ratio in each of the 2.5 kbp

‘bins’ that span the BES (Figure 7B). For all but one of the BES, there was no clear difference

between the MFAseq mapping in the BSF and PCF cells, either for early or late S phase. Moreover,

there was no evidence that 13 of the 14 BES had been replicated, even in the BSF and PCF late S

samples, since there was no consistent increase in S phase reads relative to G2: comparing the S/G2

Figure 7. The active VSG expression site in bloodstream form T. brucei cells is the only telomeric site that is early replicating. (A) Immunofluorescence

of PCF or BSF Lister 427 cells and BSF strain Lister 427 with anti-VSG 221 antiserum or with anti-EP procyclin antiserum; top panels show the cells

stained with DAPI, while the bottom panel shows the cells’ outline by DIC. Images were acquired with the Axioskop 2 imaging system and the scale bar

represents 5 mm. (B) The Lister 427 bloodstream VSG expression site (BES) TAR clones sequenced by (Hertz-Fowler et al., 2008) were used to map the

MFAseq data from BSF and PCF cells; note that two BES are represented by duplicate TAR clones: BES 7 (f – TAR 65; ff – TAR 153), and BES 17 (f –

TAR 51; ff – TAR 59). The ratio between sequence coverage (read-depth) in early S phase and G2 phase cells, or late S phase and G2 phase samples,

is plotted, where each point represents the median S/G2 ratio (y-axis) per 2.5 Kbp bin across the BES (x-axis). The size of each BES is shown on each

x-axis in 10 Kbp intervals, and all graphs are scaled according to BES size. The y-axis scale is the same for all graphs, but the legend is only shown on

the ones at the far left. BSF early S data is represented as light red, BSF late S as dark red, PCF early S as light green, and PCF late S as dark green.

The red dashed box highlights BES 1. (C) The S/G2 values used to generate the graphs in (B) are shown plotted per sample (BSF early S – light red,

BSF late S – dark red, PCF early S – light green, and PCF late S – dark green), rather than by genomic location, for each BES (numbered as before).

Horizontal bars (black) represent the median of the S/G2 values, and error bars the interquartile range. In order to infer statistical significance, the

values were analysed with the non-parametric, unmatched, Kruskal-Wallis test; statistical significance is only shown for differences between the BSF and

PCF samples: (**) p-value <0.01; (***) p-value <0.001; (****) p-value <0.0001.

DOI: 10.7554/eLife.12765.014
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ratios for each bin in each BES showed that the overall median S/G2 ration for most BES was ~1.0

(Figure 7C). These data suggest that 13 of 14 BES are replicated very late in S phase, similar to telo-

meres in other eukaryotes (Rhind and Gilbert, 2013). BES1 was the single exception to the above

trend. In this contig, BSF S phase reads (both early and late) across the BES were markedly elevated

relative to G2 (Figure 7B), with overall median S/G2 ratios of 1.25 and 1.3 in early and late S, respec-

tively (Figure 7C). This effect was limited to the BSF cells, however, since the PCF MFAseq data for

BES1 (again in either early or late S) was comparable with all other BES, with S/G2 ratios ~1.0 (signifi-

cantly different from BSF cells: p-value < 0.0001). These data suggest that BES1, alone amongst the

14 BES, is replicated early, and this deviation from the late replication of other BES is limited to

mammal-infective cells. BES1 differs from the other BES in being the actively transcribed site, encod-

ing VSG221 in the BSF cells used in this study, as shown by indirect immunofluorescence

(Figure 7A). In PCF cells full transcription of all BES, including BES1, is silenced (Rudenko et al.,

1994) and the VSG coat is replaced with procyclin (Figure 7A). Thus, the unique early replication of

BES1 only in BSF cells suggests that replication timing of T. brucei telomeres displays a precise asso-

ciation with transcription.

To test the MFAseq mapping in the BES we used qPCR to examine the predicted early replication

of the actively transcribed VSG gene. First, S/G2 ratios were derived using qPCR on DNA from cells

expressing BES1 (VSG221), which had been used in the MFAseq (Figure 6 and 7). Using an origin-

associated locus and a non-origin locus from chromosome 5 (Figure 8A) as controls, we observed

early and late S/G2 qPCR ratios consistent with the former locus being early replicating and the lat-

ter late replicating (Figure 8B). Furthermore, qPCR of VSG221 in the same cells revealed early and

late S/G2 ratios higher than the chromosome 5 origin locus, consistent with the VSG replicating very

early (Figure 8B). To ask if the early replication of VSG221 is determined by transcription of BES1,

we next examined cells generated by Glover et al (Glover et al., 2007) in which a Tet operator is

inserted downstream of the BES1 promoter (Figure 8B). In the absence of Tet, binding of the Tet

repressor (TetR) blocks transcription elongation in BES1 and cells are selected that have switched to

transcribing another VSG BES (Aresta-Branco et al., 2016; Glover et al., 2007). A recently derived

clone of the BES1 TetR blockade cells was sorted into early S, late S and G2 populations, and qPCR

performed on recovered DNA. Early and late S/G2 qPCR ratios for the chromosome 5 controls were

lower in these experiments compared with the qPCR from the BES1 (VSG221) expressers, probably

as a result of sorting differences in the selection of cells within the S phases or within G2. Nonethe-

less, the S/G2 ratio of the origin locus increased from early to late S, indicating replication progres-

sion. For VSG221, the early and late S/G2 ratios in the TetR blockade cells were much lower than in

the BES1 (VSG221) expressing cells, being indistinguishable from the origin locus, indicating the pro-

nounced early replication of this VSG is not seen when it is no longer transcribed. Immunofluores-

cence indicated that VSG121, whose gene is present in BES3 in this T. brucei strain (Hertz-

Fowler et al., 2008), could be detected on the cell surface of most of the BES1 TetR blockade cells

at the outset of the experiment (Figure 8B) and so we used qPCR to test the replication timing of

this VSG in both cell types. qPCR of VSG121 is complicated relative to VSG221 because the gene is

not only located in a BES: at least four VSG121 copies are found within the subtelomeric VSG arrays

(Trenaman et al., 2013), whose replication timing is unclear (Tiengwe et al., 2012). Despite this,

early and late S/G2 qPCR ratios for VSG121 in BES1 (VSG221) expressing cells were lower than both

the VSG221 and chromosome 5 origin control locus values and were more comparable with the non-

origin control (Figure 8B), consistent with late replication. In contrast, in the BES1 TetR blockade

cells the VSG121 S/G2 ratios were higher than both VSG221 and the non-origin locus and, instead,

were comparable with the origin control (Figure 8B). Thus, despite the potentially confounding

effect of VSG121 array copies that may be late replicating, as well as uncertainty about the transcrip-

tional status of all the VSG BES in these cells, these data suggest earlier replication of VSG121 when

the VSG221-containing BES1 is silenced and BES3 is at least one of the BES expressed in the T. bru-

cei population. Taken together, these VSG-focused qPCR experiments validate the MFAseq associa-

tion between replication timing and transcription status of the telomeric BES.

Discussion
Understanding the initiation event(s) of VSG switching by recombination is important, since this ele-

ment of the reaction may be lineage-specific, and might explain both the elevated rate of the
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reaction relative to general HR (which catalyses the change in VSG) and the potential focus on the

active BES. VSG switch initiation has been modelled by the direct generation of a DSB in the active

BES through the controlled expression and targeting of I-SceI (Boothroyd et al., 2009;

Glover et al., 2013; Glover and Horn, 2014), which results in VSG switching. However, to date

there is little evidence for the direct formation of a DSB being the initiating strategy in VSG switch-

ing, despite data showing that breaks can be detected around the telomeric VSG (though with

uncertainty as to whether these are limited to the active BES or to the 70 bp repeats)

(Boothroyd et al., 2009; Glover et al., 2013; Jehi et al., 2014). As a result, the nature of the lesions

that first form in the BES to drive VSG switching, and the route by which the lesions are generated,

Figure 8. Determination of telomere replication timing in T. brucei cells expressing distinct bloodstream VSG expression sites. (A) MFAseq of

chromosome 5, as shown in Figure 6, comparing S/G2 read depth ratios in 2.5 kbp bins in bloodstream form (early S – light red; late S – dark red) and

procyclic form (early S – light green; late S – dark green) cells. Arrows highlight the locations of an early replicating (origin) locus and a late replicating

(non-origin) locus, which were used in real-time quantitative (q)PCR validation. (B) qPCR to determine replication timing of VSG221, VSG121 and

chromosome 5 origin and non-origin loci in cells in which BES1 (containing VSG221, red box) is actively transcribed (left), or in which (left) elongation of

BES1 transcription in blocked by Tet repressor (TetR, black circle) binding to a Tet operator (black box) adjacent to the BES promoter (arrow), leading

to transcription (dotted arrow) of BES3 (containing VSG121, green box). In each representation of the BES only the VSG genes are shown and black

arrows denote the approximate location of primers used in qPCR; below each diagram immunoflouresence microscopy with anti-VSG221 (left, red) and

anti-VSG121 antiserum (right, green) is shown (cells are shown by differential interference contrast, DIC). Graphs depict the relative abundance of PCR

product from VSG221, VSG121, origin and non-origin loci in the two cell types shown above; in each case qPCR was used to determine the amount of

the PCR products in DNA from early S phase cells relative to G2 (upper graph), or in late S phase cells relative to G2 (lower graph). S/G2 ratios are the

mean of three qPCR repeats.

DOI: 10.7554/eLife.12765.015
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is unclear. Indeed, several initiation models having been proposed (Barry and McCulloch, 2009): an

uncharacterised endonuclease (Barry, 1997), telomere instability (Dreesen et al., 2007; Hovel-

Miner et al., 2012; Jehi et al., 2014) and transcription-derived instability (Kim and Cross, 2010;

2011). Here, we have tested the association between I-SceI-mediated DSB formation and VSG

switching, revealing that endonuclease mediated DSB formation is unlikely to be the route for initia-

tion of T. brucei antigenic variation. Instead, we reveal a remarkably precise association between

DNA replication timing and transcription of the single active VSG BES in BSF cells, suggesting that

replication may drive VSG switching.

To test the role of endonuclease-generated, BES-focused DSBs in the initiation of VSG switching,

we first analysed the genome repair functions of one of two T. brucei RecQ-like proteins, TbRECQ2.

Several lines of evidence indicate that TbRECQ2 localises to and repairs DNA breaks, including

DSBs. First, T. brucei recq2 null (-/-) mutants display impaired survival in the presence of three com-

pounds that can cause DNA damage, including phleomycin, which is known to generate DSBs

(Falaschi and Kornberg, 1964; Reiter et al., 1972). Second, TbRECQ2 protein relocalises to subnu-

clear foci after exposure to phleomycin and, critically, in these conditions the putative helicase dis-

plays pronounced colocalisation with TbRAD51, an enzyme that binds single-stranded DNA formed

at DSBs to catalyse HR repair. Finally, T. brucei recq2-/- mutants display reduced survival relative to

WT cells after I-SceI induction of DSBs, both in the active BES and elsewhere in the genome, arguing

for impaired repair of this lesion. All the above findings are consistent with the activities of related

RecQ helicases in other cells, where the enzymes are known to contribute widely to HR. In this

regard, the repair and VSG switching (see below) phenotypes observed for TbRECQ2 are highly

reminiscent of those described for T. brucei Topo3a (Kim and Cross, 2010) and RMI1 (Kim and

Cross, 2011). Thus, it seems plausible that TbRECQ2, and not the other putative T. brucei RecQ-like

helicase (TbRECQ1), interacts with these factors to form the T. brucei homologue of the RTR com-

plex (Mankouri and Hickson, 2007).

Given the above evidence for TbRECQ2 repair functions, the enzyme provided a means to test

the role of endonuclease-generated DSBs in the initiation of VSG switching. Loss of TbRECQ2 results

in an increased rate of VSG switching, as a consequence of altered pathways of recombination:

increased levels of telomere exchange and VSG-proximal gene conversion. Both these phenotypic

outcomes are incompatible with the effects of TbRECQ2 loss on repair of I-SceI-mediated DSBs in

the active BES, where the rate of repair is reduced and there is no change in repair pathway. The

effects of TbRECQ2 loss on VSG switching are reminiscent of the phenotypes seen after mutation of

Topo3a or RMI1 (Kim and Cross, 2010;, 2011), providing more evidence that these factors act

together in T. brucei. Though VSG switching rates increase in each of the null mutants, the extent of

this change is somewhat variable: a 2–3 fold increase in recq2-/- mutants, compared with 4-fold and

10–40 fold increases in rmi1 and topo3a null mutants, respectively (Kim and Cross, 2010;

2011). The differing extent of VSG switching increase may be consistent with findings that S. cerevi-

siae Sgs1 and Top3-Rmi1 can act independently on strand exchange intermediates (Fasching et al.,

2015), but may equally be explicable by subtle differences in the strains used or the growth condi-

tions. In this regard, although the switching rate of the WT cells used by Kim and Cross is broadly

similar to the data presented here, the switching profile is somewhat different. For example, in

situ switchers were almost entirely absent (<2% of total switchers) in the Kim and Cross studies

(Kim and Cross, 2010; 2011), whereas they constituted ~27% of WT switchers here; conversely,

~65% of WT switchers recovered by Kim and Cross used VSG GC, as opposed to only ~10% here.

The pattern of WT VSG switching described here is very comparable with that seen by

Povelones et al. (2012), who used the same constructs but generated the cells independently from

us. Thus, it seems likely that small differences in the constructs, their expression levels or their inte-

gration into the active BES may result in the WT VSG switching profile differences discussed above.

Irrespective of these differences, the increased contribution of VSG GC and telomere XO to VSG

switching is a common effect of recq2-/- (~50% and ~40%, respectively), rmi1-/- (70% and 25%,

respectively)and topo3a-/- (70% and 23%, respectively) mutation (Kim and Cross, 2010; 2011). Simi-

larly, all three -/- mutants display an almost complete absence of events leading to ES loss (either

GC or deletion). As has been argued before (Kim and Cross, 2010; 2011), the increase in telomere

XO is striking, as this effect is consistent with the action of the RTR complex in processing recombi-

nation intermediates to suppress chromosome crossover (Cejka et al., 2010). In yeast, Sgs1 muta-

tion leads to increased crossover recombination after the formation of a chromosome-internal DSB
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(Ira et al., 2003). The absence of crossovers in HRES recq2-/- mutants after I-SceI induction provides

further evidence that an induced DSB in the T. brucei active BES is tackled by a repair strategy that

differs markedly from that which directs VSG switching. Yeast Sgs1 mutants also display increased

repair by break-induced replication (BIR) at a telomere-proximal DSB (Lydeard et al., 2010). The

decreased survival of HRES recq2-/- mutants after I-SceI induction indicates that, perhaps surpris-

ingly, an induced DSB in the active BES is inefficiently repaired by BIR, despite the potential for this

reaction to direct VSG switching of telomeric genes (Boothroyd et al., 2009). Inefficient engage-

ment of a DSB in HR-mediated repair is consistent with the qPCR we describe after I-SceI-mediated

cleavage of the BES (see below). In contrast, RTR action on recombination intermediates, including

Holliday junctions, that can arise following replication fork stalling (Mankouri and Hickson, 2007)

may more readily explain the T. brucei RTR phenotypes, leading to the suggestion that replication-

associated instability initiates VSG switching (below).

Targeted formation of a DSB to elicit recombination and allow temporal analysis of repair has

been most extensively described in S. cerevisiae (Hicks et al., 2011; Renkawitz et al., 2013). Such

studies suggest that endonuclease cleavage, DNA DSB processing and recruitment of Rad51 occur

rapidly, with homology search and functional engagement of a homologous DNA substrate being

slower reactions that follow from the break. As has been stated elsewhere (Glover et al., 2013), the

main effect of an I-SceI-induced DSB in the active BES is cell death, to a larger extent than the same

lesion in the interior of chromosome 11. By monitoring the presence of an intact I-SceI site, we show

that cleavage occurs in HRES cells at least as rapidly as in HR1, with few cells retaining an intact site

after ~8 hr (1 cell cycle). I-SceI cleavage therefore appears to be rapid in T. brucei also, with a timing

largely consistent with formation of single-stranded DNA, cell cycle impairment and the detection of

damage by formation of either RAD51 or gH2A foci (all at around 12 hr) (Glover et al., 2013;

Glover and Horn, 2014). However, whereas loss of PCR-amplifiable I-SceI sequence is maintained in

HR1 cells from ~8–72 hr after I-SceI induction, intact I-SceI target sequence reforms at least twice in

HRES cells over the 32 hr after induction. After the I-SceI site is maximally cleaved in HR1 cells,

recombination product (primarily gene conversion from the unbroken chromosome 11 homologue)

gradually forms over the next 72 hr (Glover et al., 2008), consistent with induction of repair. In con-

trast, the abundance of the VSG gene (VSG221) positioned downstream of the I-SceI site in HRES

closely mirrors that of the I-SceI target sequence and, moreover, virtually all HRES cells continue to

express VSG221 protein 24 hr after I-SceI induction. Collectively, these data reinforce the evidence

for distinct responses to a DSB in the two locations examined (Glover and Horn, 2014). In addition,

these data reveal that repair efficiency and profile is markedly different in the active BES compared

with the interior of chromosome 11. In fact, the data suggest that recovery of VSG switchers follow-

ing induction of a DSB in the active BES may not result from rapid induction of efficient VSG-

directed HR. Instead, switchers may be selected: i.e. most HRES cells that suffer a DSB die because

repair is inefficient, and the population is gradually replaced thereafter, initially by cells in which the

I-SceI site has not been cut and gradually by cells that have undergone a VSG switch that removes

the I-SceI target. Given the slow kinetics of repair after Rad51 loading in yeast (Hicks et al., 2011), it

seems likely that the explanation for the high rate of death after DSB formation in the active T. bru-

cei BES is that strand exchange (homology search, invasion or resolution) is very inefficient in this set-

ting. Why this might be awaits further analysis, but it may reflect the limited length or level of

sequence identity between VSG flanks (including the 70 bp repeats), or the complexity in searching

for a repair substrate throughout the VSG archive.

What might explain VSG switch initiation, if not the direct formation of a DSB, such as by an

endonuclease? MFAseq mapping, validated by VSG-focused qPCR, provides the first evidence that

initiation could be linked to DNA replication. Throughout the T. brucei genome, we reveal pro-

nounced rigidity in core genome replication timing, with the same origins used with the same effi-

ciency in both BSF and PCF cells. In this context, the actively transcribed BES is unique, being the

single mapped telomeric site that is early replicating, and the only locus in the genome that displays

different replication timing in PCF and BSF cells. As all BES are silenced and late replicating in PCF

cells, the singular early replication of the active BES in mammal-infective T. brucei suggests a model

for VSG switch initiation in which transcription of the BES allows the site to become accessible for

replication and establishes conditions that generate instability, most likely through replication-tran-

scription clashes within the BES (Figure 9). Replication stalling can generate the structures that the

RTR complex acts upon (Cejka et al., 2010; Mankouri and Hickson, 2007), explaining the differing
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contributions of TbRECQ2 to VSG switching and I-SceI-induced DSB repair. Moreover, stalling of

replication by transcription can lead to DNA rearrangements (Bermejo et al., 2012) and pausing of

the replication fork has been shown to induce targeted mating type switching in fission yeast

(Klar et al., 2014). How early replication of the active BES in T. brucei BSF cells occurs is currently

unclear, in particular because replication direction cannot be determined from the MFAseq data.

Thus, two possibilities can be considered. In one scenario (Figure 9B), replication initiates from the

BES promoter environment, which would be compatible with the close association between origin

activity and TbORC1/CDC6 binding at transcription start sites in the genome core (Tiengwe et al.,

2012). Though replication and transcription would be co-directional in this model, clashes between

the two processes can occur in this arrangement due to the different rates of the reactions

(Merrikh et al., 2011). In addition, it is possible that replication or transcription could encounter pro-

gression difficulties in traversing the 70 bp repeats, providing some localisation of the clashes, which

Figure 9. Two models for replication-directed VSG switching. A schematic of a bloodstream VSGexpression site is

shown (A; not to scale), detailing key features (left to right): the promoter (flag), a number of expression site-

asscociated genes (ESAGs; blue boxes), 70 bp repeats (hatched box), the VSG gene (red box) and the telomere

repeats (white arrows). Transcription direction is detailed in B and C (red arrow), which compare the effects of

replication initating (black arrow) at the promoter or at the telomere, with replication fork movement proceeding

left to right, or right to left, respectively.

DOI: 10.7554/eLife.12765.016
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may lead to DNA breaks, including DSBs. A complication in this model is uncertainty about whether

control of BES transcription is exerted by differential promoter activity in the active versus the silent

BES (Kassem et al., 2014; Nguyen et al., 2014). In a second model (Figure 9C), replication initiates

at the telomere of the BES, leading to head-on collision with transcription; variation in the location

of the collisions might explain the uncertainty of DSB mapping in the BES (Boothroyd et al., 2009;

Glover et al., 2013; Jehi et al., 2014), and events that lead to gene loss or replacement upstream

of the 70 bp repeats. Recently, TbORC1/CDC6 has been documented to bind telomeres in T. brucei,

but whether this is selective for the active BES, and if it reflects a role in gene silencing or directing

replication, is unknown (Benmerzouga et al., 2013). In contrast with the data here, previous work

has shown that the replicated copies of the active BES are segregated later than silent BES during

mitosis (Landeira et al., 2009). This observation is not incompatible with unique early replication of

the active BES and could, indeed, be explained by a delay in chromatid separation due to the

increased presence of unresolved recombination intermediates between sister chromatids at this

telomeric locus.

Materials and methods

Trypanosoma brucei strains, growth and transformation
T. brucei BSF cells, strain Lister 427were used throughout and maintained in HMI-9 medium supple-

mented with 10% (v/v) FBS (Sigma-Aldrich, Missouri, USA) and 1% (v/v) of penicillin-streptomycin

solution (Gibco), at 37˚C and 5% CO2 in vented flasks. BES1 TetR blockade cells (Glover et al.,

2007) were generously provided by David Horn and Lucy Glover. Other genetically modified cells

were generated by transfection, as described previously (Burkard et al., 2007), and clones selected

using the following drug concentrations: 10 mg.mLl-1 blasticidin, 5 mg.mL-1 G418 (Neomycin, NEO),

10 mg.mL-1 hygromycin, and 0.2 mg.mL-1 puromycin. For VSG switching analysis, the GFP221hygTK

cell line was generated based on work and plasmids described in Povelones et al., (2012) (con-

structs 221GP1 and HYG-TK; generous gift, Gloria Rudenko). These cells were cultured in thymidine-

free medium: Isocove’s Modified Dulbecco’s Medium (Gibco) supplemented with 20% FBS (Sigma-

Aldrich), 1 mM hypoxanthine, 0.05 mM bathocuproine disulphonic acid, 1 mM sodium pyruvate,

1.5 mM L-cysteine and 200 mM b-mercaptoethanol. Procyclic cell forms (PCF) cells, strain Lister 427,

were cultured in SDM-79 (Gibco) supplemented with 10% (v/v) FBS (Sigma-Aldrich), 1% (v/v) penicil-

lin-streptomycin solution (Gibco), and 5 mg.mLl-1 of haemin (Sigma-Aldrich), at 27˚C, in non-vented

flasks. Cell density was assessed using a Neubauer improved hemocytometer, as standard.

Genetic manipulation
Heterozygous (+/-) and homozygous (-/-) knockout mutants of TbRECQ2 mutants were generated

by deleting most of replacing most of the gene’s the open reading frame (ORF; Figure 1) with a

selective drug marker gene. Two modified versions of the pmtl23 plasmid (gift, Marshall Stark, Uni-

versity of Glasgow), containing either the blasticidin or neomycin resistance genes, were used. In this

system, the 5’ and 3’ flanking non-translated regions of TbRECQ2 ORF were PCR-amplified (5’

region – GATCTTCAAGCTTGCGGCCGCTGTGTAAATCCGTTCCTTTCTTC, and GATCTTCTCTAGA

TACAACGACACAATACCAACCAC; 3’ region – GATCTTCGAGCTCACAGACAATCTCCATCAG-

CAACC, and GATCTTCATCGATGCGGCCGCATAAGACATCCACCAGAACCTGC) and cloned in a

four-way ligation into the modified pmtl23 plasmid, with each flank surrounding the drug resistance

gene. The selective drug marker flanked by the TbRECQ2 5’ and 3’ non-translated regions was then

excised using NotI and transfected into BSF cells, and clones selected using 10 mg.ml-1 blasticidin or

5 mg.mL-1 G418. Tbrecq2 mutants were analysed by RT-PCR, amplifying a 232 bp region of the

RECQ2 ORF with primers TTTGTGATAACTGCGCAAGC and ACCTTGGAGTGAGCTGAACC; a part

of TbPIF6 was amplified using primers GGTGGGTGTACGATCCATTC and TCGCCAAGGAGAA

TAACCTG as a control. RNA was extracted from the cells using the Qiagen RNeasy kit, and cDNA

synthesis was performed using random primers and the Primer Design Precision nanoScript Reverse

Transcription kit (Primer Design), according to manufacturer’s instructions.

In order to N-terminally epitope tag TbRECQ2 with 12myc, a modified version of the construct

pEnT6B (Kelly et al., 2007) was used. In this case, two fragments were PCR-amplified: a region of

the TbRECQ2 ORF immediately downstream of the start codon, using the primers CAGACTAGTTC
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TGTCCACAGAATTCAT (containing an SpeI restriction site) and CAGGGTACCAGGACAAAACAC

TAAAAAATA (containing a KpnI site); and a section from the 5’ flanking un-translated region imme-

diately upstream of the TbRECQ2 ORF, using the primers CAGGGTACCGACAAAGATTTAAG

TTGCGTCT (containing a KpnI site) and CAGGGATCCTCGCCGCGGTAATAGTTG (containing a

BamHI site). The resulting plasmid was then linearized using KpnI prior to transfection into BSF cells,

and transformants were selected with 10 mg.ml-1 blasticidin.

For the VSG switching analysis, MITat1.2 BSF cells were first transformed with 221GP1

(Sheader et al., 2004) after digestion with NotI and XhoI; transformants were selected with 0.2 mg.

mL-1 puromycin. These cells were then transformed with the construct HYG-TK, which was digested

with NotI and HindIII prior to transformation. Significant difficulty was encountered in propagating

the HYG-TK construct without rearrangement, and growth in E. coli XL 10 Gold Cells (Stratagene)

and ZYM-5 medium appeared to provide greatest stability. Prior to transformation with HYG-TK, the

eGFP-PUR cells were cultured in medium lacking thymidine, and transformants were selected in the

same medium using 0.2 mg.mL-1 puromycin and 10 mg.mL-1 hygromycin. Integration of the 221GP1

construct was confirmed by PCR using primers GTGACCACCCTGACCTAC and GCAAACTGTGA

TGACCCGC. Integration of the HYG-TK construct was confirmed by PCR using primers

TTTACGGGCTACTTGCCATT and CCTCATTTTGGATTTTGCTCCT. Expression of eGFP and VSG221

was confirmed by western blotting (antisera below).

T. brucei RecQ homologue identification and sequence analysis
Standard (default settings) protein-protein Basic Local Alignment Search Tool (BLAST) (blastp) was

used to identify potential RecQ helicase-encoding genes in T. brucei. Searches were performed

using 18 RecQ protein sequences from Homo sapiens, Mus musculus, Arabidopsis thaliana, Caeno-

rhabditis elegans and Saccharomyces cerevisiae as queries and the T. brucei Lister 427 strain

genome as target (http://tritrypdb.org/tritrypdb/), revealing two genes. Reciprocal blastp analysis

was then performed against the non-redundant protein sequences database (default settings)

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using the predicted protein sequences of both putative T.

brucei RecQ-like genes; for TbRECQ2 the top hits (lowest E values) were all eukaryotic RecQ heli-

cases. Protein domain analysis of TbRECQ2 predicted sequence was conducted using Pfam, version

X (http://pfam.xfam.org/), and InterProScan sequence search (http://www.ebi.ac.uk/interpro/search/

sequence-search/).

Clonal survival after damage
Prior to setting up of the clonal survival assay, all cultures were passaged into drug free medium.

The cell cultures were then diluted to 0.5 x 101 cells.mL-1 in media containing either 0.05 mg.mL-1,

0.075 mg.mL-1 or 0.1 mg.mL-1 phleomycin, 0.02 mM, 0.03 mM or 0.04 mM hydroxyurea, or 0.0001%,

0.0002%, 0.0003% or 0.0004% MMS, or none as the untreated control. Each of these cultures were

then distributed in 200 ml aliquots into three 96 well plates, and the number of surviving clones

quantified after ~10 days growth. The mean survival of the treated samples was determined relative

to untreated samples for each damaging agent concentration used and for each cell line, with each

of the above experiments repeated at least three times.

Clonal survival and quantitative PCR after I-SceI induction
Assays were carried out as in (Glover et al., 2013). Cells were cultured to mid-log phase (1 x 106

cells.mL-1) in Tet-free medium containing phleomycin, puromycin and hygromycin to maintain the

I-SceI genetic components in the cells. For clonal survival, cultures were then diluted to sub-clonal

dilutions (HR1 cell lines: 0.15 x 101 cells.mL-1; HRES cell lines: 0.26 x 101 cells.mL-1), divided into two

aliquots, and Tet (Calbiochem) added to one (final concentration 2 mg.mL-1) to induce I-SceI expres-

sion. Cultures were distributed in 200 mL aliquots into 96 well plates (four plates each of uninduced

and induced cells). After 7–10 days incubation the number of surviving clones was counted and sur-

vival was normalised to uninduced cultures. Mean survival in the induced cells was determined from

multiple independent repeats the above experiments. Presence of the I-SceI target and VSG221 in

each cell line prior to and after induction of I-SceI expression was evaluated by quantitative real-time

PCR (qPCR). To do this, ~1 x 106 cells were collected at various time points, and gDNA extracted

using the Qiagen Blood and Tissue kit, which was then quantified using the Quant-iT PicoGreen
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dsDNA Assay Kit (Life Technologies). Each DNA sample was diluted to 0.2 ng.ul-1 and 1 ng was ana-

lysed by qPCR using Precision qPCR MasterMix with SYBR Green and low ROX (Primerdesign), and

6 pmol of primers (Eurofins MWG Operon, Ebersberg, Germany), to a total of 25 ml per reaction.

For each pair of primers (below), triplicates of each sample were run per plate (MicroAmp Optical

96-well Reaction Plate, Life Technologies), which were sealed with MicroAmp clear adhesive film

(Life Technologies). All experiments were run in a 7500 Real Time PCR system (Applied Biosystems),

using the following PCR cycling conditions: 95˚C for 10 min, followed by 40 cycles of 95˚C for 15 sec

and 60˚C for 1 min (fluorescence intensity data collected at the end of the last step). Data was then

analysed by relative quantification using the DDCt method (7500 software version 2.3, Applied Bio-

systems) (Livak and Schmittgen, 2001). Abundance of the I-SceI site was evaluated using primer

pairs CACAACGAGGACTACACCATC and CGGCCTATTACCCTGTTATCC (HR1 cell line), or GTTG

TGAGTGTGTGCTTACC and ATCTAGAGGATCTGGGACCC (HRES). VSG221 abundance was

assessed using primers AGCTAGACGACCAACCGAAGG, and GTTTCCTCTCGCCGTGGTCGC. The

generation of HR product in the HR1 cells (data not shown) was determined using primers CACA

TTCACTTGACCATTCG and GATGCACTTCGAGAGCGTCAG, which recognise a chromosomal

sequence deleted during insertion of the I-SceI target constructs, meaning abundance increases

from 1n to 2n after gene conversion from that intact homologue. In all cases, product abundance

was determined relative to one of two control loci, which were amplified with primer pairs TC

TGAACCCGCGCACTTC and CCACTCACGGACTGCGTTT, or TTGTGACGACGAGAGCAAAC and

GAAGTGGTTGAACGCCAAAT.

Immunofluorescence
Cells were harvested by centrifugation at 405 g for 10 min, and washed with 1x PBS supplemented

with 15.7 g/L sucrose and 1.8 g/L glucose, pH 7.4. ~2 x 106 cells were then loaded onto each well of

a 12-well glass slide (Menzel-Gläser), pre-treated with Poly-L-lysine (Sigma-Aldrich), and allowed to

settle for 5 min. The cells were then fixed with 3.7% paraformalydehyde (PFA) for four minutes, and

permeabilised for 10 min with 0.2% Triton X-100 (Promega, in 1x PBS). Next, 100 mM glycine was

added and incubated for 5 min, twice. The cells were then washed with 1x PBS twice, 5 min each,

and incubated with 1% BSA and 0.2% Tween-20 (Sigma-Aldrich) in 1x PBS, for 1 hr. Afterwards, the

cells were incubated for 1 hr with mouse anti-myc antiserum conjugated with Alexa Fluor 488 (Milli-

pore) diluted 1:2000 in 1% BSA and 0.2% Tween-20 in 1x PBS. The cells were washed twice with 1x

PBS, after which Fluoromount G with DAPI mounting medium (SouthernBiotech) was added and

incubated for 3 min. The slide was then covered with a coverslip and sealed with nail varnish. RAD51

was detected in cells treated in the same way, but using polyclonal anti-RAD51 antiserum as

described previously (Trenaman et al., 2013). VSG221 was detected using a rabbit a- VSG221 anti-

serum (gift David Horn, University of Dundee) diluted 1:10000, and Alexa Fluor 594 conjugated goat

a- rabbit antiserum (Molecular Probes) diluted 1:1000. EP-procyclin was detected using mouse IgG1

a-EP procyclin antiserum (clone TBRP1/247, Cedarlane) diluted 1:500, and Alexa Fluor 488 conju-

gated goat a-mouse antiserum (Molecular Probes) diluted 1:1000. Images were acquired and exam-

ined as described above. Images were acquired using a Zeiss Axioskop 2 fluorescent microscope

attached to an HBO100 lamp and a digital ORCA-ER camara and camera controller (Hamamatsu

Photonics), using the Volocity 6.1.1 Cellular and Imaging Analysis software (Perkin Elmer). Images

were further analysed using Fiji (http://fiji.sc/Fiji).

VSG switching analysis
A culture of the GFP221hygTK cell growing in thymidine-free medium supplemented with 0.2 mg.

mL-1 puromycin and 10 mg.mL-1 hygromycin was passaged to a density of 1 x 104 cells.mL-1 in media

lacking hygromycin and incubated for 48 hr to allow VSG switched variants to arise; in some experi-

ments the cells were grown in the absence of puromycin, while in others puromycin (0.2 mg.mL-1)

was retained. After 48 hr the cultures were diluted to 2.5 x 103 cells.mL-1, 5 x 103 cells.mL-1 or 1.25 x

104 cells.mL-1in the presence of 4 mg.mL-1 ganciclovir (Sigma-Aldrich) and plated in 200 ml aliquots

over three 96 well plates, resulting in 0.5, 1.0 or 2.5 x 103 cells per well. After 7 days growth multiple

surviving clones were randomly selected on a random basis and scaled-up in thymidine- and drug-

free medium for further analysis (below). The final number of surviving clones was only assessed after

a further 7–10 days. VSG switching frequency was calculated in each experiment by dividing the total
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number of surviving clones was divided by number of cells plated, to obtain the number of switching

events per cell. This number was then divided by the number of generations in the 48 hr incubation

prior to plating the cells, to obtain the VSG switching rate (switchers/cell/generation). The number

of generations was calculated for each cell line using the cell density measured at the 48 hr time

point. To analyse VSG switching events, the expanded clones were collected and both genomic

DNA was extracted, for PCR analysis, and whole cell extracts (2.5 x 106 cells per sample) for western

blot analysis. VSG221 was detected using rabbit anti-VSG221 antiserum diluted 1:20.000 (gift, David

Horn), while eGFP was detected with a rabbit anti-GFP antiserum (Abcam) diluted 1:5000. Both pri-

mary antisera were used in combination with the goat anti-rabbit IgG (H+L) horseradish peroxidase

(HRP) conjugate antiserum (Molecular Probes) diluted 1:5000. Ponceau staining of the membrane

was carried out to confirm that protein was present on the blot for clones that were VSG221- and

eGFP-. The presence of VSG221 and GFP genes was assessed by PCR using the primer pairs

GCAAGTATATACGCTGAAATAAATCAC and TGTTTGGCTGTTCGCTACTGTGAC (VSG221), and C

TTCTTCAAGTCCGCCAT and GCTCAGGTAGTGGTTGTC (GFP). RNA polymerase I large subunit

(Tb427.08.5090) was PCR-amplified as a positive control using the primers CTGGATCCAGCGCCG

TTCCACGCGAGA and GACTCGAGCTATCCCCAATCCGTGCCGTCCCG.

Fluorescence-activated cell sorting (FACS) and MFAseq or qPCR
For each sorting, 3 x 108 cells were collected from an exponentially growing BSF cell culture (~1 x

106 cells.ml-1), and centrifuged for 10 min at 1000 g. Cells were then re-suspended in 25 ml of 1x

PBS and centrifuged for 10 min at 1000 g. The pellet was then re-suspended in 500 ml of 1x PBS,

and 9.5 ml of 1% formaldehyde (methanol-free, Thermo Scientific, diluted in 1x PBS) was added for

10 min at room temperature. The cells were then centrifuged for 10 min at 1000 g, washed once in

10 ml 1x PBS, and centrifuged again. The pellet was next re-suspended to a concentration of 2.5 x

107 cells.ml-1 in 1x PBS, and was stored protected from light at 4˚C overnight. The fixed cells were

then centrifuged for 10 min at 1000 g, and incubated in 20 ml of 0.01% Triton X-100 (Promega) in

1x PBS for 30 min at room temperature. Next, the cells were centrifuged for 10 min at 700 g,

washed in 20 ml of 1x PBS, and centrifuged again. The resulting pellet was then re-suspended to a

concentration of 2.5 x 107 cells.ml-1 in 1x PBS with 10 mg.ml-1 of propidium iodide (PI, Sigma-Aldrich)

and 100 mg.ml-1 RNase A (Sigma-Aldrich), and incubated for 1 hr at 37˚C, protected from light. For

PCF cells, 3 x 108 were collected from an exponentially growing PCF culture (~1 x 107 cells.ml-1) and

centrifuged for 10 min at 1620 g. The pellet was then washed in 10 ml of 1x PBS supplemented with

5 mM EDTA (Gibco), and centrifuged for 10 min at 1620 g. Next, the cells were re-suspended in

12 ml of 1x PBS supplemented with 5 mM EDTA, to which 28 ml of 100% ice cold-Methanol was

added, in a drop-wise fashion while vortexing gently, so that the final fixing solution was 70% (v/v)

Methanol, and the cell concentration was 2.5 x 107 cells.ml-1. The cells were then kept at 4˚C, pro-
tected from light, from overnight up to three weeks. For each FACS sorting session, four FACS tubes

(Becton Dickinson) were prepared, each starting with ~1 x 108 fixed cells. The cells were collected

and centrifuged for 10 min at 1000 g, at 4˚C, washed in 1 ml of 1x PBS supplemented with 5 mM of

EDTA, and centrifuged again for 10 min at 1000 g, at 4˚C. The pellet was then re-suspended in 4 ml

of 1x PBS supplemented with 5 mM EDTA, 10 mg.ml-1 PI and 10 mg.ml-1 RNase A, and incubated for

45 min at 37˚C, in the dark. The cells (either BSF or PCF) were then transferred to a FACS tube

through a cell strainer cap (BD Biosciences), and sorted into G1, early S, late S and G2 phases using

a BD FACSAria I Cell Sorter (BD Biosciences). The sorted cells were collected at 4˚C into new FACS

tubes containing 200 ml of lysis buffer (1 M NaCl, 10 mM EDTA, 50 mM Tris-HCL pH 8.0, 0.5% SDS,

0.4 mg.ml-1 Proteinase K, and 0.8 mg.ml-1 of Glycogen). After the sorting has been completed, the

collected cells were then incubated for 2 hr at 55˚C, and the lysate was stored at -20˚C. Genomic

DNA was extracted using a Blood and Tissue DNA extraction kit (Qiagen), by omitting the lysis steps

of the manufacturer’s protocol. Sequencing was performed by Eurofins Genomics (Germany); the

DNA library was prepared using the TruSeq DNA Sample Preparation kit (Illumina), and sequenced

using Illumina HiSeq paired- end 100 bp sequencing system (Illumina). The samples were multi-

plexed, with each of the early S, late S, and G2 phase samples library DNA, both from BSF and PCF,

being processed in the same run, for ease of comparison.

Data from the sequencing was first analysed for quality using FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/), and then trimmed using fastq-mcf (http://code.google.com/p/ea-

utils), to exclude the adapter sequences used during the library preparation and sequencing. The
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reads were then aligned to the reference genome (T. brucei Lister 427, retrieved from TriTrypDB ver-

sion 8.0), using Bowtie2 (version 2.2.0 –very-sensitive-local -k1)(Langmead and Salzberg, 2012). The

aligned reads were then compared using a method adapted from the one described previously

(Tiengwe et al., 2012), but simplified to facilitate inter-species comparisons. Briefly, the reads were

binned in 2.5 Kbp sections along each chromosome, and the number of reads in each bin was then

used to calculate the ratios between early S and G2, as well as between late S and G2 samples,

scaled for the total size of the read library (reads per 2.5 Kbp per million reads mapped). These data

were then represented in a graphical form using Prism 6 (GraphPad software Inc.). Shell scripts used

to generate these data are freely available in BitBucket (https://bitbucket.org/WTCMPCPG/tb_anti-

genic_variation). Sequences are available at the European Nucleotide Archive: PRJEB11437.

MFA by qPCR was performed as described in (Marques et al., 2015) with primers targeting

VSG221 (AGCAGCCAAGAGGTAACAGC and CAACTGCAGCTTGCAAGGAA), VSG121

(AGGAAGGCAAATACGACCAG and TTTGCGGGTAAAAGTCCTTG) and selected origin (TCCCA-

GAAACCAACTTCAGC and AGTTGGATTGCCATGTCCTC) and non-origin regions (GGCTGGATGA

TGAGAGGAAC and CCTCCAACCTCAAGATACGC) in chromosome 5. For normalization, a non-ori-

gin region in chromosome 2 was used (CTCGCTCTCCGTACAGTTG and CACTCGTCGATGCAACC

TC). For each sample, 0.18 ng of gDNA was used, and the data shown are averages of itriplicate

experiments.
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