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Abstract Exploration of developmental mechanisms classically relies on analysis of pattern

regularities. Whether disorders induced by biological noise may carry information on building

principles of developmental systems is an important debated question. Here, we addressed

theoretically this question using phyllotaxis, the geometric arrangement of plant aerial organs, as a

model system. Phyllotaxis arises from reiterative organogenesis driven by lateral inhibitions at the

shoot apex. Motivated by recurrent observations of disorders in phyllotaxis patterns, we revisited

in depth the classical deterministic view of phyllotaxis. We developed a stochastic model of

primordia initiation at the shoot apex, integrating locality and stochasticity in the patterning

system. This stochastic model recapitulates phyllotactic patterns, both regular and irregular, and

makes quantitative predictions on the nature of disorders arising from noise. We further show that

disorders in phyllotaxis instruct us on the parameters governing phyllotaxis dynamics, thus that

disorders can reveal biological watermarks of developmental systems.

DOI: 10.7554/eLife.14093.001

Introduction
Developmental systems strikingly produce regular patterns and analysis of eukaryote development

has classically been focused on regularities as the main source of information to understand these

complex systems. However, it is becoming increasingly evident that intrinsic molecular noise is an

inherent property of biological systems (Elowitz et al., 2002; Kupiec, 1997; Lander, 2011). This

noise can be buffered, e.g. (Okabe-Oho et al., 2009), but can also theoretically propagate through

scales and generate patterning disorders e.g. (Itoh et al., 2000). In this case, disorders observed

during development could be informative not only on the origin of noise but also on the underlying

developmental mechanisms that propagate the noise. Here we address this question theoretically

using phyllotaxis, the remarkably regular geometric organization of plant aerial organs (such as

leaves and flowers) along the stem, as a model system (Appendix section 1).

Phyllotaxis primarily arises at the shoot apical meristem, a specialized tissue containing a stem

cell niche and located at the tip of growing shoots. Rooted in early works of pioneers such as (Bon-

net, 1754; Braun, 1831; Bravais and Bravais, 1837) and after decades of research, the idea that
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phyllotactic patterns emerge from simple physical or bio-chemical lateral inhibitions between succes-

sive organs produced at the meristem has become largely prevalent, (Adler et al., 1997; Jean, 1995;

Kuhlemeier, 2007; Pennybacker et al., 2015; Reinhardt, 2005). Microscopic observations and

modeling led to propose that this self-organizing process relies on five basic principles: i) organs can

form only close to the tip of growing shoots, ii) no organ can form at the very tip, iii) pre-existing

organs prevent the formation of new organs in their vicinity (Hofmeister, 1868), forming altogether

an inhibitory field that covers the organogenetic zone, iv) due to growth, organs are progressively

moved away from the organogenetic zone, v) a new organ is formed as soon as the influence of the

inhibitory field produced by the existing organs fades away at the growing tip, (Schoute, 1913;

Snow and Snow, 1962; Turing, 1952). Computer simulations were used to analyze the dynamical

properties of an inhibitory field model relying on these assumptions (Mitchison, 1977; Thorn-

ley, 1975; Veen and Lindenmayer, 1977; Young, 1978) and many others after them, including

(Chapman and Perry, 1987; Douady and Couder, 1996a; Green et al., 1996; Meinhardt, 2003;

Schwabe and Clewer, 1984; Smith et al., 2006b). In a detailed computational analysis

(Douady and Couder, 1996a; 1996b; 1996c), Douady and Couder demonstrated the ability of such

models to recapitulate a wide variety of phyllotactic patterns in a parsimonious way and that these

patterns are under the control of a simple geometric parameter corresponding to the ratio between

the radius of organ inhibitory fields and the radius of the central zone (area at the very tip where no

organ can form). This modeling framework thus provides a deterministic theory of self-organizing

patterns in the meristem characterized by a global geometric parameter, capturing macroscopic

symmetries and orders emerging from lateral inhibitions, e.g. (Adler, 1975; Atela, 2011;

Newell et al., 2008; Smith et al., 2006b). In the sequel, we will refer to this widely accepted view

as the classical model of phyllotaxis.

In recent years, plausible molecular interpretations of the abstract concepts underlying the classi-

cal model have been proposed. They mainly rely on distribution in the meristem of the plant hor-

mone auxin, a central morphogenetic regulator. Auxin is actively transported at the meristem

surface, notably by both PIN-FORMED1 (PIN1) polar efflux carriers and non-polar influx carriers

(AUX/LAX family). These transporters form a dynamic network that permanently reconfigures and

eLife digest Plants grow throughout their lifetime, forming new flowers and leaves at the tips of

their stems through a patterning process called phyllotaxis, which occurs in spirals for a vast number

of plant species. The classical view suggests that the positioning of each new leaf or flower bud at

the tip of a growing stem is based on a small set of principles. This includes the idea that buds

produce inhibitory signals that prevent other buds from forming too close to each other. When

computational models of phyllotaxis follow these ‘deterministic’ principles, they are able to recreate

the spiral pattern the buds form on a growing stem.

In real plants, however, the spiral pattern is not always perfect. The observed disturbances in the

pattern are believed to reflect the presence of random fluctuations – regarded as noise – in

phyllotaxis. Here, using numerical simulations, Refahi et al. noticed that the patterns of inhibitory

signals in a shoot tip pre-determine the locations of several competing sites where buds could form

in a robust manner. However, random fluctuations in the way cells perceive these inhibitory signals

could greatly disturb the timing of organ formation and affect phyllotaxis patterns.

Building on this, Refahi et al. created a new computational model of bud patterning that takes

into account some randomness in how cells perceive the inhibitory signals released by existing buds.

The model can accurately recreate the classical spiral patterns of buds and also produces occasional

disrupted patterns that are similar to those seen in real plants. Unexpectedly, Refahi et al. show that

these ‘errors’ reveal key information about how the signals that control phyllotaxis might work.

These findings open up new avenues of research into the role of noise in phyllotaxis. The model

can be used to predict how altering the activities of genes or varying plant growth conditions might

disturb this patterning process. Furthermore, the work highlights how the structure of disturbances

in a biological system can shed new light on how the system works.

DOI: 10.7554/eLife.14093.002
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that periodically accumulates auxin at specific locations on the meristem flanks (the organogenetic

domain), initiating organ primordia (Reinhardt et al., 2003). By attracting auxin, the growing primor-

dium depletes auxin in its vicinity, thus preventing organ formation in this region. This mechanism is

now thought to be at the origin of the predicted inhibitory fields in the meristem (Barbier de Reuille

et al., 2006; Brunoud et al., 2012; Jönsson et al., 2006; Smith et al., 2006a; Stoma et al., 2008).

The range of this inhibition corresponds to one of the two key parameters of the classical model: as

primordia get away from the tip, inhibition is relaxed and auxin can accumulate again to initiate new

primordia. For the second key parameter, i.e. the size of the apical domain in which no organ can

form, it has been suggested that the very tip of the meristem contains significant quantities of auxin

but is actually insensitive to auxin due to a down-regulation of the effectors of transcriptional auxin

signaling (Barbier de Reuille et al., 2006; Vernoux et al., 2011). A low auxin sensitivity then

Figure 1. Irregularity in phyllotaxis patterns. (A) wild type inflorescence of Arabidopsis thaliana showing regular spiral phyllotaxis. (B) aph6 mutant

inflorescence showing an irregular phyllotaxis: both the azimuthal angles and the distances between consecutive organs are largely affected. (C1)

Organ initiation in the wild type: the size of organs is well hierarchized, initiations spaced by regular time intervals. (C2) Organ initiation in the ahp6

mutant: several organs may have similar sizes, suggesting that they were initiated simultaneously in the meristem (co-initiations). (D) A typical sequence

of divergence angles in the WT: the angle is mainly close to ( » 137˚) with possible exceptions (M-Shaped pattern). (E) In ahp6, a typical sequence

embeds more perturbations involving typically permutations of 2 or 3 organs. (F–I) Frequency histogram of divergence angle: wild type (F); ahp6 mutant

(G); WS-4, long days (H); WS-4 short days - long days (I).

DOI: 10.7554/eLife.14093.003
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participates in blocking organ initiation in the central domain (where the stem cells are located) of

the meristem. These molecular insights support the hypothesized structure of the classical model.

Comparatively, little attention has been paid as of today to disorders in phyllotaxis (Jean, 2009;

Jeune and Barabé, 2004). However, in the recent years, the presence of irregularities in phyllotactic

Figure 2. Permutations can be observed in various species with spiral phyllotaxis. A schema in the bottom right corner of each image indicates the rank

and azimuthal directions of the lateral branches. The first number (in yellow, also displayed on the picture) indicates the approximate azimuthal angle as

a multiple of the plant’s divergence angle (most of the times close to 137˚ or 99˚). The second number (in red) corresponds to the rank of the branch on

the main stem. (A) Brassica napus (Inflorescence) (B) Muscari comosum (Inflorescence) (C) Alliara petiolata (D) Aesculus hippocastanum (Inflorescence)

(E) Hedera Helix (F) Cotinus Dummeri.

DOI: 10.7554/eLife.14093.004
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patterns has been repetitively observed in various genetic backgrounds (Besnard et al., 2014;

Couder, 1998; Douady and Couder, 1996b; Guédon et al., 2013; Itoh et al., 2000;

Landrein et al., 2015; Leyser and Furner, 1992; Mirabet et al., 2012; Peaucelle et al., 2011;

Prasad et al., 2011; Refahi et al., 2011), suggesting that phyllotaxis has a non-deterministic compo-

nent. In some cases, the departure from any known regular pattern is so strong that plant phyllotaxis

is considered random, e.g. (Itoh et al., 2000). Recently, strong disorders have been observed and

quantified in spiral patterns of Arabidopsis thaliana wild-type and arabidopsis histidine phospho-

transfer protein (ahp6) mutants (Besnard et al., 2014), Figure 1. Surprisingly, a structure could be

found in these disorders that corresponds to either isolated or series of permutations in the order of

lateral organs along the stem when taking a perfect spiral with divergence angle 137.5˚ (golden
angle f) as a reference. Live-imaging of meristems showed that organs are sometimes co-initiated in

the meristem, leading randomly to post-meristematic organ order permutations in around half of the

cases. This phenomenon showed that, while the azimuthal directions of the organs are highly robust,

the time between consecutive organ initiation (or plastochron) is variable, Figure 1G. Taken

together, these observations called for revisiting in depth models of phyllotaxis to account for disor-

ders in this self-organizing developmental system.

Here, we show that the same disorders, the permutations, occur in various plant species, suggest-

ing noisy plastochrons are a characteristic of phyllotactic systems at the origin of pattern disorders.

In addition, we demonstrate that inhibitory fields pre-specify a number of organogenesis sites, sug-

gesting noise on inhibition perception as the most likely origin of disorders. Building on this observa-

tion, we developed a stochastic model of organ initiation that is fully local and relies on a stochastic

modeling of cell responses to inhibitory fields. Our stochastic model fully and precisely captures the

observed dynamics of organogenesis at the meristem, recapitulating both regular and irregular phyl-

lotactic patterns. We show that the stochastic model also makes quantitative predictions on the

nature of the perturbations that may arise due to different genetic and growth manipulations. Most

importantly, we demonstrate that disorders in phyllotactic patterns instruct us on the parameters

governing the dynamics of phyllotaxis. Disorders can thus provide access to the biological water-

marks corresponding to the parameter values of this self-organizing system, providing a striking

example where disorders inform on mechanisms driving the dynamics of developmental systems.

Results

The shoot architecture of a variety of plant species suggests that
disorder is a common phenomenon in phyllotaxis
As permutations have been notably reported in Arabidopsis (Besnard et al., 2014; Guédon et al.,

2013; Landrein et al., 2015; Refahi et al., 2011) and in sunflower (Couder, 1998), we sampled a

variety of unrelated species in the wild and searched for permutations. We could easily find permuta-

tions in several other Brassicaceae showing spiral phyllotaxis as well as in either monocotyledonous

or dicotyledonous species from more distant families such as Asparagaceae, Sapindaceae or Aralia-

ceae (Figure 2) (Appendix section 1). As suggested by the results on Arabidopsis, these observa-

tions raise the possibility that these organ permutations result from a noise on the plastochron and

that such perturbation could be a common feature of phyllotactic systems that occurs in meristems

with different geometries. In addition this disorder is probably under complex genetic control as dif-

ferent unrelated genetic modifications (including the Arabidopsis ahp6 mutant) can modulate its

intensity.

The classical deterministic model suggests inhibition perception as the
most likely origin of disorders
To understand how the timing of organ initiation could be affected during meristem growth, we first

analyzed the relative stability of inhibitory field minima in the classical deterministic model. For this,

we implemented a computational version of the classical model based on (Douady and Couder,

1996b) (Appendix section 2). Primordia are created on the meristem surface at the periphery of the

meristem central zone, at a fixed distance R from the meristem center. Once created, primordia drift

away radially from the central zone at a speed proportional to their distance from the meristem cen-

ter. As soon as created, a primordium q of radius r0, generates an inhibitory field, EðqÞ in its
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Figure 3. Properties of the inhibition profiles in the classical model and effect of a forced perturbation on divergence angles and plastochrons. (A)

Inhibition variation (logarithmic scale) along the peripheral circle and its global and local minima for a control parameter G1 = 0.975. Ek � E1 is the

difference in inhibition levels between the kth local minimum and the global minimum. The angular distances between the global minimum and the kth

primordiu inhibition m are multiple of the canonical angle (a ¼137˚). (B) Similar inhibition profile for a control parameter G2 = 0.675 < G1. The difference

Ek � E1 in inhibition levels is higher than in A. (C) Variation of the distance E2 � E1 between the global minimum of the inhibition landscape and the

local minimum with closest inhibition level (i.e. the second local minimum), as a function of G. (D) Inhibition profile just before an initiation at azimuth

80˚ and (E) just after. (F) Variation of inhibition profile in time. As the inhibition levels of local minima decrease, their angular position does not change

significantly, even if new primordia are created (peak qn), color code: dark red for low inhibition and dark blue for high inhibition values. (G) Sequence

divergence angles between initiations simulated with the classical model (control parameter G1). At some point in time (red arrow), the choice of the

next initiation is forced to occur at the 2th local minimum instead of the global minimum. After the forcing, the divergence angle makes a typical

M-shaped pattern and returns immediately to the a baseline. (H) Corresponding plastochrons: the forcing (red arrow) induces a longer perturbation of

the time laps between consecutive organs.

DOI: 10.7554/eLife.14093.005

The following figure supplement is available for figure 3:

Figure supplement 1. Divergence angle of a series of simulations of the classical model with control parameter G1=0.975 and for which the choice of

the jth local minimum (instead of the global minimum, i.e. j=1) has been forced at a given time-point (red arrow).

DOI: 10.7554/eLife.14093.006
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neighborhood such that at a point x, at a distance dðq; xÞ>r0, the inhibition due to q decreases with

the distance to q : EðqÞðxÞ ¼ ð r0
dðq;xÞÞ

s, where s is a geometric stiffness parameter (EðqÞ is often regarded

as an inhibitory energy emitted by primordium q, e.g. Douady and Couder, 1996b). As a result, at

any moment and for any point x of the meristem surface, the existing primordia create altogether a

cumulated inhibition EðxÞ that is the sum of the individual primordium contributions:

EðxÞ ¼
P

q2Q
EðqÞðxÞ, where Q denotes the set of all preexisting primordia. High inhibition levels on the

peripheral circle prevent the initiation of new primordia at corresponding locations. However, as the

preexisting primordia are moving away from the central zone during growth, the inhibitory level

tends to decrease at each point of the peripheral circle. A new primordium initiates where and when

the inhibitory field is under a predefined threshold on the peripheral circle.

We then performed a systematic analysis of the inhibition profiles and their dynamics along the

peripheral circle and observed the following properties (Figure 3, Video 1,2):

. Property 1: let i and j, i<j, denote the numbers of contact spirals that one can observe on a
stem in clockwise and counter-clockwise directions (Appendix section 1), the number of local
minima l in the inhibition profile is bounded by i and j : i � l � j: (Figure 3A–B).

. Property 2: The angular distance between local minima is a multiple of the divergence angle
(Figure 3A–B).

. Property 3: The difference between the inhibition values of local minima decreases monotoni-
cally with the control parameter G ¼ r0=R (Figure 3C)

In addition, we noticed that depending on time, the difference in inhibition level between conse-

cutive local minima may markedly vary. In some cases this difference is so small that a biological

noise may lead the biological system to perceive the ordering between two or more local minima

differently from the ordering of the actual inhibition levels. Such errors would lead to initiate several

primordia together or to change the temporal order of their initiation, thus inducing perturbations in

the sequence of divergence angle. Also, as suggested by property 3, the number of primordia initia-

tion events affected by these errors would decrease with the G parameter and would thus depend

on the geometry of the meristem.

To investigate this possibility, we started to induce a perturbation in a stationary spiral pattern by

forcing at a given time the system to initiate a primordium at the site of second local minimum

instead of that of the global minimum (i.e. at an angle 2f, Figure 3G, red arrow). The system was

then left free to self-organize. We observed that the next primordium was always initiated at the site

of the original global minimum, resulting in a divergence angle �f and a quasi-null plastochron

(Figure 3H). The system was then able to recover from the perturbation by initiating the next pri-

mordium at the originally expected site (i.e. with a divergence angle 2f), with a long plastochron,

leading to a M-shaped pattern (Figure 3G, Video 3). The rest of the divergence angle sequence

was then not affected and remained at a value close to f while long oscillatory perturbations were

observed on plastochrons (Figure 3H). Stronger perturbations induced by forcing various other local

minima to initiate instead of the global minimum (Figure 3—figure supplement 1 and Appendix

section 6.6 for related control simulation experiments) similarly demonstrated that the system spon-

taneously makes a short distorted pattern and then returns to the normal f baseline in every case.

We concluded that i) a noise in the perception of the local primordium order does not propagate far

in the divergence angle sequence and that angle specification in the classical model patterning sys-

tem is highly robust to perturbations in local minima initiation ordering and ii) however, the plasto-

chron itself is affected during a much longer time span.

Together, these results suggest that time and space in primordium initiation are largely

decoupled in inhibitory field-driven self-organization as locations of primordia are strongly pre-speci-

fied and relatively stable, while plastochrons are not. This observation is in line with the observations

from live-imaging of Arabidopsis shoot apical meristem that demonstrated that despite variability in

the plastochron (with almost 30% of organs co-initiated) the specification of initiation sites was

extremely robust (Besnard et al., 2014).

Organ initiation can be modeled as a stochastic process
Our previous results suggest that high variability in the timing of organ initiation could result from

the joint effect of noise in the perception of inhibitory fields and of the decoupling between space
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and time in this self-organizing system. We

therefore decided to revisit the inhibitory field

models to integrate locality and stochasticity as

central components in the patterning system.

For this, we kept from the classical deterministic

model the assumptions related to the movement

of primordia at the meristem through growth

and to the definition of inhibitory fields. However, we completely reformulated the way primordia

are initiated as local stochastic processes.

At any time t, the K cells that make up the periphery of the central zone potentially may take the

identity of a primordium, depending on the local value of the inhibitory field (signaling) in each cell.

We assume that this switch in cell identity does not depend on a threshold effect as in the classical

model but, rather, depends on the cellular perception of the inhibitory signal which, in essence, is

stochastic (Eldar and Elowitz, 2010). We thus assumed that each cell k reads out the local inhibitory

field value, EkðtÞ, and switches its state to primordium identity with a probability that (i) depends on

the level of inhibition EkðtÞ; (ii) is proportional to

the amount of time dt the cell is exposed to this

level of signaling (Gillespie, 1976; 1977):

PðXkðt;dtÞ ¼ 1Þ ¼ lðEkðtÞÞdt; (1)

where Xkðt;dtÞ denotes the number of primordia

initiated at cell k in the time interval ½t; tþ dt�

(Xkðt;dtÞ will typically have a value 0 or 1), and l

is a rate parameter that depends on the local

inhibition value EkðtÞ at cell k and that can be

interpreted as a temporal density of initiation.

To express the influence of inhibitory fields on

the probability of initiation, the dependence of l

on the local inhibition EkðtÞ must respect a num-

ber of general constraints: i) l must be a

decreasing function of the inhibition as the

higher the inhibition level at one site, the lower

the probability to observe an initiation at this

site during dt; ii) for small dt, for PðXkðt;dtÞ ¼ 1Þ

to be a probability, we must have

0� lðEkðtÞÞdt� 1; iii) the ratio of the probabilities

Video 1. Temporal variation of the inhibitory profile

around the central zone in the classical model for a

large value of the parameter G. The number of

inhibition mimima is stable (3) in time. When the

absolute minimum reaches the initiation threshold

(here E = 0), a primordium is created that

instantaneously creates a strong inhibition locally,

which suddenly increases the inhibition level at its

location. Between initiations, local minima regularly

decrease in intensity due to the fact that growth is

moving existing primordia away from the center. This

movement is accompanied by a slight drift in position

common to all primordia (here to the right).

DOI: 10.7554/eLife.14093.007

Video 2. Temporal variation of the inhibitory profile

around the central zone in the classical model for a

small value of the parameter G. The dynamics is similar

to that of small G except that the number of local

minima of inhibition is higher (here 5) and that the

distance between two consecutive minima is lower.

DOI: 10.7554/eLife.14093.008

Video 3. Temporal variation of the inhibitory profile

around the central zone in the stochastic model for a

small value of the parameter G. Here, due to

stochasticity, global minimum is not always the one

that triggers an initiation. The dynamics of the

divergence angle and of the plastochron are shown in

the bottom graphs to interpret the model’s initiations

based on the inhibition levels.

DOI: 10.7554/eLife.14093.009
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to trigger an initiation at two different sites is a function of the difference in inhibition levels between

these sites. Under all these constraints, the rate parameter takes the following form (see Appendix

section 3 for a detailed derivation of the model):

lðEkðtÞÞ ¼ e�bðEkðtÞ�E
�Þ; (2)

where E� is a parameter controlling the sensitivity of the system to inhibition, and b is a parameter

controlling the ability of the system to discriminate between inhibition levels, i.e. to respond differ-

ently to close inhibition levels (acuity). Therefore, for each cell k, the probability to initiate a primor-

dium during a small time interval dt can be expressed as:

PðXkðt;dtÞ ¼ 1Þ ¼ e�bðEkðtÞ�E
�Þdt: (3)

If we now assume that the probabilities to observe an initiation at a site k in disjoint time intervals

are independent, the process described by Equation 3 is known as a non-homogeneous Poisson

process of intensity lðEkðtÞÞ (e.g. Ross, 2014). Therefore for each cell k of the periphery, our model

assumes that the probability to initiate a primordium is a non-homogeneous Poisson process, whose

parameter is regulated by the local level of the inhibitory field at that site.

This stochastic formulation of the model at the level of cells, called SMPmicro (Stochastic Model

of Phyllotaxis at microscopic level), makes it possible to develop the calculus of different key quanti-

ties or properties of the system. For example, if we assume that recruitments of cells for organ initia-

tion are stochastically independent from each other (the probability to draw an initiation at a site

k only depends on the value of the local parameters at site k but not on what may be drawn at other

places), then we can estimate the expected number of cells independently recruited for organ initia-

tion during the timespan dt. Let us denote Xðt; dtÞ the number of cells initiated along the peripheral

circle, and for a given time t and a small time span dt, Xðt; dtÞ ¼
P

K

k¼1

Xkðt; dtÞ. Its expectation is simply

the sum of the expectations of the individual independent Poisson processes:

EðXðt;dtÞÞ ¼
P

K

k¼1

EðXkðt;dtÞÞ ¼
P

K

k¼1

PðXkðt;dtÞ ¼ 1Þ

¼ dt
P

K

k¼1

e�bðEkðtÞ�E
�Þ;

(4)

therefore giving us an estimate of the expected number of peripheral cells initiated during time dt

and for the inhibition profile EðtÞ.

So far we have considered peripheral cells as independent sites that may independently switch to

primordium identity with a probability that depends on their local level of inhibition. As a local inhibi-

tion valley may span over several cells, one might expect that the probability to trigger a primordium

initiation in a valley is increased by the fact that several founder cells can potentially contribute to

this initiation during time dt. To formalize this, we then upscaled our stochastic model at the level of

valleys where a stochastic process is now attached to each local minimum l instead of to each cell k.

This upscaled model is called SMPmacro. The idea is that the stochastic processes of all the cells k

spanned by a local inhibition valley l sum up and together define a stochastic process Nl that a pri-

mordium is initiated in l at a higher level. Being the sum of independent Poisson processes, this

upscaled process is also a Poisson process with intensity Ll ¼
P

k2Kl

lkðEkðtÞÞ, where k varies over the

set of cells spanned by the valley of the l th local minimum and indexed by Kl. If L denotes the num-

ber of local minima, then the expected number of primordia initiations during a small time laps dt is

thus:

EðNlðt;dtÞÞ ¼ dt
X

L

l¼1

LlðtÞ: (5)

Therefore, at microscopic scale, SMPmicro couples i) a deterministic part inherited from the clas-

sical model and related to the geometry and the dynamics of the fields and ii) a new stochastic part

related to the perception of this inhibitory field, i.e. representing signal perception capacities. It

relies on the assumption that the perception sites, corresponding to the cells surrounding the central
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zone periphery, are stochastically independent of each other. Decisions regarding primordium initia-

tion are taken in a cell-autonomous manner, thus reflecting more realistically the outcome of the ini-

tiation signaling pathway in each cell. At a macroscopic level, in each inhibition valley several cells

may trigger primordium initiation. The probability to trigger an initiation increases in SMPmacro with

the size of the valley when more than one founder cell are likely to contribute to initiation. A variant

of this upscaled model consists of defining the probability for a valley to initiate a primordium by the

probability of the cell with lowest level of inhibition in this valley. In this variant, called SMPmacro-

max, Ll ¼max
k2Kl

lkðEkðtÞÞ.

Stochastic modeling simulates realistic phyllotaxis sequences
To study the emergent properties of this system, we implemented a computational version of

SMPmacro-max and tested its sensitivity to parameter changes. In addition to the geometrical

parameters of the classical model, two new parameters, b and E� now reflect the ability of the sys-

tem to perceive the inhibitory signal from the fields (or equivalently the initiation signal).

As expected from a phyllotaxis model, the stochastic model is able to produce both spiral and

whorl modes, from either imposed initial distributions of organs (Figure 4A–C), or random starting

points (Appendix section 6.1). However, the great majority of the sequences of divergence angle

generated for different values of G ¼ r0=R displayed divergence angle perturbations (i.e. angles dif-

ferent from those predicted by the classical model with the same G) of the type observed in

Figure 4D–E. As suggested by their typical distributions (Figure 4F–H left), these perturbations cor-

respond to permutations very similar to those observed on real plants in previous studies

(Besnard et al., 2014; Landrein et al., 2015) with the appearance of secondary modes at multiples

of 137, Figure 1F–I. The amplitude of these secondary modes is correlated with the amount of per-

turbations in the sequences.

To complete this analysis, we looked at plastochron distributions in the simulated sequences

(Figure 4F,G,H right). In all cases, distributions were displaying a single mode largely spread along

the x-axis. Interestingly, the more sequences were perturbed, the more negatively skewed the distri-

butions, showing thus a higher occurrence of short plastochrons (Figure 4H). This is reminiscent of

the observation of co-initiations in growing meristems associated with perturbed phyllotaxis

(Besnard et al., 2014; Landrein et al., 2015). The stochastic model is thus able to produce per-

turbed sequences with realistic series of divergence angles and corresponding realistic distributions

of plastochrons.

The proportion of complex versus simple disorders in phyllotaxis
sequences depends on the global amount of phyllotaxis disorders
We then aimed to quantitatively assess the complexity level of permutations as a proxy for plasto-

chron noise. For this we focused on spiral phyllotaxis modes and used two measures: the density of

permuted organs respectively involved in 2 and 3-permutations p2 ¼ 2:s2=S and p3 ¼ 3:s3=S where

s2 and s3 are respectively the number of 2- and 3-permutations in the sequence and S the total

number of organs in the sequence. The quantities s2 and s3 were estimated a posteriori from simu-

lated sequences using the algorithm described in (Refahi et al., 2011). The total density of per-

muted organs involved either in 2- or 3 permutations is denoted by p ¼ p2 þ p3.

We first explored the intensity of permutations of different natures (2- and 3-permutations) in sim-

ulated phyllotaxis sequences. For this, we carried out simulations for a range of values for each

parameter G;b;E� (Figure 5—source data 1). These values can be regarded as predictions of the

model for each triplet ðG;b;E�Þ. Remarkably, the simulations show that the values of p;p2 and p3

are not linearly related to each other. To make this relationship explicit, we plotted the proportion

of organs involved in 2-permutations p2 as a function of the total proportion of perturbed organs

p (Figure 5). Surprisingly, the points, when put together on a graph, were organized in a narrow

crescent showing a convex curve-like relationship between p and p2, revealing a remarkable prop-

erty of the stochastic model: the more perturbations there are in the simulated sequences, the

higher the proportion of 3-permutations, and this independently of the model parameters. The fact

that this non-linear relationship emerges from a fairly large sampling of the parameter space sug-

gests that it can be considered as a key observable property characterizing the model’s underlying

structure.
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We tested this by gathering all measured values of p2 and p3 published in the literature for Arabi-

dopsis (Besnard et al., 2014; Landrein et al., 2015) and plotted the corresponding points on the

original graph showing the model’s simulations (Figure 5, red crosses). The measured points fall

within the range of predicted values and show that the measured values follow the same non-linear

variation as the one predicted by the model: the larger the total percentage of permutations, the

larger the proportion of 3-permutations in the sequences. This confirms a first prediction from the

stochastic model and indicates that disorder complexity increases non-linearly with the frequency of

disorders.

The amount of disorders in a sequence depends on both geometry and
signal perception
Based on our simulations, we then investigated the variations of these perturbations as a function of

the model parameters G;b:E� and s. As a general trend, for a value of s fixed to 3 as in (Douady and

Couder, 1996b), we noticed that for a given value of G, an increase in b was roughly counteracted

in terms of permutation intensity by a decrease in E�. Likewise, an increase of G was canceled by a

decrease in b. We gathered all these observations in one graph and plotted the global amount of

perturbation p in a sequence as a function of a combination of the three original model parameters

and reflecting the observed trend: GP ¼ GbE�. In the resulting graph (Figure 6A), each point corre-

sponds to a particular instance of the three model parameters. The points form a narrow and

decreasing band associating a small set of possible perturbation intensities p with each value of GP.

For combinations of the three model parameters leading to a small GP, the perturbations can affect

up to 50% of the organs whereas for high values of GP, there may be no perturbation at all. Interest-

ingly, GP being a combination of the three elementary model parameters, plants having identical

geometrical parameter G may show substantially different intensities of perturbations if their percep-

tion for different values of parameters b;E�. Consequently, since the intensity of perturbation in the

system is more simply reflected by GP than by values of G;b;E� taken independently, GP can be con-

sidered to be a control parameter for perturbations.

Both divergence angles and plastochrons are controlled by a unique
combination of the geometric and perception parameters
To further investigate the structure of the stochastic model, we then studied how the usual observ-

able quantities of a phyllotaxis system, i.e. divergence angles and plastochrons, depend on the

model parameters G;b;E� and s.

In the classical deterministic model, divergence angles are a function of a unique control parame-

ter G ¼ r0=R (Douady and Couder, 1996b), meaning that the same divergence angle can be

obtained in the model for different couples of r0 and R provided that their ratio is unchanged. We

thus checked whether G could also serve as the control parameter for the divergence angles and

plastochrons in the stochastic model. For this, we simulated various spiral phyllotaxis sequences

(from the Fibonacci branch where divergence angles are close to 137˚) by varying G;b;E� and esti-

mated the corresponding divergence angle a and plastochron T, Figure 6B,D. We observed that,

although the point clouds evoke the corresponding curves in the standard deterministic model

(Appendix 1—figure 2), significantly different values of the divergence angles (or plastochrons) can

be observed for many particular values of G. This phenomenon suggests that G is not a satisfactory

control parameter in the stochastic model: for a given value of G, varying b or E� can significantly

modify the divergence angle or the plastochron. We therefore tested various combinations of these

parameters (Figure 6—figure supplement 1), and finally found that for GD ¼ Gs=3 1
b1=6E�1=2

both cloud

of points collapse into a single curves (Figure 6B–C, D–E and Appendix section 6.3). For this defini-

tion of GD, each value of the control parameter can be associated with quasi-unique divergence

angle and plastochron, i.e. defines a precise observable state of the system.

We then checked whether parastichies were also controlled by GD. For this, we computed the

parastichies ði; jÞ corresponding to each simulated sequence and plotted the sum, iþ j, as a function

of GD (Figure 6F). The resulting points were arranged on a stepwise curve, where each step corre-

sponds to a Fibonacci mode: (1,2), (2,3), (3,5), (5,8). Each value of GD thus defines a precise value of

the mode.
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We concluded that GD can be considered as a second control parameter of the stochastic model,

relating the system’s state to the observable variables a and T through a unique combination of the

system’s parameters.

Observable variables convey key clues on the state of the phyllotaxis
system
According to the stochastic model, a particular phyllotaxis system is characterized by a particular set

of values of the parameters G;b;E�. Upon growth, a specific spatio-temporal dynamics emerges that

is characterized by observable variables: divergence angle, plastochron and frequency of permuta-

tions. In the current state of our knowledge and measuring means, the parameters G;b;E� are not

directly observable. Therefore, we investigated what can be learned about them from the observ-

able variables.

Figure 4. Patterns generated by the stochastic model. (A) The model generates spiral patterns (in (A–C), up: sequence of simulated divergence angles,

down: corresponding plastochrons). (B–C) and whorled patterns. (D) Simple M-shaped permutations simulated by the stochastic model (b = 10.0, E� =

1.4, G = 0.625). (E) More complex simulated permutations involving 2- and 3-permutations (b = 10.0, E�= 1.4, G = 0.9). The permutations are here: [4, 2,

3], [14, 13, 12], [16, 15], [19, 18]. (F) Typical histogram of simulated divergence angles and corresponding plastochron distribution for b = 11.0, E� =1.2,

G= 0.8. (G) Histogram of simulated divergence angles and corresponding plastochron distribution for b = 9.0, E� = 1.2, G = 0.8 (H) Histogram of

simulated divergence angles and corresponding plastochron distribution for b = 9.0, E� = 1.2, G = 0.625.

DOI: 10.7554/eLife.14093.010
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For this, we can use the relationships established above between the control parameters GP and

GD and the observable variables a; T ;p2;p3; .... For a genotype G, we have:

GP ¼ GbE�

GD ¼ G
s=3 1

b1=6E�1=2

(6)

Using the characteristic curves of Figure 6C,E, both measurements of a and T give possible esti-

mates for GD. In a consistent model, these estimates should be compatible. Similarly, an estimate of

GP can be derived from the observation of p. In the case of the WT for example, GD is estimated to

be in [0.425, 0.5] and GP in [8.30, 11.49] according to the observed value of the plastochron, diver-

gence angle and permutation intensity. This value is itself derived from the measurement of the plas-

tochron ratio � (Appendix section 4.1.3).

Based on estimated values of GD and GP, equations 6 define a system of 2 equations and 3

unknowns (s was fixed to 3 in the simulations). This system is underdetermined and does not allow

us to identify exactly the values of G;b;E�. However, being underdetermined in one dimension only,

this system plays the role of a generalized control parameter: a given value of the generalized con-

trol parameter (GD, GP) determines the parameters G;b;E� up to one degree of freedom. If one of

the parameters is given, then the others are automatically determined according to equation 6.

Experimental observation of anti-correlated variations in disorder and
plastochron is interpreted by the model as a change in inhibitory field
geometry
Several recent works demonstrated that mutations or changes in growth conditions could alter phyl-

lotaxis and disorder patterns. Our model predicts correlations between main observable phyllotaxis

variables. According to the model, plastochron positively correlates with GD (Figure 6E). If signaling

is not altered by the experimental setup (b and E� are unchanged) then GD positively correlates with

G ¼ r0=R (Equation 6). Therefore, the model predicts that, like in the classical model, plastochron

positively correlates with r0 (size of the primordia inhibitory fields) and negatively correlates with R

(size of the central zone). However, the model makes also in this case the new prediction that plasto-

chron negatively correlates with the frequency of observed permutations (Figure 6A).

A series of recent observations support this prediction. By changing growth conditions (plants

first grown in different day-length conditions and then in identical conditions) or by using different

accessions or mutants with markedly different meristem sizes from that of the wild type

(Landrein et al., 2015), changes in the size of the meristem could be induced. The authors hypothe-

sized that this change affected the size of the central zone only and not the size of primordia inhibi-

tory fields. Corresponding changes in G were observed to positively correlate with the frequency of

organ permutations and negatively correlate with plastochron, as predicted by our model. In addi-

tion, the stochastic model makes it possible to quantitatively estimate the changes in central zone

sizes from the measured phyllotaxis disorders with an error less than 5% (Appendix section 4.3).

In a previous study on ahp6 mutants, Besnard et al. (2014) showed that the frequency of disor-

ders could markedly augment while the size of meristems did not significantly change like in

(Landrein et al., 2015). As discussed above, this change in disorder intensity could theoretically be

due to an alteration of initiation perception in the mutant. However, the stochastic model suggests

that it is not the case. Indeed, we re-analyzed plastochrons of the mutants and could observe that,

although the change is limited, mutant plastochrons are significantly smaller than those of the wild

type (Appendix section 4.2). According to Figure 6E, this means that GD is reduced in the mutant. If

this reduction was due to an increase in either b or E�, then according to the model, one should

expect a corresponding increase of GP (Equation 6) and, thus, a decrease of disorders (Figure 6A).

On the contrary a significant increase of disorders was actually observed, suggesting that perception

is not altered and that, rather, a decrease in G ¼ r0=R could be the source of variation. Since the size

R of the meristems did not change, the model suggests that ahp6 is altered in the size r0 of the pri-

mordia inhibitory fields.
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The stochastic model leads to interpret previously unexplained
sequences as higher order permutations
In both the previous analysis and in related works (Besnard et al., 2014; Guédon et al., 2013;

Landrein et al., 2015; Refahi et al., 2011), the permutation detection was restricted to 2- and 3-

permutations. However, the stochastic model potentially predicts the existence of higher order per-

mutations, i.e. 4- and 5-permutations, in Arabidopsis thaliana especially for small values of the con-

trol parameter GP. Following this prediction, we revisited the measured divergence angles in

(Landrein et al., 2015) on the WS4 mutant grown in standard conditions (p2= 29.45%, p3= 14.91%)

and for which 7.7% of angles were left unexplained when seeking for 2- and 3-permutations

(Figure 7A). When higher order permutation are allowed in the detection algorithm (Appendix sec-

tions 4.1 and 5), most of the unexplained angles for WS4 can be interpreted as being part of 4- and

even 5-permutations (Figure 7B).

Figure 5. Intensity of 2-permutations as a function of the total amount of perturbations. As the perturbation intensity p increases, the percentage of 2-

permutations decreases in a non-linear way to the benefit of more complex 3-permutations. The diagonal line denotes the first bisector. In red: values

of 2- and 3-permutations observed in different mutants and ecotypes of Arabidopsis thaliana (Besnard et al., 2014; Landrein et al., 2015 and this

study) placed on the plot of values predicted by the stochastic model.

DOI: 10.7554/eLife.14093.011

The following source data is available for figure 5:

Source data 1. Source files for simulated permutation intensities.

DOI: 10.7554/eLife.14093.012
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The stochastic model predicts dynamic behaviors not yet observed
Previous observations (Landrein et al., 2015) point to the existence of positive correlations between

meristem size and intensities of perturbations. As discussed above, the stochastic model explains

this: if a mutation, or a change in growth conditions only affects the geometry of the system

G ¼ r0=R, then GD and GP are both affected in the same sense (Equation 6). However, it also allows

predicting new observable facts.

Assume that a mutation or a change in growth conditions affects the ability of the plant to per-

ceive initiation signals without modifying the geometry of the system, i.e. b and/or E� are modified

while G is left unchanged. Then, according to equation 6, this induces opposite variations in GD and

GP that can be detected with the observed variables. For example, assuming that a mutation

decreases the sensitivity of the system to the initiation signal (decrease of E�), GP is decreased while

GD is increased. The decrease of GP induces an increase of the perturbation intensity p while the

Figure 6. Key parameters controlling phyllotaxis phenotypes in the stochastic model. Phyllotaxis sequences were simulated for a range of values of

each parameter b, E�, G. Each point in the graph corresponds to a particular triplet of parameter values and represents the average value over 60

simulated sequences for this triplet. (A) Global amount of perturbation p as a function of the new control parameter GP ¼ GbE�. (B) Divergence angle a

as a function of the control parameter G of the classical model on the Fibonacci branch. (C) Divergence angle a as a function of the new control

parameter GD ¼ G 1
b1=6E�1=2

on the Fibonacci branch (here, we assume s = 3, see Appendix 1—figure 6 for more details). (D) Plastochron T as a function

of control parameter of the classical model G. (E) Plastochron T as a function of the new control parameter GD. (F) Parastichy modes ði; jÞ identified in

simulated sequences as a function of GD. Modes ði; jÞ are represented by a point iþ j. The main modes (1,2), (2,3) . . . correspond to well marked steps.

(Figure 5—source data 1)

DOI: 10.7554/eLife.14093.013

The following figure supplement is available for figure 6:

Figure supplement 1. New control parameter GD for divergence angle and plastochrons.

DOI: 10.7554/eLife.14093.014
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increase of GD induces an increase of the plastochron. The model thus predicts that, in such a case,

it is possible to expect an augmentation in the disorder correlated with a decrease in organ initiation

frequency. To date, such a fact has not yet been observed and constitutes a testable prediction of

our model.

Discussion
We present here a multi-scale stochastic model of phyllotaxis driven by inhibitory fields and focusing

on the locality of cellular decisions. A stochastic process models the perception of inhibitory fields

by individual cells of the organogenetic domain and, at a higher scale, the initiation of primordia

(Figure 8A). This process is continuous in essence and its results are independent of the time

Figure 7. Detection of higher-order permutations in WS4. The detection algorithm (see ref [7] for details) searches plausible angle values, i.e. values

within the 99% percentile given the Gaussian like distributions fitted in Figure 1, such that the overall sequence is n-admissible, i.e. composed of

permuted blocks of length at most n. (A) When only 2- and 3-permutations are allowed, some angles in the sequences cannot be explained by (i.e. are

not plausible assuming) permutations (the blue line of successfully interpreted angles is interrupted). (B) Allowing higher order permutations allows to

interpret all the observe angles as stemming from 2-, 3- 4- and 5-permutations (the blue line covers the whole signal). Organs indexes involved in

permutations: [3, 2], [5, 8, 6, 4, 7], [13, 12], [16, 14, 17, 15], [19, 18], [22, 21], [24, 25, 23], [27, 26], [30, 29], [32, 31], [35, 34], [39, 40, 38], [43, 42], [46, 45], [48,

49, 47], [52, 50, 53, 51].

DOI: 10.7554/eLife.14093.015
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discretization chosen for the simulation. In contrast to previous models, the stochastic model does

not use any inhibition threshold to decide either to produce an initiation or not. Instead, at each

moment there is a non-zero probability to trigger initiation in any cell but this probability depends

on the inhibition level in that cell, providing a realistic abstraction of the underlying signaling mecha-

nism (Figure 8A).

Noise on the timing as an intrinsic property of self-organization driven
by lateral inhibitions
While the stochastic model is able to reproduce the major spiral and whorl phyllotaxis patterns, sto-

chasticity induces alterations in the patterning process mainly affecting the plastochron i.e. the tim-

ing of organ initiation. These alterations take the form of permutations of the order of organ

initiation in the meristem. If the plastochron is small as frequently observed in real sequences of per-

muted organs, permutations in the model can be considered equivalent to co-initiations that have

been identified in the Arabidopsis meristem as the main source of permutations observed on the

inflorescence stem. Less frequently, simulated permutations can have longer plastochrons. In this

case, they can be interpreted as true permutations of the order of organ initiation in the meristem,

consistently with the low frequency of such meristematic permutations observed also in Arabidopsis

(Besnard et al., 2014). These results are in line with a previous attempt at introducing stochasticity

Figure 8. Structure of the stochastic model. (A) Inhibitory fields (red), possibly resulting from a combination of molecular processes, are generated by

primordia. On the peripheral region of the central zone (CZ, green), they exert an inhibition intensity EðtÞ that depends on the azimuthal angle a (blue

curve). At any time t, and at each intensity minimum of this curve, a primordium can be initiated during a time laps dt with a probability pkðdtÞ that

depends on the level of the inhibition intensity at this position. (B) Relationship between the classical model parameters and its observable variables. A

single parameter G controls both the divergence angle and the plastochron. (C) Relationship between the stochastic model parameters and its

observable variables. The stochastic model of phyllotaxis is defined by 3 parameters G,b, E�. The observable variables a, T and p;p2;p3. . . are

controlled by two distinct combinations of these parameters: GD ¼
G1=s

b1=6E�1=2
controls the divergence angle and plastochron while GP ¼ GbE� controls the

global percentage of permutated organs p, which in turns controls the distribution of permutation complexities: p2;p3. . ..

DOI: 10.7554/eLife.14093.016
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in the classical deterministic model that could also induce permutations (Mirabet et al., 2012). How-

ever in this latter work only a limited frequency of defects could be induced (even when the noise

was fixed at high levels), while requiring time discretization and post-meristematic randomization of

organ order when more than one organ initiation were detected in the same simulation time step.

By contrast, the capacity of the stochastic model to reproduce faithfully perturbed sequences as

observed in Arabidopsis indicates that the model captures accurately the dynamics of the phyllotac-

tic system. Taken with the fact that permutations are observed in a variety of species and genotypes

from a given species, our theoretical results identify noise on the plastochron as a common charac-

teristic of phyllotaxis systems that may generate disorders in these developmental systems.

It is important to note that our work points at stochasticity in signaling mechanisms allowing per-

ception of inhibitory fields as the most likely origin of this developmental noise but does not entirely

rule out the idea that other phenomenon might contribute (see Appendix section 6). A major contri-

bution of stochasticity in signaling is supported by the robustness of the model to changes in differ-

ent assumptions and parameters. However we have observed that spatial discretization for example

can modify the frequency of permutations in the model, although this effect is limited (see Appendix

section 6.2). A possible interpretation is that changes in the size of cells could also contribute to a

certain point to noise on the plastochron, an idea that could be further explored.

Importantly, phyllotaxis dynamics in the stochastic model relies not only on the geometry of the

inhibitory fields captured by the G parameter as in previous deterministic models (Douady and

Couder, 1996b; Richards, 1951) (Figure 8B), but also on two new parameters

E� and b (Figure 8C). E� and b describe respectively the sensitivity of cells to the inhibitory signal

and the acuity of their perception, i.e. their capacity to differentiate close signal values. Our work

thus suggests that a robust self-organization of a 3D developmental system driven by lateral inhibi-

tion depends both on the geometr of inhibitory fields in a tissue but also on the signaling capacities

of cells in tissues. These theoretical observations are consistent with the key role of signaling in phyl-

lotaxis (Vernoux et al., 2011), and with the setting of patterning dynamics in animal systems, down-

stream of morphogenetic signals (Kutejova et al., 2009). This pinpoints the interplay between

global information provided by signal distribution and local interpretation of the information as a

general principle for patterning emergence. In addition, we predict that due to pre-specification of

initiation sites, noise in phyllotaxis is expected mainly on the timing of patterning. This might explain

the selection through evolution of genetic mechanisms, such as the one recently described implicat-

ing the AHP6 protein (Besnard et al., 2014), to diminish noise on plastochron and disorders in

phyllotaxis.

Developmental disorders reveal biological watermarks
In biological systems, disorders are frequently viewed as a result of biological or environmental noise

that mainly alters systems function or development. It is in this sense for instance that noise on phyl-

lotaxis patterns had previously been analyzed (Itoh et al., 2000; Jeune and Barabé, 2006;

Peaucelle et al., 2008). Here we show that biological noise at microscopic scale may be revealed at

macroscopic scale in the form of organ disorders, the permutations. Our stochastic model of phyllo-

taxis suggests that these disorders bear information on the more profound, hidden variables that

control the phyllotaxis patterning. Much like digital watermarks that represent a copyright or any

information to be hidden in images or audio signals, the actual variables (G;b;E�) representing the

state of the phyllotaxis system are not directly apparent in the plant phenotype (i.e. in the sequence

of lateral organ angles and its dynamics). However, by scrutinizing carefully the image or, here, the

phyllotaxis pattern and their perturbations with adequate decoding algorithms, it is possible to

reveal the hidden information that was “watermarked” in the original signal. In this way, permuta-

tions together with divergence angle a and plastochron T reveal key information about the state of

the system that has produced them, as their knowledge drastically reduces the set of possible G, b

and E� values. Reciprocally, any experimental alteration of these values modifies the biological

watermark. Our model suggests that this change is reflected in macroscopic alterations of the phyl-

lotaxis patterns that convey information about their possible molecular origin.

To illustrate this, we used our stochastic model to confirm that changes in permutation frequen-

cies due to changes in growth conditions are most likely explained by a specific modulation of G, as

previously proposed (Landrein et al., 2015) (Appendix section 4.1.5). Such a biological watermark-

ing also suggests a different interpretation of the function of AHP6 in phyllotaxis (Besnard et al.,
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2014). Movement of AHP6 from organs has been proposed to generate secondary inhibitory fields

that filter co-initiation at the meristem, decreasing the frequency of permutations. Based on permu-

tation modifications, our theoretical framework suggests that AHP6 effect on the phyllotactic system

does not need to be viewed as an additional specific mechanism acting on plastochron robustness

but could be simply interpreted as a mechanism increasing G slightly. As no differences in auxin-

based inhibitory fields could be detected between ahp6 mutant and wild-type plants

(Besnard et al., 2014) (Appendix section 4.2), our model thus leads to a vision with composite inhib-

itory fields resulting at least from the combined effect of auxin-based and AHP6-based subfields.

Conversely, this predicts that inhibitory fields in general cannot be explained only by auxin-based

mechanisms as previously proposed.

Combined with data on divergence angles and on the plastochron, we further predict that the

phyllotactic disorders could be used to identify mutants affected in biological mechanisms that con-

trols b and/or E*. The model indicates that such mutations would have an opposite effect on fre-

quency of permutations and on plastochron. Mutants behaving accordingly would allow not only to

test this prediction of the model but also to dissect the molecular mechanisms at work. Precise and

automated quantifications of the permutation, divergence angles and plastochron would allow for

screening for such mutants and should become feasible with the fast development of phenotyping

tools (Dhondt et al., 2013; Granier and Vile, 2014).

Using stochastic models to understand multicellular development at
multiple scales
Our model only takes into account stochasticity in the perception of inhibitory fields by cells and is

based on two biologically plausible assumptions: that this perception is mostly cell autonomous and

that it only depends on the local level of the inhibitory signal. This provides a reasonable abstraction

of local stochastic fluctuations in i) hormonal concentrations related to inhibition produced by each

primordium ii) in the activity of the signal transduction pathway leading to initium creation. The

detailed molecular mechanisms controlling organ initiation are for the moment only partially known.

However the capacity of the stochastic model to capture accurately phyllotaxis suggests that it also

captures plausible emergent properties of the underlying molecular mechanisms. This model thus

not only provides a framework to understand the dynamics of patterning in the meristem but also

the properties of the signaling mechanisms that process the different signals involved. Note also

that the predictive capacities of our model suggest that noise on perception could be the most influ-

ential source of noise in the system. However demonstrating this would require further exploration

of other potential sources of stochasticity acting at different scales, such as growth variations,

spatial discretization of the peripheral zone (to account for the real size of plant cells), in order to

assess their relative contribution to disorders. Moreover, similarly to the classical deterministic model

of phyllotaxis, our stochastic model does not explicitly account for the cascade of molecular pro-

cesses that participate to the establishment of new inhibitory fields at the location of incipient pri-

mordia. This might limit the ability of these models to fully capture the dynamics of the self-

organization of the system. To do so, more mechanistic versions of this stochastic model could be

developed in the future, combining more detailed cellular models of hormone-based fields, e.g.

(Jönsson et al., 2006; Smith et al., 2006a; Stoma et al., 2008), and stochastic perception of these

hormonal signals in 2D or 3D models with cell resolution.

Heterogeneity of biological systems at all scale has attracted an ever-growing attention in the

recent years (Oates, 2011). Deterministic models do not account for the high variability that can be

observed in systems behaviors, indicating that they fail to capture some key characteristics of biolog-

ical systems (Wilkinson, 2009). While more demanding computationally, stochastic models are

required in such cases, e.g. (Greese et al., 2014; Uyttewaal et al., 2012; Wennekamp et al.,

2013), and our work illustrates how dynamic stochastic modeling can help understanding quantita-

tively self-organization and more broadly patterning in higher eukaryotes.
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Material and methods

Stochastic model formalization
Based on the classical model of phyllotaxis (Appendix section 2), a complete and formal presentation

of the stochastic model is described in the Appendix section 3. In particular, it is shown how the

exponential form of the intensity law can be derived from basic model assumptions and how differ-

ent observable quantities can be expressed using the model parameters.

Computational implementation of the stochastic model
A computational version of the stochastic model SMPmacro-max was implemented in Python pro-

gramming language using Numpy and SciPy . Similarly to (Douady and Couder, 1996b), unless oth-

erwise stated, the stiffness parameter was fixed in all simulations to s = 3. The non-homogeneous

Poisson process was simulated using the algorithm described in (Ross, 2012). A pseudo-code ver-

sion of the stochastic model algorithm is given in the Appendix section 3.2.

Estimation of phyllotaxis variables
To estimate the value of the different variables characterizing phyllotaxis a, T and p, p2, p3, etc. in

either simulated or observed sequences, we used a method based on the algorithm developed in

(Refahi et al., 2011) and described in the Appendix section 4. As this algorithm is central to the

identification of permutations, we additionally tested its ability to detect correctly permutations on

synthetic data in which known permutation patterns were introduced (Appendix section 5). Results

show that the algorithm is able to detect permutations with a success rate of 98% on average.

Sensitivity analysis
The parameter space of the stochastic model was explored by varying values of G, b and E�. 60 sto-

chastic runs have been made for each 3-tuple of the parameter values. Each simulation run gener-

ated a sequence of 25 divergence angles and corresponding plastochrons. The different observable

variables have been extracted from these simulations. Results are reported in Tables 1 and 2 of the

Figure 5—source data 1.

Statistical models
The models describing the different non-linear relationships between the observable variables and

the control parameters GD and GP were fitted with Gauss-Newton non-linear least-squares method

(Bates and Watts, 2007). Approximate 95%-prediction bands of the response variables were com-

puted by assuming random errors of the models independent and identically normally distributed.
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Appendix 1

1 Definitions related to phyllotaxis
Phyllotactic patterns emerge from the arrangement of organs on concentric circles, each circle

corresponding to a ”wave” of organ (or primordia) production, which is driven centrifugally by

growth. Each circle contains the same number, called jugacy, of regularly spaced primordia,

and is rotated with respect to the previous circle by a constant angle, called the divergence

angle. Denoting the divergence angle by f and the jugacy by j, phyllotactic patterns are

traditionally classified as follows:

j¼ 1 :
distichous; if f¼p

spiral; if f 6¼p:

�

j� 2 :
whorled; if f¼p=j;

multijugate; if f 6¼p=j:

�

Note that to completely characterize a phyllotactic pattern, one also needs to specify the radii

of the concentric ”co-initiation” circles mentioned above. A first parameter needed for this is

the radius of the central zone, a circular region at the centre of the apical meristem where no

organ is ever produced. This radius is thus a lower bound for the radii of the co-initiation

circles. Some regularity has been observed (or assumed) in these radii, and they often are

specified thanks to a single additional parameter, which can be either

. the plastochron, defined as the time between two successive waves of organ formations, or

. the plastochron ratio, defined as the ratio between the radii of two successive co-initiation
circles.

The use of these quantities as characteristic parameters implies that they are constant, which is

only partially corroborated by the observation. In particular, permutations of organs

correspond to irregularities of the plastochron. They allow to complete the description of

”ideal” phyllotactic patterns such as those depicted in Appendix 1—figure 1.

Appendix 1—figure 1. Spiral phyllotaxis with divergence angle f ¼ 137:5� and different distri-

butions of radial positions. (a) The first 10 primordia are depicted, with the generative spiral as

a dashed line. The angle between successive organs is always equal to f. The nearest

neighbours of primordium i are iþ 3 and iþ 5, hence the mode of this pattern is ð3; 5Þ. (b) 100

primordia are depicted, along with the 8 (resp. 13) parastichies oriented anticlockwise (resp.

clockwise) indicated in cyan (resp. red), hence the mode of this pattern si ð8; 13Þ.

DOI: 10.7554/eLife.14093.017

In the spiral case (which is the most widespread in nature), as the name indicates successive

organs are arranged along a generative spiral, see Appendix 1—figure 1a. In multijugate
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cases, j copies of this spiral are superimposed, each rotated by an angle multiple of p=j. When

a sufficient number of organs are present, other spirals naturally occur to the eye. These

spirals are formed by series of nearest neighbours, or second nearest neighbours. Such spirals

are called parastichies. Because they are more apparent than the generative spiral, these

parastichies are often used as characteristics of a phyllotactic pattern. More precisely, the

parastichies formed by sequences of nearest and second nearest neighbours appear as

spiralling outwards in opposite directions. One can thus count the number of spirals oriented

in each direction, which determines a pair of integers ðp; qÞ called the mode of the phyllotactic

pattern. A well-known observation is that the divergence angle is often close to the golden

mean angle ( » 137:51�), which leads to phyllotactic modes ðp; qÞ where p and q are successive

numbers from the Fibonacci sequence ðFnÞn�1 ¼ ð1; 1; 2; 3; 5; 8; 13; 21; :::Þ is defined by F1 ¼

F2 ¼ 1 and Fnþ2 ¼ Fn þ Fnþ1. Other irrational numbers are also observed, giving rise to

sequences closely related to the Fibonacci sequence. The most frequent pattern after

Fibonacci is probably the so-called Lucas phyllotaxis, where f » 99:5� and modes are

successive terms in the Lucas sequence ðLnÞn�1 ¼ ð2; 1; 3; 4; 7; 11; 18; 29; :::Þ is defined by

L1 ¼ 2; L2 ¼ 1, and Lnþ2 ¼ Ln þ Lnþ1.

To generate phyllotactic patterns two main mechanisms have been proposed. In 1868,

Hofmeister proposed that a new primordium in generated periodically (the period being the

plastochron defined above) in the largest available space on the central zone periphery. Later

in 1962, Snow & Snow suggested that a new primordium is generated on the central zone

periphery where and when there is available space, given the previous history of the system. In

this view, phyllotaxis (and in particular the plastochron) emerges as a consequence of a local

production rule.

Before describing models in more details, let us simply incorporate the notion of permutations

in the description of phyllotaxis above. The permutations observed in plants and discussed in

the text concern the order of organs along the generative spiral (hence they are defined for

spiral phyllotactic patterns). We call n-permutation a series of n organs whose order along the

generative spiral is permuted. The order on the spiral corresponds to the order of appearance

of primordia, and is materialized geometrically by the radial position which reflects the

passage of time (see next section for more details). Hence, an n-permutation corresponds to a

situation where n successive organs as shown on Appendix 1—figure 1a have non-increasing

radial positions: for instance, there is a 3 permutation whenever the radial coordinates of

organs 3, 4 and 5 verify r3>r4 and r3>r5 (with the obvious notation). A more formal definition of

this notion of n-permutations was published in (Refahi et al., 2011).

2 The classical model of phyllotaxis: a brief recap

2.1 Model description
We implemented the dynamical system introduced in (Douady and Couder, 1996b) based on

the rules put forward by Snow & Snow for creation of a new primordium. According to these

rules, the existing primordia inhibit primordia initiation in their vicinity. A new primordium is

initiated at the periphery of the central zone of the meristem where and when the sum of the

inhibition generated by pre-existing organs is below a threshold. In this dynamical system the

plastochron, being an emergent property of the system and not an a priori parameter, is not

necessarily a constant quantity.

In the simulations, the function that models the inhibition generated by primordium q at

sampling point x on the central zone periphery decreases with the Euclidean distance dðq; xÞ of

x from the center of primordium q (by default we use polar coordinates for x and q). Unless

stated otherwise, we have used the function
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EðqÞðxÞ ¼
r0

dðq;xÞ

� �s

; (1)

where s denotes the stiffness of the inhibition and r0 the radius of primordium q. Following

(Douady and Couder, 1996b), we used s ¼ 3 in all the simulations.

The total inhibition at a sampling point x is the cumulative inhibition of pre-existing primordia

q 2 Q:

Eðx;QÞ ¼
X

q2Q

EðqÞðxÞ:

In the following the set Q of pre-existing primordia will not be written explicitly when it is clear

from the context or arbitrary. A new primordium appears at some point x of the central zone

periphery when EðxÞ<�, where � is the inhibition threshold. In the simulations, we used � ¼ 1

which guarantees that no primordium can be generated at a distance less than r0 from the

center of the primordia.

Because of growth, the primordia drift away radially from the central zone at a velocity

proportional to their distance from the meristem center, i.e. drðtÞ
dt
¼ grðtÞ, (Douady and Couder,

1996b), leading to an exponential variation of the distance of primordia to meristem center:

rðtÞ ¼ Regt ; (2)

where R is the radius of the central zone. The angular position of primordia, on the other

hand, is supposed to remain constant in time.

In all generality, to simulate the dynamical emergence of phyllotactic patterns one needs a

three-dimensional coordinate system of the form ”time, radius, angle”. However, with the

choice of radial growth above, time and radial position are in fact equivalent coordinates, as

detailed below, allowing us to represent the system using two coordinates only (time and

angular position).

With the chosen radial growth, if there is a plastochron T the plastochron ratio is constant,

equal to egT . The radial distance between successive organs is of the form RetðegT � 1Þ and is

thus time dependent. The equation for rðtÞ provides us with a bijection between the radial

position and time of initiation of primordia. At time t the radial position of a primordium that

appeared at time tq is

rqðtÞ ¼ Regðt�tqÞ:

Reciprocally, a primordium with radial coordinate rq at time t must have appeared at time

tq ¼ t�
1

g
ln

rq

R

� �

:

The principle of our simulations is then to iteratively recalculate the positions of existing

primordia for increasing time values, updating the value of inhibition functions at each time

step and checking whether EðxÞ < � for some coordinates x at the boundary of the central

zone. In simulations, primordia are represented by two coordinates: their date of initiation tq

and their angular position �q 2 ½0; 2pÞ. Note that by construction, at time t ¼ tq we have rq ¼ R,

i.e. primordia appear at the boundary of the central zone.
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2.2 Initial conditions
Depending on the context, different archetypal initial conditions where used to run simulations.

These initial conditions are given in terms of the coordinates of pre-existing primordia, which

determine the initial value of the inhibition function E.

. Starting from cotyledons: one primordium is generated at the boundary of the central zone
with a random azimuth �0 (angular position). Then in the case of a dicotyledon plant, a sec-
ond primordium is generated at the same distance of the apex center on the opposite side,
i.e. at angle �0 þ p.

. Starting from a spiral pattern with divergence angle f 2 ð0; 2pÞ and a constant plastochron
T > 0. The radial and angular positions (used to calculate EðxÞ ) of primordia are respectively

of the form RenT and nf for successive integers n.

. Starting from a whorled pattern, with jugacy j and constant plastochron T > 0. The radial and

angular positions of primordia are respectively of the form RenT and np
j
þ 2kp

j
, where 0 � k<j

spans the j co-initiated primordia, and n are successive integers spanning a finite number of
co-initiation circles, or ”whorls”.

. Starting from a multijugate pattern of divergence angle f, jugacy j and constant plastochron

T > 0. The radial and angular positions of primordia are respectively of the form RenT and

nfþ 2kp
j
, where 0 � k<j spans the j co-initiated primordia, and n are successive integers span-

ning a finite number of co-initiation circles.

2.3 Implementation
We implemented the classical model in Python programming language using NumPy and SciPy

packages. A major issue in the classical model consists in deciding the moment and the place

of the next initiation. In Snow and Snow simulations, time progression is continuous and the

initiation time is unknown in contrast to the Hofmeister model where time periodicity is

imposed. To simulate continuous time progression, small time steps dt must be used, which

may lead to markedly long simulation times.

To speed up the simulation time, we implemented a dichotomic initiation time search. Based

on a initially large time step Dt, we first calculate the inhibition field every Dt unit of time. Let

Emin denote the minimum value of inhibition at the periphery of the central zone at time t.

Once the inhibition minimum at the periphery of the central zone is below the inhibition

threshold, i.e. Emin < �, we take smaller time steps until the time precision dt is reached. In the

following, we present the pseudo code of the algorithm to generate n primordia.

Here, the first primordium is generated at a random place on the periphery of the central

zone. This can be replaced by other initial conditions as mentioned above.

Classical Model of Phyllotaxis: Pseudo code
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Begin

t 0

Generate the first primordium randomly on the periphery of the central zone:
Calculate the function E given this primordium:
p 1
while p<n :

while Emin>� :
Calculate the primordia positions at t ðradial growthÞ:
Calculate E given primordia positions:
t tþDt

t1 t�Dt

while ðt� t1Þ>dt :
tmid t1þðt� t1Þ=2
Calculate the primordia positions at tmid ðradial growthÞ:
Calculate E given the primordia positions at time tmid:
if Emin>� :

t1 tmid
else :

t tmid
p pþ 1

Generate primordium at t on the periphery of the central zone where E¼ Emin

End

Note that not only time, but space also has to be discretized in the simulations. Formally, the

boundary of the central zone is thus discretized into K creation sites, corresponding to positions

Ck ¼ R; �kð Þ ¼ R;
2kp

K

� �

; 0� k�K� 1

in polar coordinates. Let Q ¼ QðtÞ denote the number of pre-existing primordia at time t, and

denote by tq, the ”date of birth” of primordium q for q 2 f1; :::;Qg. Primordia are supposed

given in order of appearance, i.e.

t1 � t2 � :::� tQ:

Given QðtÞ, we denote by EkðtÞ the value of the inhibition function at site k, i.e. with the

previous notations

EkðtÞ ¼ E Ck;QðtÞð Þ:

Then, we denote by kq 2 f0; :::;K � 1g the creation site index at which primordium q has

appeared. The position of primordium q at time t � tq is therefore

Pq ¼ Regðt�tqÞ; �kq

� �

:

Now, the inhibition field at position k is given more explicitly by the following expression:_

EkðtÞ ¼
X

QðtÞ

q¼1

r0

d Ck; Pq

� �

 !s

¼
X

QðtÞ

q¼1

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2ð1� egðt�tqÞÞ2þ 2R2egðt�tqÞ 1� cosð�k � �kqÞ
� �

q

0

B

@

1

C

A

s

;

using the Euclidean distance in polar coordinates. The expression can be simplified by

introducing the geometric scaling parameter G ¼ r0=R:
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EkðtÞ ¼ G
s
X

QðtÞ

q¼1

1þ e2gðt�tqÞ� 2egðt�tqÞ cosð�k � �kqÞ
� ��s2

: (3)

Because G
s appears as a global factor, the threshold parameter � is defined up to a factor for

any fixed choice of the stiffness s: for any � > 0 the exact same simulation would result from

either ðG; �Þ or ð�G; �s�Þ. For this reason, we always fix � ¼ 1 in the following.

2.4 Bifurcation diagram
Douady and Couder (Douady and Couder, 1996b) showed that the divergence angle and the

phyllotactic mode reached by the classical model at equilibrium (if any) is controlled by the

parameter G appearing in the inhibition function, Equation 3. Similarly to their work, we

observed stable spiral patterns, whose characteristics (divergence angle and mode) varied

depending on G and the initial condition.

To assess the consistency of our implementation with the study in (Douady and Couder,

1996b), we re-calculated the bifurcation diagram obtained by these authors. Current

computational hardware allowed us to refine considerably the precision of the diagram. The

variations of the divergence angles obtained by varying G in the classical model form a

characteristic tree like bifurcation diagram of phyllotaxis, shown in Appendix 1—figure 2.

Appendix 1—figure 2. Bifurcation diagram in the Snow and Snow model. We used a sample of

the interval 0:04 � G0 � 2:9 with steps of 0:01 or less (refinements were performed in areas with

higher numbers of branches). For each value of G0, we ran simulations of the classical model

with (i) spiral initial conditions for divergence angles taking integer values in ½20�; 180��, and

plastochrons taking values in a sample of 128 points between 0:05 and 8:00, (ii) whorled initial

conditions for the same samples of divergence angles and plastochrons and all jugacies

2 � j � 7. For each simulation, we estimated the final divergence angle f and phyllotactic

mode, and reported these in the graph above (abscissa: G0, ordinate: f, color code: mode).

DOI: 10.7554/eLife.14093.018
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Note that for consistency with (Douady and Couder, 1996b), the model had to be slightly

altered compared to the description given in the previous section. First, the local inhibition

function took the form below instead of a power function as in (Bates and Watts, 2007):

EðqÞðxÞ ¼
�1þðtanh s dðx;qÞ

r0
Þ�1

�1þðtanh sÞ�1
;

where tanh stands for hyperbolic tangent, and s denotes the inhibition stiffness, s was set to 8

in the simulations of the bifurcation diagram.

Secondly, the meristem was not considered as a flat domain but as being dome shaped. This

was performed by using of a distance function of the form below, where P0, P1 are two points

of coordinates ðr0; �0Þ and ðr1; �1Þ respectively

dðP0;P1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr0� r1Þ
2

N
þ 2Nr0r1ð1� cosð�0� �1ÞÞ

s

;

where 1=N is called conicity (Douady and Couder, 1996b) and is equal to 3 in Appendix 1—

figure 2. This choice was only made for this particular situation, and in the remainder of the

text all simulations were made with the model strictly as defined in the previous section. The

expression above does not allow to factor G out as in (Cinlar, 1975). Instead, following

(Douady and Couder, 1996b) the new control parameter below was used:

G
0 ¼

d0

N1=2R0

:

The caption of Appendix 1—figure 2 describes the default sampling of parameters and initial

conditions. Note for complete precision that for regions including many branches, additional

sampling points were calculated a posteriori to reduce the number and width of gaps. Also,

for small values of G0 were simulations are more expensive computationally, higher plastochron

values (T � 3) were not included. Each initial condition comprised 150 pre-defined primordia

and was followed by 250 primordia generated by the simulation algorithm. To assess the

convergence to a stable phyllotactic patterns, the last 50 divergence angles were considered.

If all these 50 divergence angle were within 5� from their average, the pattern was considered

steady.

3 Stochastic model

3.1 Model description and derivation
In the stochastic model, we modify from the classical model the rule driving primordia initiation.

Instead of a deterministic and global threshold value �, we assume that each cell is able to

decide in a cell autonomous manner to trigger initiation of not. This decision is not taken on

the basis of a threshold being reached or not, but on a local probability to trigger initiation at

this cell site. This probability depends naturally on the inhibition level EkðtÞ, Equation 3 (the

lower the inhibition, the higher the probability value) and on the amount of time one waits for

an initiation at this site k (the longer one waits, the higher the probability).

If Xkðt; dtÞ denotes the number of cells initiated at a location Ck in the time interval t; t þ dt½ �

(Xkðt; dtÞ will typically take values 0 or 1, as a cell can initiate at most one primordium at a

time), the probability of observing one initiation during a small time interval of length is

assumed nearly proportional to dt:
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PðXkðt;dtÞ ¼ 1Þ ¼ lðEkðtÞÞ:dtþ oðdtÞ ¼ lkðtÞ:dtþ oðdtÞ; (4)

where lkðtÞ ¼ lðEkðtÞÞ is a rate parameter that can be interpreted as a temporal density of

events (and oðdtÞ=dt ! 0 as dt ! 0). The function l expresses the ability of any cell to respond

to the inhibitory signal. If we assume in addition that probabilities to observe an initiation over

non-overlapping time-spans are independent, the previous expression (4) defines an non-

homogeneous Poisson process (Cinlar, 1975; Ross, 2014) of rate lkðtÞ.

Derivation of the l’s expression
As explained above, the function l must obviously decrease with the inhibition level at site k.

We assume in addition that the ratio between probabilities at any two different sites k and l

only depends on the difference between their respective inhibitory energies:

PðXkðt;dtÞ ¼ 1Þ

PðXlðt;dtÞ ¼ 1Þ
¼
lðEkðtÞÞ

lðElðtÞÞ
¼ f ðEkðtÞ�ElðtÞÞ; (5)

where f is an unknown function to be determined. Based on the previous assumptions, it is

possible to find an explicit expression for l as a function of the inhibition. For sake of notation

simplicity, let us omit the time dependence t in the following expressions.

For sites k and l with the same energies, the rates lðEkÞ and lðElÞ must be equal:
lðEkÞ

lðElÞ
¼ 1 ¼

f ð0Þ: Taking the specific value El ¼ 0, Equation 5 becomes:
lðEkÞ

lð0Þ
¼ f ðEkÞ;which by denoting

a ¼ lð0Þ, leads to:

lðEkÞ ¼ a:f ðEkÞ: (6)

Therefore from Equation 5, we deduce:
lðEkÞ

lðElÞ
¼

f ðEkÞ

f ðElÞ
¼ f ðEk � ElÞ; and by adding El to

argument El in the above expression, we get:

f ðEk þElÞ ¼ f ðEkÞ:f ðElÞ;

showing that, if f is continuous, f must have the form of an exponential. Taking in addition that

f ð0Þ ¼ 1 and f is decreasing, we get:

f ðxÞ ¼ e�b:x

where b is a positive scalar parameter. Finally, by replacing the above expression of f in the

expression of l of Equation 6 and denoting E� ¼ lna
b
, we get the final expression of l:

lkðtÞ ¼ lðEkðtÞÞ ¼ e�bðEkðtÞ�E
�Þ; (7)

where b and E� are two real parameters, with b > 0. The probability of an initiation during a

small time lapse dt is thus:

PðXkðt;dtÞ ¼ 1Þ ¼ lkðtÞ:dt (8)

From the theory of non-homogeneous Poisson processes (Cinlar, 1975; Ross, 2014), we have

that the number of initiations is also a Poisson random variable, with rate
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�kðt;DtÞ ¼

Z tþDt

t

lkðuÞdu; (9)

i.e. �kðt;DtÞ is the mean number of initiations between t and t þ Dt at site k.

Independent Poisson processes can be superposed to yield another Poisson process, and the

instantaneous rates are additive. If V � f0 . . .K � 1g is any set of creation sites (not necessarily

contiguous; including the set f0 . . .K � 1g itself), the global creation process for sites of V is a

non-homogeneous Poisson process with instantaneous rate

lV ðtÞ ¼
X

k2V

lkðtÞ:

For V ¼ f0 . . .K � 1g in particular we denote

lðtÞ ¼
X

K�1

k¼0

lkðtÞ:

This additivity carries over to the average rate functions, giving

�ðt;DTÞ ¼
X

K�1

k¼0

�kðt;DTÞ; (10)

and �V ðt;DTÞ is defined similarly.

The creation process at a given initiation site is a non-homogeneous Poisson process as just

described, but its rate is actually stochastic and depends on all the primordia which have been

previously (randomly) created. Properly speaking, the process is conditionally (on previous

creation events) a Poisson process. More precisely, from the properties of non-homogeneous

Poisson processes we can derive the probability of occurrence of an initiation at site k,

conditionally on the previous creation events, which with our notations are encoded by their

times and sites of appearance, tq and kq respectively (for 1 � q � Q ¼ QðtÞ). The next initiation

is the ðQþ 1Þth organ and, at time t � tQ, the probability that it occurs at site k 2 0 . . .K � 1f g

can be written as:

P k Qþ 1ð Þ ¼ k jEðtQÞð Þ ¼

Z

¥

0

lkðtþ uÞe�ðtQ ;uÞdu; (11)

where we write the conditioning using EðtÞ ¼ EkðtÞð Þ0�k�K�1 for brevity.

In the classical model, the inhibition function (3) is directly compared to the threshold � ¼ 1, so

that all the parameters are those appearing in (3), i.e. G, g and the initiation times tq, which are

emerging from the model’s dynamics and are thus not parameters strictly speaking. Note also

that g is essentially a ”time unit” parameter and is thus not crucial to the geometry of

phyllotactic patterns (in other words, a change of time scale with a factor g would allow us to

remove this parameter from Equation 3). In summary, G is truly the only control parameter in

the standard, deterministic model.

In the stochastic formulation above, the G dependent inhibition Ek is used via the rate l,

Equation 7. This introduces the two additional parameters b and E�. As the l is used in the

integral expressions (10) and (11), there is no obvious way to reduce the dimensionality of the

control space, with its coordinates ðG;b;E�Þ. See the main text for a heuristic approach, where

some lower dimensional parametrizations are obtained empirically.
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Probability of n-permutations
A number of theoretical derivations can be carried out from the model. In particular, some

properties of the probability that an n-permutation occurs can be related to the model

parameters. For simplicity we focus on 2-permutations. Let us assume that previous initiations

have occurred close to a ”normal” spiral, with no permutations at least in the most recent

organ creations. Without loss of generality, the last organ creation is supposed to have

occurred at location �0 ¼ 0. According to our simulations, the minimum and second minimum

of the inhibition profile EkðtÞ j 0 � k � K � 1f g are then typically situated at the ”next”

positions along the spiral, i.e. at sites k1 and k2 respectively very close to f and 2f, with f the

divergence angle. Then, a 2-permutation happens if the next organ creation takes place at site

k2 rather than k1. Conditionally on the next initiation taking place at one of the two sites k1, k2,

Equation 11 gives the probability of k2 occurring first as

P2ðtÞ ¼

Z

¥

0

lk2ðtþ uÞexp ��k1ðt;uÞ��k2ðt;uÞð Þdu:

Similarly, the (conditional) probability that the next creation occurs at site k1 is given by

replacing lk2 by lk1 in the integral above. Since, as just mentioned, we observe that typically

Ek1 < Ek2 and the intensity l is a decreasing function of E, we deduce that the next initiation is

more likely to occur at site k1, i.e. without a 2-permutation.

These expressions make it possible to investigate the variation of probability due to a change

in model parameters. If for example the sensitivity of the system E� is increased by dE� > 0,

how does the 2-permutation probability vary? Remembering from (7) that we can write

lk ¼ ebE
�
e�bEk , we obtain

P2ðtÞ ¼ ebE
�

Z

¥

0

exp �bEkðtþ uÞ��k1ðt;uÞ��k2ðt;uÞð Þdu:

This indicates that an increase in the sensitivity E� will tend to increase P2. However things are

more complicated, since from (9) we have �kðt; uÞ ¼ ebE
� R tþu

t
e�bEk2

ðuÞdu and thus the terms �k1

and �k2 in the integral above also depend on E�, as below:

P2ðtÞ ¼ ebE
�

Z

¥

0

exp �bEk2ðtþ uÞ� ebE
�

Z tþu

t

e�bEk1
ðuÞduþ

Z tþu

t

e�bEk2
ðuÞdu

� �� �

du:

Hence, despite the first factor being an increasing function of the sentitivity E�, it may happen

in general that the probability of a 2-permutation decreases as the sensitivity of the system is

increased, through the non-trivial formula above. To proceed further, the relationship between

E�, b, G and permutations is studied empirically using simulations.

3.2 Implementation
We developed two different versions of the model.

. In the first version, called SMPmicro, every cell on the peripheral zone is considered as a
potential initiation site and therefore the Poisson processes are simulated for each cell.

. In the second version of the model, SMPmacro-max, the local minima indicate the potential
initiation sites and therefore the Poisson processes are simulated at these sites assuming that
a primordium is triggered if at least one of the cells spanned by the local minimum valley
switches its identity to primordium.

The models are implemented using the Python programming language using the NumPy and

SciPy packages. In the following, we present the pseudo code of the model to generate n

primordia. We use the non-homogeneous Poisson simulation algorithm as presented in
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(Ross, 2012). To encompass both versions above in a single description, we use the notation S

to describe either the whole set f0; :::;K � 1g if all sites are tested, or the subset S �

f0; :::;K � 1g of all local minima of the function Ek for the second version.

The variables appearing in the pseudo-code below are:

n: number of primordia generated by simulation

t: system time

p: current number of primordia

Dt: time step

Ek: inhibition level at sampling point k

Uð0; 1Þ: the uniform distribution between 0 and 1

b and E�: parameters of the model

Stochastic Model of Phyllotaxis: generic SMP Pseudo code

Begin

t 0

Generate the first primordium randomly on the central zone boundary:
Calculate the function E given this primordium:
p 1

while p<n :
Compute the primordia positions at t ðradial growthÞ:
Compute EkðtÞ for k 2 f0; :::;K� 1g
initiation¼ false

for k 2 S :" simulate non-homogenous Poisson process at each cell ðor each local minimumÞ
dk 0

while true :

Draw r~Uð0;1Þ
dk dk � lnðrÞ=ðebE

�
Þ

if dk>Dt :
break

Compute primordia positions at t ðradial growthÞ:
Compute EkðtÞ:
Draw s~Uð0;1Þ
if s� e�bEk :

initiation¼ true

break

if initiation :

t tþminfd1; :::;dkg
i¼ argminfd1; :::;dkg
Generate a new primordium at cell number i ðor local minimumÞ
p pþ 1

else :

t tþDt

End

In the implementation, the simulation of non homogeneous Poisson processes in cells (or in

local minima) is parallelized. This speeded up the simulations and allowed us to carry out an

extensive sensitivity analysis.
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4 Interpreting phyllotaxis phenotypes using the
stochastic model

4.1 Parameter estimation
This section details how values for the control parameters GD and GP of the stochastic model

were estimated from observed data for various genotypes or growth conditions. When similar

data can also be produced by simulations (e.g. divergence angle sequences, permutations) the

same estimation procedures are applied to the simulated data.

4.1.1 Permutation intensities
To estimate the value of the different permutation intensities, p;p2;p3,. . ., in either simulated or

observed sequences, we used the algorithms described in Refahi et al. (2011). The algorithms

allows identification of permutation patterns of bounded length (at most n for a fixed n � 2) on

spiral patterns with different canonical divergence angle values (e.g. ’ ¼ 137.5 for Fibonacci

phyllotaxis, ’ ¼ 99.5 for Lucas phyllotaxis). The algorithm can detect truncated permutation

patterns at the end of the sequences. It also allows the analysis of the sequences in the

reverse direction. Most importantly in this study, it allows to characterize permutations in

sequences of angles which are not strictly equal to multiples of ’, but are “close” to these, as

happens in real experimental data or our stochastic simulations.

More precisely, let gðx;�q; kÞ denote the probability density function of von Mises distribution

(the standard circular analogue of a Gaussian distribution) with parameters �q 2 Dn (mean

direction) and k (concentration parameter), where Dn is the set of the theoretical angles

(multiples of ’ occurring with permutations of length at most n). We used k ¼ 10:4 which was

estimated in (Guédon et al., 2013) by fitting von Mises distributions on experimental data

from A. thaliana. For a measured (simulated ) angle xi 2 ½0; 360Þ and for a candidate theoretical

angle, �q 2 Dn we calculated the posterior probability :

!ðxi;�qÞ ¼
gðxi;�q;kÞ

S�r2Dn
gðxi;�r;kÞ

The permutation detecting algorithm seeks candidate angles in Dn such that the sequence in

composed of permutations, but only accepts them if the posterior probability is higher than a

threshold whose value was set to 0:001� jDnj. This threshold was determined empirically

based on sequences whose permutation patterns were confirmed by a human expert. The

factor jDnj stands for the implicit hypothesis that the theoretical angles were a priori equally

probable.

4.1.2 Average divergence angles
For a given sample of divergence angle sequences (i.e. repetitions of the same genotype in the

same growing conditions, repetitions of stochastic model simulation for a given set of

parameters G;E�;b), divergence angles were estimated as the mean value of the divergence

angle over the total set of divergence angles in the whole set of sequences. The estimation

takes into account potentially detected permutations (meaning that, in case of permutation

detection, organs are re-ordered in the sequences to remove the permutations prior to

estimating average angles).

4.1.3 Plastochrons
In some cases plastochrons were directly estimated from counting initiations of organs over

different time spans. In such cases plastochrons are estimated in terms of hours (see table

below). However, to compare the experimental plastochron with simulated ones, we rather

estimated plastochrons (T) from experiments from plastochron ratios (�), themselves estimated

in (Besnard et al., 2014; Landrein et al., 2015) from measurements of ratios between

distances of consecutive primordia. According to section 1, the plastochron ratio � ¼ egT is

constant for a constant plastochron T . Corresponding plastochrons T can thus be estimated
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(in units corresponding to that of the model parameter g) from measured plastochron ratios

as:

T ¼
ln�

g
; (12)

where g is a constant fixed in the model to 5s�1. For the wild type for example, the measure

plastochron ratio is � ¼ 1:20, leading to an estimated plastochron T ¼ 0:0227 expressed in the

time units defined in the simulation.

4.1.4 Control parameters of the stochastic model
Using the characteristic curves of Figure 5A,C,E (main text), it is possible to estimate values or

ranges of values for the stochastic model control parameters from values of the observable

phyllotaxis variables: p, a and T.

Let us illustrate the estimation method on the wild type. A value of GP can be estimated from

a parametric regression of the could of points obtained from the stochastic model simulations

Appendix 1—figure 3A. The estimated total permutation intensity is p ¼ 14:20%, which leads

to a possible value of GP in ½8:30; 11:49� according to the curve of Appendix 1—figure 3A.

Appendix 1—figure 3. Estimation of control parameters from observable phyllotaxis variables.

(A) An exponential model was fitted to the simulated data of p and GP using the Gauss-

Newton least squares method (Bates and Watts, 2007); for the fitted model, an approximate

95% prediction band was then computed by assuming the random error terms additive and i.

i.d. normally distributed. The range of possible GP values [8.30, 11.49] that could yield the

observed p value 14.2 was determined by the prediction band. (B) A Gompertz function was

fitted to the simulated data of plastochron and GD using the Gauss-Newton least squares

method (Bates and Watts, 2007); for the fitted model, an approximate 95% prediction band

was then computed by assuming the random error terms additive and i.i.d. normally

distributed. The range of possible GD values [0.427, 0.492] that could yield the observed range

of plastochron values [0.023, 0.028] was determined by the prediction band. (C) A 4th degree

polynomial was fitted to the simulated data of angle and GD using the least squares method;

for the fitted model, an approximate 95% prediction band was then computed by assuming
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the random error terms additive and i.i.d. normally distributed. The range of possible GD

values [0.384, 0.472] that could yield the observed angle value of 136˚ was determined by the

prediction band. (D) Distributions of the estimated plastochrons in the groups of wild-type and

mutated Arabidopsis plants in the experiments of Besnard et al., 2014. The box depicts the

inter-quartile range bisected by the median, and the whiskers reach out to the extreme values

in the group; the colored point denotes the arithmetic mean, and the colored dashes indicate

twice the standard error of the mean; n stands for the number of plants in the group.

DOI: 10.7554/eLife.14093.019

We then estimate the plastochron as explained in the preceding section. For the wild type,

T 2 ½0:023; 0:0227� (Landrein et al., 2015). By using a parametric regression of the simulated

cloud of points ðGD; T predicted by the stochastic model, Appendix 1—figure 3, we derive an

estimate value of GD in ½0:427; 0:492�. Now using the curve of Appendix 1—figure 3, and the

average divergence angle of 136˚ measured for the WT (Besnard et al., 2014), we deduce

that GD should be included in ½0:384; 0:472�. These two sets of estimates for GD are consistent

with each other and lead to a consolidated estimate for its value of GD in ½0:427; 0:472�.

Similar estimations for GD and GP of the wild-type and other plants are reported in the next

section.

4.1.5 Estimated values
The following tables summarize estimated observable variables (a; T;p;p2;p3) based on data

from (Besnard et al., 2014; Landrein et al., 2015) and the inferred model control parameters

GP and GD. Two different day length conditions were used to affect the size of the meristem of

different phenotypes and mutants (Landrein et al., 2015). In the first setting, plants were first

grown in short-day conditions for one month after germination and then passed in long-day

conditions, Appendix 1–table 1. In a second setting, plants were growth only in long-day

conditions from germination, Appendix 1–table 2. To complete the published results, we

grew ahp6 plants in long day conditions as in (Landrein et al., 2015). Results are reported in

the last column of Appendix 1–table 2.

Appendix 1-table 1. Observed phyllotaxic variables on plants grown in short day and then in

long day conditions. % permuted organs is shown as a number followed by 2 other numbers in

parentheses, i.e. p2;3ðp2;p3Þ

Short day - Long day Col0 WS4 clasp-1 ahp6

#angles/#sequences 704/29 1046/25 619/17 2815/89

Estimated # 2-permutations 49 154 28 297

Estimated # 3-permutations 2 52 1 53

% unexplained angles %2.7 %7.7 %1.1 %2

Estimated % permuted organs 14(13.37,0.82) 43.3(29.45,14.91) 9.2(8.81, 0.47) 25.9(20.45,5.47)

Estimated average ~a 136.4 136 138.0 -

Estimated ~a standard deviation 5.5 2.3 6 -

# Lucas sequences 0 0 0 0

Average measured plastochron (h) 7.5 5.1 19 10.6

Plastochron ratio 1.12 1.08 1.135 -

Estimated plastochron (equ. 12) 0.0227 0.0154 0.0253 -

Estimated GD 0.430 0.325 0.450 -

Estimated GP (in ½GPmin;GPmax�) [8.7,11.4] [5.2,5.8] [9.6,12.3] [6.7,8.7]

DOI: 10.7554/eLife.14093.020

Appendix 1–table 2. Observed phyllotaxic variables on plants grown in long day conditions

only. % permuted organs is shown as a number followed by 2 other numbers in parentheses,

i.e. p2;3ðp2;p3Þ.

Long day only Col0 WS4 clasp-1 ahp6

Appendix 1–table 2 continued on next page
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#angles/#sequences 1193/34 487/15 667/19 965/27

Estimated # 2-permutations 13 22 14 22

Estimated # 3-permutations 0 1 1 0

% unexplained angles %2.6 %3.6 %4.3 %0.1

Estimated % permuted organs 2.12(2.12,0) 9.3(8.76, 0.6) 4.52(4.08, 0.44) 4.4(4.44,0)

Estimated average ~a 136.4 141.4 128.1 -

Estimated ~a standard deviation 10.7 6.8 20.46 -

# Lucas sequences 0 0 6 0

Average plastochron (h) 10 6.3 21 9.5

Plastochron ratio 1.15 1.115 1.145 -

Estimated plastochron (equ. 12) 0.0280 0.0218 0.0271 -

Estimated GD 0.485 0.410 0.475 -

Estimated GP (in ½GPmin;GPmax�) [12.8,15.1] [10.0,12.0] [11.7,14.2] [11.8,14.3]

DOI: 10.7554/eLife.14093.021

4.2 In comparison to wild-type, plastochrons are reduced in ahp6
The stochastic model suggests that a comparison between plastochrons of the wild type and

the mutant plants would be informative about the potential influence of the mutation on key

phyllotactic geometrical or biochemical processes (see main text). We tested this idea on

ahp6 mutants. For this, we re-analysed the measurements of number of organ initiations over

different time-laps carried out by (Besnard et al., 2014). These measurements were made

for three experiments on organ initiation with wild-type and two mutation-types (ahp6-1) of

Arabidopsis. We pooled the experiments together and combined the two mutation groups.

For each plant in each group, we estimated the plastochron by dividing the total observation

time of the plant with the total number of organs initiated in it within this time. The

distributions of the plastochrons in the two groups (wild type, mutant) are shown in

Appendix 1—figure 3. The groups differ from each other statistically significantly (in

Kruskall-Wallis rank sum test, the null hypothesis ”mean ranks of plastochron values in the

groups are the same” is rejected with p-value 0.01417; in one-way Welch ANOVA test, the

null hypothesis ”means of the plastochrons in the groups are the same” is rejected with

p-value 0.01055), and the distributions suggest that plastochrons tend to be smaller in

mutant plants than in wild plants.

4.3 Interpretation of phenotypes with modified meristem size
We revisited the results from (Landrein et al., 2015) to check whether the observed

correlation between meristem size and perturbation intensity could be quantitatively

explained by the stochastic model.

For each genotype, (Landrein et al., 2015) assumed that the change of growth conditions

induces a change in size of the central zone while the radius of the primordia inhibitory fields

is mainly not modified. Therefore, for plants grown in long-day conditions, the size of the

meristem decreases, and supposedly induces a decrease of the size of the central zone, thus

leading to an increase of G. Here, as inflorescences develop in identical conditions, we

assume in addition that the parameters E� and b reflecting the signal sensitivity and acuity of

the biological system are not affected by the change in growth conditions. For all the plants,

the different observable variables a, T, p2 and p3 were measured (Landrein et al., 2015).

From these data, we can estimate for each genotype and growth condition the

corresponding values of the control parameters ðGD;GPÞ as described in the previous section.

Let us denote G a particular genotype, we can derive from the model that the ratio of central

zone size due to a change in growth condition is given by:
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RðGSLÞ

RðGLLÞ
¼

GPðGLLÞ

GPðGSLÞ

� �1
7 GDðGLLÞ

GDðGSLÞ

� �6
7

(13)

If it is assumed that this change in central zone sizes is induced by the change in meristem

size due to different growth conditions, this ratio is also the ratio of meristem sizes. From this

relationship, it is possible to predict whether an increase or a decrease in the meristem size

can be expected based on the measured values of the other observed variables. For the

tested plants, the model predicted in all the cases a decrease of the meristem size with an

error of respectively 4%, 5% and 1% for Col0, WS4 and clasp-1.

5 Assessment of pattern identification accuracy
As mentioned above our analysis of permutations and the resulting tables relied on our

previously published algorithms (Refahi et al., 2011). These algorithms are based on the

construction of a set of candidate labellings (organized as a tree), within which sequences

containing permutations are selected provided they are close enough to the data given as

input. Because these algorithms require some parametrization (to measure ”closeness to the

data” in particular) and have been used extensively to generate the tables above, we

performed a robustness analysis.

Namely, we randomly generated sets of sequences of divergence angles involving 2-

permutations and 3-permutations with von Mises noise (circular version of the Gaussian

distribution) to model uncertainty. We tested the combinatorial models pattern detection

precision for different noise amplitude values as well as different permutations frequency,

chosen in adequacy with the available experimental data.

Let X ¼ fX1;X2; :::;X60g be a set of generated sequences of multiples of f ¼ 137:5� involving

2- and 3-permutations, where Xk ¼ ðxk1; :::; x
k
‘Þ, ‘ ¼ 25 (a typical length in experimental data

sets), and 1 � k � 60. We then introduced noise, leading to S ¼ fS1; :::; S60g, Sk ¼ ðsk1; :::; s
k
‘Þ,

such that ski ~Pð�; kÞ, where Pð�; kÞ indicates the von Mises distribution with mean value

� ¼ xki , and the concentration parameter k. Both k and the permutation frequencies were

estimated from the measured sequences in (Refahi et al., 2011; Besnard et al., 2014;

Guédon et al., 2013; Landrein et al., 2015).

We generated four sets of sequences for different values of permutation frequency and k as

described above, see Appendix 1—figure 4 for the histogram of angles. We then used the

combinatorial model to analyse the sequences. By careful human inspection, we then

counted the correctly labelled noisy angles and divided them by the number of all

divergence angles. The resulting values are reported in Appendix 1–table 3.
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Appendix 1—figure 4. Histogram of randomly generated sequences. (a) Histogram of

randomly generated sequences, k ¼ 14:0,p2;3 ¼ 24%. (b) Histogram of randomly generated

sequences, k ¼ 14:0, p2;3 ¼ 43%. (c) Histogram of randomly generated sequences, k ¼ 10:4,

p2;3 ¼ 24%. (d) Histogram of randomly generated sequences, k ¼ 10:4, p2;3 ¼ 43%.

DOI: 10.7554/eLife.14093.022

Appendix 1–table 3. Combinatorial models permutation detection precision on randomly

generated noisy data.

k \ p2;3 24% 43%

14 100% 98.5%

10.4 99% 98%

DOI: 10.7554/eLife.14093.023

6 Assessing the model robustness by altering
implementation choices
Even though the main ideas of our model are unambiguous, a number of parameters had to

be specified for implementation purposes. This raises the question of whether some of our

conclusions could be dependent upon these implementation choices. To ensure that this is

not the case, we considered a number of alternatives and compared simulation results with

our “main choices”. The results are reported below and overall they confirm the robustness

of our results, as they are not significantly changed by alternative implementation choices.
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6.1 Generating spiral and whorl patterns from random initial
conditions
To test the ability of the model to initiate spiral or whorl patterns de novo from unpatterned

meristems, we made simulations starting from a random inhibition field Ek at each location k

of the central zone periphery, k ranging over the discretized angular positions. Ek is

constructed as follows: Ek ¼ expð15sk þ 10Þ, where sk is drawn from the uniform distribution

on the interval ½0; 1Þ and the overall distribution ðskÞk is smoothed by applying a Gaussian

filter. The value of the inhibitory field in each cell is then updated at each time step of the

simulation until the first primordium initiation, by adding a random factor drawn from a

uniform distribution on the interval ½�0:5;þ0:5�. For all the simulations, b was fixed to 11:0

and E� to 1:0.

We observed that the model is able to generate phyllotaxis patterns from random initial

conditions (see movies and their legends in the main text). Depending on the model control

parameter GD, the system was able to generate either spiral of whorl phyllotaxis. In the case

of whorl patterns, the system was able to initiate the expected whorl motifs for 2 and 4

organs without any transition phase. This is due to the symmetry of the system combined

with its geometry. Starting from a meristem with no preexisting organ, assume that the level

of inhibition is low so that a random noise can potentially augment substantially the

probability of an organ initiation at any position around the periphery. Soon, a first organ is

initiated at a random location on the periphery. This breaks the circular symmetry of the

system and favours slightly the site at 180 degrees. As the inhibition level is low, a second

primordium is initiated immediately at this new position with a plastochron close to 0. This in

turn creates a new inhibitory component to the global inhibitory field. Note that the

symmetry of the system has been partially recovered as the second primordium is at the

same distance of the center as the first. Therefore, if the range of the inhibition emitted by

each primordium is large enough, it prevents for a while the initiation of new primordia. Atfer

some growth, the two initial primordia get away from the meristem center. The inhibition

decreases at the central zone periphery and after some time, new initiations will occur almost

synchronously at the two possible locations perpendicular to the first organ pair direction

where the inhibition field is minimal. This initiates a 2-whorled phyllotaxis.

Along similar lines, a 4-whorled pattern can be initiated if, starting from the two initial organs

as above, the inhibition does not cover the entire peripheral circle. Then another pair of two

primordia can immediately be generated, with plastochrons close to zero, in the direction

perpendicular to the first pair and on opposite sides of the central zone. The inhibition

produced by the 4 organs covers the entire meristem and another 4 organs will be

generated only after some time, when the 4 initial ones have drifted away, sufficiently far

from the center. In this case the phyllotaxis is 4-whorled.

6.2 Changing spatial discretization
We considered different spatial discretizations. These can be described in terms of the angle

at the central zone boundary which corresponds to possible positions for organ initiations.

The default discretization, used in the main document, uses a 1-degree resolution. The 2-

degree and 5-degree discretizations generate roughly the same permutation rates, whereas

the 10-degree discretization leads to an increase of the permutation rates, see Appendix 1–

tables 4–7.

Appendix 1–table 4. 1 degree (in the paper), permutation rates and average divergence

angle.

GjE� \ b 10 12

0.65, 1 30.0 (22.3, 7.7), 136 18.4(15.7, 2.8), 136.8

0.75, 1 30.7(21.2, 9.5), 136.2 15.5 (11.5, 0.9), 137.3

0.85, 1 17.6(13.5, 4.1), 138.5 15.5(11.9, 3.5), 137.3

0.95, 1 11.7(9.5, 1.8), 139.9 4.8(4.4, 0.4)140.1
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Appendix 1–table 5. 2 degrees, permutation rates and average divergence angle.

GjE� \ b 10 12

0.65 , 1 31.8(24.3,7.4), 136.4 19.7(18.2,1.5), 136.6

0.75, 1 27.1(16.9,10.2), 136 11.8(10.2,1.6), 136.5

0.85, 1 19.8(14.7,5.2), 137.3 11.0(9.9,1.1), 137.7

0.95, 1 13.6(12.6,1.0), 138.7 5.3(5.0,0.3), 139.5

DOI: 10.7554/eLife.14093.025

Appendix 1–table 6. 5 degrees, permutation rates and average divergence angle.

GjE� \ b 10 12

0.65, 1 32.9(25.1,7.8), 136.1 21.3(17.5,3.8), 136.1

0.75, 1 35.2(23.3,11.9), 135.7 18.1(16.0,2.1), 136.3

0.85, 1 16.6(12.9,3.7), 137.9 8.9(7.5,1.4), 137.9

0.95, 1 10.0(8.2,1.9), 139.4 4.3(4.3,0.0), 139.9

DOI: 10.7554/eLife.14093.026

Appendix 1–table 7. 10 degrees, permutation rates and average divergence angle.

GjE� \ b 10 12

0.65, 1 36.7(24.7,12.0), 136.5 29.7(22.0,7.6), 136.2

0.75, 1 29.0(22.4,6.6), 136.9 25.3(20.8,4.5), 136.7

0.85, 1 24.2(17.4,6.8), 135.9 21.0(17.5,3.5), 134.8

0.95, 1 13.2(13.2,0.0), 139.3 9.4(8.8,0.6), 139.5

DOI: 10.7554/eLife.14093.027

6.3 The effect of the inhibition function on the results and control
parameters
We changed the inhibition function to the two following function, used e.g. in (Douady and

Couder, 1996b)

EðqÞðxÞ ¼
�1þðtanh s dðx;qÞ

r0
Þ�1

�1þðtanh sÞ�1
;

while we repeat here our default choice (also considered in [Douady and Couder, 1996b]):

EðqÞðxÞ ¼
r0

dðq;xÞ

� �s

;

where tanh stands for hyperbolic tangent, and for both functions s denotes the inhibition

stiffness. Note that though qualitatively controling the stiffness, the same quantitative value of

s is expected to give different results for both functions above. In the following Appendix 1–

table 8 we present permutation rates for the tanh based expression, with stiffness s ¼ 1.

Appendix 1–table 8. Permutation rates for the tanh based inhibition rate, with s ¼ 1;

permutation rates and average divergence angle.

GjE� \ b 7 8 10 12

0.45, 1 35.9(25.9,10.0), 138.5 25.1(20.9,4.2), 138.3

0.45, 1.2 45.9(25.6,20.3), 138.8 42.4(30.1,12.3), 138.5 26.8(21.1,5.7), 138.1 17.7(16.0,1.6), 137.9

0.55, 1 44.3(27.4,16.8), 138.0 36.1(26.5,9.6), 138.2 23.3(20.1,3.1), 137.5 15.9(14.5,1.3), 137.4

0.55, 1.2 36.7(25.8,10.9), 138.0 28.0(20.4,7.6), 137.9 17.1(15.5,1.6), 137.7 13.9(13.9,0.0), 137.5

Appendix 1–table 8 continued on next page

Refahi et al. eLife 2016;5:e14093. DOI: 10.7554/eLife.14093 42 of 51

Research article Developmental biology and stem cells Plant biology

http://dx.doi.org/10.7554/eLife.14093.024Appendix%201&x2013;table%204.1%20degree%20(in%20the%20paper),%20permutation%20rates%20and%20average%20divergence%20angle.%2010.7554/eLife.14093.024\Gamma|E^{&x002A;}%20\%20\beta10120.65,%20130.0%20(22.3,%207.7),%2013618.4(15.7,%202.8),%20136.80.75,%20130.7(21.2,%209.5),%20136.215.5%20(11.5,%200.9),%20137.30.85,%20117.6(13.5,%204.1),%20138.515.5(11.9,%203.5),%20137.30.95,%20111.7(9.5,%201.8),%20139.94.8(4.4,%200.4)140.1
http://dx.doi.org/10.7554/eLife.14093.025Appendix%201&x2013;table%205.2%20degrees,%20permutation%20rates%20and%20average%20divergence%20angle.%2010.7554/eLife.14093.025\Gamma|E^{&x002A;}%20\%20\beta10120.65%20,%20131.8(24.3,7.4),%20136.419.7(18.2,1.5),%20136.60.75,%20127.1(16.9,10.2),%2013611.8(10.2,1.6),%20136.50.85,%20119.8(14.7,5.2),%20137.311.0(9.9,1.1),%20137.70.95,%20113.6(12.6,1.0),%20138.75.3(5.0,0.3),%20139.5
http://dx.doi.org/10.7554/eLife.14093.026Appendix%201&x2013;table%206.5%20degrees,%20permutation%20rates%20and%20average%20divergence%20angle.%2010.7554/eLife.14093.026\Gamma|E^{&x002A;}%20\%20\beta10120.65,%20132.9(25.1,7.8),%20136.121.3(17.5,3.8),%20136.10.75,%20135.2(23.3,11.9),%20135.718.1(16.0,2.1),%20136.30.85,%20116.6(12.9,3.7),%20137.98.9(7.5,1.4),%20137.90.95,%20110.0(8.2,1.9),%20139.44.3(4.3,0.0),%20139.9
http://dx.doi.org/10.7554/eLife.14093.027Appendix%201&x2013;table%207.10%20degrees,%20permutation%20rates%20and%20average%20divergence%20angle.%2010.7554/eLife.14093.027\Gamma|E^{&x002A;}%20\%20\beta10120.65,%20136.7(24.7,12.0),%20136.529.7(22.0,7.6),%20136.20.75,%20129.0(22.4,6.6),%20136.925.3(20.8,4.5),%20136.70.85,%20124.2(17.4,6.8),%20135.921.0(17.5,3.5),%20134.80.95,%20113.2(13.2,0.0),%20139.39.4(8.8,0.6),%20139.5
http://dx.doi.org/10.7554/eLife.14093


Appendix 1–table 8 continued

GjE� \ b 7 8 10 12

0.65, 1 39.0(26.3,12.8), 135.7 30.4(23.7,6.7), 136.3 15.3(14.1,1.1), 136.3 10.3(9.7,0.6), 136.8

0.65, 1.2 27.7(22.2,5.6), 136.4 19.9(17.1,2.8), 136.7 10.6(10.2,0.4), 136.7 4.3(4.3,0.0), 136.7

0.75, 1 40.2(23.0,17.2), 135.2 32.2(20.9,11.3), 135.1 17.6(14.4,3.2), 135.8 10.9(10.3,0.5), 136.3

0.75, 1.2 31.1(22.6,8.5), 135.0 21.3(18.1,3.2), 136.0 11.1(10.0,1.1), 136.5 6.7(6.2,0.5), 137.1

0.85, 1 27.4(17.5,9.9), 137.6 19.2(14.4,4.8), 137.2 5.9(5.9,0.0), 138.0 4.4(4.2,0.2), 138.1

0.85, 1.2 21.5(15.8,5.8), 136.4 14.4(13.0,1.4), 136.9 5.6(5.6,0.0), 137.6 3.1(3.0,0.1), 138.0

0.95, 1 21.0(16.2,4.9), 138.9 14.8(10.7,4.0), 138.6 3.7(3.7,0.0), 139.6

0.95, 1.2 15.4(12.4,3.1), 138.4 8.5(7.3,1.2), 138.9 2.9(2.9,0.0), 139.4

1.05, 1 22.4(16.8,5.6), 139.6 13.1(11.0,2.1), 139.2 2.4(2.4,0.0), 139.6

1.05, 1.2 10.2(9.3,0.9), 139.5 5.8(5.7,0.1), 139.7 2.1(2.1,0.0), 139.9

DOI: 10.7554/eLife.14093.028

The control parameters GP and GD turn out to be the control parameters of the system using

this new inhibition function, as can be seen in Appendix 1—figure 5.

Appendix 1—figure 5. Role of the control parameters for the tanh based inhibition function.

(a–b) Average plastochron ratio as a function of G and GD ¼
G

b1=6E�1=2
, respectively. (c) Number

of permutations p as a function of GP.

DOI: 10.7554/eLife.14093.029

When using our default (power law) inhibition function, we have fixed s ¼ 3 in the main

paper. We found the GD ¼
G

b1=6E�1=2
as the control parameter of plastochrons.

As shown in Appendix 1—figure 6, when using a ower law the parameter GD can in fact be

related more explicitly to the stiffness s, by using

GD ¼
G
s=3

b1=6E�1=2

instead of the previous expression.
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Appendix 1—figure 6. Role of the control parameters for the power law inhibition function,

with rows (a–e) corresponding respectively to a steepness s ¼ 1; 2; 4; 5; 6. First two columns:

average plastochron ratio as a function of G and GD ¼
G

b1=6E�1=2
, respectively. Third column:

average plastochron ratio as a function of GD ¼
Gs=3

b1=6E�1=2
.

DOI: 10.7554/eLife.14093.030

6.4 Changing the growth rate
Because of growth, the primordia drift away radially from the central zone at a velocity

proportional to their distance from the center, i.e. drðtÞ
dt
¼ grðtÞ. In the simulations we have used

g ¼ 5, we tested g ¼ 3, see the results in Appendix 1–table 9, which do not depart

significantly from our main table, see e.g. Appendix 1–table 4 for comparison.
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Appendix 1–table 9. Growth rate changed, g ¼ 3.

GjE� \ b 10 12

0.65, 1 29.0(21.0,8.0), 136.2 17.7(16.2,1.5), 136.6

0.75, 1 27.4(19.8,7.6), 135.4 15.8(14.6,1.2), 136.2

0.85, 1 14.7(11.3,3.4), 137.7 10.5(9.8,0.6), 138.0

0.95, 1 8.0(6.9,1.1), 139.3 4.3(4.1,0.2), 139.3

DOI: 10.7554/eLife.14093.031

6.5 Adding noise to the primordia initiation site on the periphery
of central zone
To see the effect of the noise on the sampling of the peripheral zone, we added a random noise

in f�2;�1; 0; 1; 2g degrees to the initiation site of the primordium. The permutation rates are

most of the time slightly increased.

Appendix 1–table 10. Noise added to the peripheral zone.

GjE� \ b 10 12

0.75, 1 29.2(19.5,9.7), 135.9 16.8(14.2,2.6), 136.7

0.75, 1.2 17.2(14.8,2.3), 136.4 14.6(12.5,2.1), 136.1

0.85, 1 23.6(16.0,7.7), 136.6 12.3(11.2,1.1), 137.7

0.85, 1.2 16.5(14.2,2.2), 135.7 9.2(8.3,0.9), 137.2

0.95, 1 12.5(11.4,1.1), 139.4 6.9(6.7,0.2), 139.4

0.95, 1.2 8.6(7.5,1.1), 138.9 2.4(2.4,0.0), 138.6

DOI: 10.7554/eLife.14093.032

6.6 Introducing new primordia at arbitrary positions
As a control to the experiment reported in Figure 2G, we ran simulations where a new

primordium is artificially introduced in an otherwise stable spiral pattern. While Figure 2G only

considers the case where this ”forcing” takes place at the angle corresponding to the second

local minimum, we report here the system’s response in cases of arbitrary angular positions.

These types of perturbations amount to exploring random initial conditions. In the

bifurcation diagram of the “standard model” (cf. Appendix 1—figure 2), different initial

conditions can lead to different phyllotactic patterns (the branches of the bifurcation

diagram); each pattern is reached by a specific set of initial conditions called its basin of

attraction. If the artificially created “initial condition” lies outside the basin of attraction of

the current pattern, we expect to observe a change of phyllotactic pattern in the subsequent

simulation. This intuition is confirmed by simulations: see a broad classification of the

possible effects of different typical “new initial conditions” in Appendix 1—figure 7.
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Appendix 1—figure 7. Effect of forcing initiation in different regions of the inhibitory field pro-

file. (a) As reported in Figure 2H, forcing a primordium near the first or second local minima

does not affect the phyllotactic mode permanently, but simply forces a 2-permutation in the

case of the second minimum. (b) When primordia are introduced near the highest or second

highest local maxima, the system returns to its previous pattern. Near the third maximum or

the third minimum, the system changes pattern, in the shown simulation it converges to a

spiral oriented in the opposite direction to the previous spiral (i.e. ’ ¼ �137:5 instead of

þ137:5); a 2-permutation can be seen in the new spiral for the third maximum. New

primordia introduced far from any maximum or minimum (black headed arrows) tend to

disrupt the phyllotactic mode more significantly, converging to whorled patterns (primordia

forced near 0 or near 290), or patterns involving high numbers of successive permutations

(primordium forced near 150).

DOI: 10.7554/eLife.14093.033
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Appendix 2

Additional videos and initial conditions for all videos
For all videos, unless otherwise stated, we used either of the following initial conditions:

Random: We assume that no organ preexists at the meristem surface and that the level of

inhibition randomly fluctuates in the peripheral cells. We model this situation by defining a

random inhibition field E=(Ek)k for k ranging over the discretized angular positions as follows:

Ek=exp(15sk+10), where sk is drawn from the uniform distribution on the interval [0, 1) and the

overall distribution (sk)k is smoothed by applying a Gaussian filter. The value of the inhibitory

field in each cell is then updated at each time step of the simulation until the first primordium

initiation, by adding a random factor drawn from a uniform distribution on the interval [-0.5,

+0.5].

Empty: We assume that no organ preexists at the meristem surface and that the level of

inhibition is zero in every cell at the beginning of the simulation (i.e. Ek=0 for all k at t=0). The

first primordium is generated at a random location on the peripheral zone.

For all the simulations, b was fixed to 11.0 and E* to 1.0.

Appendix 2—video 1. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a Fibonacci spiral including two 2-permutations from a

random initial inhibitory field. For more precise information about the initial condition see Supplementary

information.

DOI: 10.7554/eLife.14093.034

Appendix 2—video 2. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a Fibonacci spiral from a random initial inhibitory field. It

takes some time to converge to 137 degrees. For more precise information about the initial condition see

Supplementary information.

DOI: 10.7554/eLife.14093.035
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Appendix 2—video 3. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a Fibonacci spiral pattern including a 2-permutation

pattern at the beginning before converging to 137 degrees. For more precise information about the initial

condition see Supplementary information.

DOI: 10.7554/eLife.14093.036

Appendix 2—video 4. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a 2-whorled pattern from no pre-existing organs. For

more precise information about the initial condition see Supplementary information.

DOI: 10.7554/eLife.14093.037

Appendix 2—video 5. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a 2-whorled pattern from a random initial inhibitory field.

For more precise information about the initial condition see Supplementary information.

DOI: 10.7554/eLife.14093.038
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Appendix 2—video 6. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a 2-whorled pattern from a random initial inhibitory field

(second run). For more precise information about the initial condition see Supplementary information.

DOI: 10.7554/eLife.14093.039

Appendix 2—video 7. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a 2-whorled pattern from no pre-existing organs (second

run). For more precise information about the initial condition see Supplementary information.

DOI: 10.7554/eLife.14093.040

Appendix 2—video 8. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a 4-whorled pattern from no pre-existing organs. For

more precise information about the initial condition see Supplementary information.

DOI: 10.7554/eLife.14093.041
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Appendix 2—video 9. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a 4-whorled pattern from a random initial inhibitory field.

For more precise information about the initial condition see Supplementary information.

DOI: 10.7554/eLife.14093.042

Appendix 2—video 10. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a 4-whorled pattern from a random initial inhibitory field

(second run). For more precise information about the initial condition see Supplementary information.

DOI: 10.7554/eLife.14093.043

Appendix 2—video 11. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone. The stochastic model generates a 4-whorled pattern from no pre-existing organs (second

run). For more precise information about the initial condition see Supplementary information.

DOI: 10.7554/eLife.14093.044
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Appendix 2—video 12. Dynamics of the divergence angles as well as the inhibitory field at the

peripheral zone showing multiple initiation sites. The SMPmicro variant was used instead of

SMPmacro-max used in the previous simulations. With SMPmicro, a primodium may be initiated at any cell

independently of the others. This makes it possible to two primordia initiation in the same valley. A single

initiation site is marked in green and multiple simultaneous initiation sites are marked in red. An initial spiral

pattern of 150 preexisting primordia has been used as initial condition.

DOI: 10.7554/eLife.14093.045

Appendix 2—video 13. Same video as Appendix 2—video 12 with lower fps.
DOI: 10.7554/eLife.14093.046
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