ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor

  1. Zineb Mounir
  2. Joshua M Korn
  3. Thomas Westerling
  4. Fallon Lin
  5. Christina A Kirby
  6. Markus Schirle
  7. Gregg McAllister
  8. Greg Hoffman
  9. Nadire Ramadan
  10. Anke Hartung
  11. Yan Feng
  12. David Randal Kipp
  13. Christopher Quinn
  14. Michelle Fodor
  15. Jason Baird
  16. Marie Schoumacher
  17. Ronald Meyer
  18. James Deeds
  19. Gilles Buchwalter
  20. Travis Stams
  21. Nicholas Keen
  22. William R Sellers
  23. Myles Brown
  24. Raymond A Pagliarini  Is a corresponding author
  1. Genentech, United States
  2. Novartis Institutes for BioMedical Research, United States
  3. Harvard Medical School, United States
  4. Novartis Institutes for Biomedical Research, United States
  5. Organovo, United States
  6. NIBR, United States
  7. Laboratoires Servier, France
  8. Celgene Avilomics Research, United States

Abstract

The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR's ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation.

Article and author information

Author details

  1. Zineb Mounir

    Genentech, South San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joshua M Korn

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Westerling

    Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fallon Lin

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina A Kirby

    Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Markus Schirle

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregg McAllister

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Greg Hoffman

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nadire Ramadan

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anke Hartung

    Organovo, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yan Feng

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. David Randal Kipp

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Christopher Quinn

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Michelle Fodor

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jason Baird

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Marie Schoumacher

    Laboratoires Servier, Neuilly-sur-Seine, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Ronald Meyer

    Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. James Deeds

    Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Gilles Buchwalter

    Celgene Avilomics Research, Bedford, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Travis Stams

    Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Nicholas Keen

    Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. William R Sellers

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Myles Brown

    Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Raymond A Pagliarini

    Celgene Avilomics Research, Bedford, United States
    For correspondence
    raymond.pagliarini@novartis.com
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Mounir et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,092
    views
  • 1,056
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zineb Mounir
  2. Joshua M Korn
  3. Thomas Westerling
  4. Fallon Lin
  5. Christina A Kirby
  6. Markus Schirle
  7. Gregg McAllister
  8. Greg Hoffman
  9. Nadire Ramadan
  10. Anke Hartung
  11. Yan Feng
  12. David Randal Kipp
  13. Christopher Quinn
  14. Michelle Fodor
  15. Jason Baird
  16. Marie Schoumacher
  17. Ronald Meyer
  18. James Deeds
  19. Gilles Buchwalter
  20. Travis Stams
  21. Nicholas Keen
  22. William R Sellers
  23. Myles Brown
  24. Raymond A Pagliarini
(2016)
ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor
eLife 5:e13964.
https://doi.org/10.7554/eLife.13964

Share this article

https://doi.org/10.7554/eLife.13964

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zijing Wang, Bihan Xia ... Jilin Yang
    Research Article

    Bestrophin isoform 4 (BEST4) is a newly identified subtype of the calcium-activated chloride channel family. Analysis of colonic epithelial cell diversity by single-cell RNA-sequencing has revealed the existence of a cluster of BEST4+ mature colonocytes in humans. However, if the role of BEST4 is involved in regulating tumour progression remains largely unknown. In this study, we demonstrate that BEST4 overexpression attenuates cell proliferation, colony formation, and mobility in colorectal cancer (CRC) in vitro, and impedes the tumour growth and the liver metastasis in vivo. BEST4 is co-expressed with hairy/enhancer of split 4 (HES4) in the nucleus of cells, and HES4 signals BEST4 by interacting with the upstream region of the BEST4 promoter. BEST4 is epistatic to HES4 and downregulates TWIST1, thereby inhibiting epithelial-to-mesenchymal transition (EMT) in CRC. Conversely, knockout of BEST4 using CRISPR/Cas9 in CRC cells revitalises tumour growth and induces EMT. Furthermore, the low level of the BEST4 mRNA is correlated with advanced and the worse prognosis, suggesting its potential role involving CRC progression.

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.