Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases

  1. Stephanie Beltz
  2. Jens Bassler
  3. Joachim E Schultz  Is a corresponding author
  1. Pharmazeutisches Institut der Universität Tübingen, Germany
  2. Max-Planck-Institut für Entwicklungsbiologie, Germany

Abstract

Adenylate cyclases convert intra- and extracellular stimuli into a second messenger cAMP signal. Many bacterial and most eukaryotic ACs possess membrane anchors with six transmembrane spans. We replaced the anchor of the AC Rv1625c by the quorum-sensing receptor from Vibrio harveyi which has an identical 6TM design and obtained an active, membrane-anchored AC. We show that a canonical class III AC is ligand-regulated in vitro and in vivo. At 10 µM, the cholera-autoinducer CAI-1 stimulates activity 4.8-fold. A sequence based clustering of membrane domains of class III ACs and quorum-sensing receptors established six groups of potential structural and functional similarities. The data support the notion that 6TM AC membrane domains may operate as receptors which directly regulate AC activity as opposed and in addition to the indirect regulation by GPCRs in eukaryotic congeners. This adds a completely novel dimension of potential AC regulation in bacteria and vertebrates.

Article and author information

Author details

  1. Stephanie Beltz

    Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jens Bassler

    Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Joachim E Schultz

    Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
    For correspondence
    joachim.schultz@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Beltz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,089
    views
  • 362
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephanie Beltz
  2. Jens Bassler
  3. Joachim E Schultz
(2016)
Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases
eLife 5:e13098.
https://doi.org/10.7554/eLife.13098

Share this article

https://doi.org/10.7554/eLife.13098

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.