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Abstract Recent findings indicate a high level of specialization at the level of microcircuits and

cell populations within brain structures with regards to the control of fear and anxiety. The

hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite

mounting evidence that different hippocampal subregions have specialized roles in other cognitive

domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor

a2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus and CA3

via a2-containing GABAA receptors (a2GABAARs) is required to suppress anxiety, while the

inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that

the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral

findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings

demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal

microcircuitry.

DOI: 10.7554/eLife.14120.001

Introduction
Fear and anxiety are distinct emotional states induced by different environmental triggers (acute,

objectively harmful stimuli versus the possibility of unidentifiable, obscure threats, respectively) and

resulting in distinguishable defensive behaviors (freezing, fight or immediate active avoidance versus

alertness and risk-assessment [Tovote et al., 2015; Davis et al., 2010]). Recent circuit-focused stud-

ies demonstrate that the neurocircuitry and neuronal cell populations mediating fear and anxiety

show some overlap (Botta et al., 2015; Jennings et al., 2013), but also significant divergence

(Kheirbek et al., 2013; Yamaguchi et al., 2013). Here, we investigated whether fear and anxiety

converge or diverge at the level of microcircuits within the hippocampus (HPC).

The intra-HPC circuitry includes three subregions (CA1 and CA3 areas, and dentate gyrus (DG)),

with predominantly unidirectional excitatory projections from DG to CA3 to CA1. Additionally, the

principal neurons in each subregion are tightly regulated via activity of GABAA receptors (GABAARs).

Out of the five GABAAR subtypes expressed in the HPC, the a2-containing GABAARs (a2GABAAR)

have been strongly and consistently implicated in anxiety and fear (Vollenweider et al., 2011;

Löw et al., 2000; Smith et al., 2012). a2GABAARs are expressed on principal neurons in all three
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HPC subregions and mediate fast phasic inhibition (Fritschy and Mohler, 1995; Hörtnagl et al.,

2013).

To address the question of how HPC microcircuits contribute to anxiety versus fear, we generated

three gene-targeted mouse lines in which the a2GABAARs are deleted selectively in the pyramidal

neurons of the CA1 or of the CA3, or in the granule cells of the DG. Reducing the expression of syn-

aptic GABAARs later than approximately 2–3 weeks postnatally typically causes no baseline anxiety

phenotype (Earnheart et al., 2007; Shen et al., 2012), in line with the concept of a developmental

origin of anxiety (Gross et al., 2002; Gross and Hen, 2004). The cre driver lines used in the current

study express cre recombinase later in development, and our conditional knockout mice display no

spontaneous anxiety or fear phenotype. To assess which part of intrahippocampal circuitry is essen-

tial for modulation of anxiety and fear, we thus used a mixed genetic-pharmacological approach:

We systemically administered a nonselective positive allosteric modulator of GABAA receptors,

known to induce anxiolysis and fear reduction, in cell type- and region-specific a2 knockout mice.

Our findings demonstrate a double-dissociation within the HPC with regards to fear and anxiety,

where inhibition of CA3 and DG is required for anxiolysis, while the inhibition of CA1 is required for

the reduction of fear.

Results

Basic characterization of HPC conditional knockout mice
A floxed Gabra2 allele was generated by placing two loxP sites 1 kb apart flanking exon 5 (221 bp)

(see Witschi et al., 2011 for details; Figure 1A). The a2 conditional knockout mice were generated

by crossing mice homozygous for the floxed Gabra2 allele (a2F/F mice) with a2F/F mice carrying

eLife digest Fear and anxiety can be thought of as different but related emotional states. Fear

is triggered by specific harmful situations, such as the immediate presence of a predator. Anxiety

instead results from the possibility of an obscure threat, such as being in an exposed environment,

which increases the chance of being detected by a predator. Evidence suggests that slightly

different areas of the brain control fear and anxiety, but much remains unknown about the specific

brain regions that help to regulate these two emotional states.

One brain region that has been implicated in both anxiety and fear – as well as in learning and

memory – is the hippocampus. Named after the Greek word for seahorse because of its shape, the

hippocampus is made up of three subregions: CA1, CA3 and the dentate gyrus. Each of these

subregions has a distinct role in learning and memory. However, their individual contributions to the

control of fear and anxiety were not known.

An inhibitory receptor protein found in the surface of some hippocampal neurons had previously

been shown to be involved in controlling fear and anxiety. Now, Engin et al. have studied three

different groups of genetically modified mice, each of which lacks the receptor protein in a different

subregion of the hippocampus. The mice completed tests that stimulated anxiety or fear, some

while under the influence of the anxiety and fear-reducing drug diazepam. Notably, diazepam failed

to reduce fear in animals that lacked the inhibitory receptor protein in the CA1 subregion of the

hippocampus, suggesting that this subregion participates in the fear response. However, mice that

lacked the receptor in the dentate gyrus or CA3 responded normally to the drug (they showed

reduced fear when given diazepam).

In tests of anxiety, the picture was exactly the opposite. Diazepam failed to reduce anxiety in

animals lacking the inhibitory receptor in the dentate gyrus or CA3, indicating that these subregions

are involved in the regulation of anxiety. However, the drug still reduced anxiety in mice that lacked

the receptor protein in the CA1 subregion.

Further studies are now needed to clarify how manipulating specific subregions of the

hippocampus alters how it communicates with other brain structures to generate changes in anxiety

or fear-related behaviors.

DOI: 10.7554/eLife.14120.002
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Figure 1. Targeted reduction of a2 expression in CA1, CA3 or DG. (A) Generation of the a2F/F control and

a2CA1KO, a2CA3KO, a2DGKO mice. (B) Top: False color images showing the a2 staining intensity in

immunohistochemically stained sections. Cooler colors = less staining. Bottom: Semi-quantitative comparisons of

a2 staining. (C) a2 mRNA expression (see sample ROI’s on the right), expressed as% of a2F/F control.*p<0.05,

**p<0.01, ***p<0.001 compared to corresponding a2F/F group.

DOI: 10.7554/eLife.14120.003

The following figure supplements are available for figure 1:

Figure 1 continued on next page
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one of the following three cre recombinase transgenes: CaMKIIa cre (T29-1 mice; Tsien et al., 1996)

to generate a CA1 pyramidal neuron selective knockout (a2CA1KO), Grik4 cre (G32-4

mice; Nakazawa et al., 2002 ) to generate a CA3 pyramidal neuron selective knockout (a2CA3KO)

and POMC cre (McHugh et al., 2007) to generate a DG granule cell selective knockout (a2DGKO).

Within the HPC, the reduction in a2 expression was limited to the targeted regions at both the

protein (Figure 1B; Figure 1—figure supplement 1) and mRNA (Figure 1C) level for each genotype

(Table 1, Sect. 1, 2). The knockdowns extended through the septo-temporal axis of the hippocam-

pus, although they were more pronounced in dorsal regions (Figure 1B; Figure 1—figure supple-

ment 1). a2 mRNA expression was also reduced in the cortex of a2CA1KO mice, but this reduction

was not observed at the protein level at the time point examined (10–11 weeks). CaMKIIa cre-medi-

ated recombination is progressive over time in cortex (Fukaya et al., 2003), and the mRNA expres-

sion might be already reduced at this time point and this reduction may start to be reflected at the

functional protein level later in development. The expression of other GABAAR subunits in the

regions of interest was largely unaffected (Figure 1, Figure 1—figure supplement 2, Figure 1—fig-

ure supplement 3; Table 1).

The conditional knockouts of the Gabra2 gene did not cause major changes in the frequency,

amplitude or decay kinetics of the miniature inhibitory postsynaptic currents (mIPSCs), and did not

impair the response to diazepam in any of the genotypes (Figure 1—figure supplement 4; Table 1,

Sect. 3). Cognitive tests of hippocampal function revealed no gross anomalies in any of the knock-

outs (Figure 1—figure supplement 5; Table 1, Sect. 4). Thus, the knockout of the Gabra2 gene in

CA1, CA3 or DG was limited to the targeted regions and the targeted receptor, and did not cause

major impairments in baseline inhibitory synaptic activity or the diazepam-induced changes of inhibi-

tory synaptic responses in principal neurons of the targeted regions in the hippocampus.

Behavioral tests of anxiety
Anxiety-related behavior was measured using two validated tests of anxiety (Treit et al., 2010): Ele-

vated plus maze (EPM) and light/dark box (LDB). In EPM, enhancing GABAAR-mediated responses

with diazepam increased open arm activity in a2F/F and a2CA1KO, but not in a2CA3KO or

a2DGKO mice (Figure 2A, Figure 2—figure supplement 1A; Table 2, Sect. 1). While the diazepam

effects were clear in a2F/F and a2CA1KO mice, the lack of these effects especially in a2CA3KO

mice was partially due to an increase in percent open arm time in the vehicle condition, as well as a

decrease in the same measure in the diazepam condition. To clarify these findings, we repeated this

test with mice this time bred on a 129X1/SvJ background under slightly different testing conditions

(see Methods; the conditional knockouts bred on the 129X1/SvJ background show similar distribu-

tion of GABAAR a2 subunits as the C57BL/6J; Figure 1—figure supplement 1). Differences between

vehicle-treated groups were smaller in this strain, and yet the pattern of diazepam effects were iden-

tical to those reported with the C57BL/6J strain, with significant anxiolytic-like effects in a2F/F and

a2CA1KO, but not in a2CA3KO or a2DGKO mice (Figure 2—figure supplement 1B; Table 2, Sect.

1’).

LDB experiments were conducted only on mice bred on the 129X1/SvJ background, as diazepam

did not lead to consistent anxiolytic-like effects in control mice of C57BL/6J background. Similar to

EPM, diazepam increased the time animals spent in the larger lit compartment of the LDB in a2F/F

Figure 1 continued

Figure supplement 1. Immunohistochemical localization of GABAAR a2 subunits in conditional knockout mice

bred on a 129X1/SvJ background.

DOI: 10.7554/eLife.14120.004

Figure supplement 2. Expression of a1 and a5 subunits in conditional knockout mice.

DOI: 10.7554/eLife.14120.005

Figure supplement 3. Expression of a3 and a4 mRNA in conditional knockout mice.

DOI: 10.7554/eLife.14120.006

Figure supplement 4. Miniature inhibitory postsynaptic currents.

DOI: 10.7554/eLife.14120.007

Figure supplement 5. Tests of hippocampal function.

DOI: 10.7554/eLife.14120.008
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Table 1. Results of omnibus statistical tests of experiments for the general characterization of a2CA1KO, a2CA3KO and a2DGKO

mice.

1. Immunohistochemistry

One-Way ANOVA; Factor: Genotype

a2 Subunit a1 Subunit a5 Subunit

CA1 F(3,10)=9.44 P=0.003 F(3,9)=0.08 p=0.97 F(3,9)=0.10 p=0.96

CA3 F(3,10)=5.05 P=0.02 F(3,9)=0.01 p=0.99 F(3,9)=0.13 p=0.94

DG F(3,10)=9.08 P=0.003 F(3,9)=0.00 p=1.00 F(3,9)=0.06 p=0.98

Cortex F(3,10)=1.90 p=0.19 F(3,9)=0.01 p=0.83 F(3,9)=0.01 p=0.99

Amygdala F(3,10)=1.28 p=0.34 F(3,9)=0.21 p=0.89 F(3,9)=0.36 p=0.78

2. Quantitative PCR

One-Way ANOVA; Factor: Genotype

a2 Subunit a3 Subunit a4 Subunit

CA1 F(3,16)=10.66 p<0.001 F(3,16)=0.10 p=0.96 F(3,16)=2.48 p=0.1

CA3 F(3,16)=10.53 p<0.001 F(3,16)=0.67 p=0.58 F(3,16)=4.74 p=0.02

DG F(3,16)=7.32 p=0.003 F(3,12)=1.96 p=0.17 F(3,12)=2.90 p=0.08

Cortex F(3,16)=15.69 p<0.001

Amygdala F(3,16)=3.01 p=0.06

3. Slice Electrophysiology

Two-Way Mixed Factorial ANOVA; Factors: Genotype (between-subjects), Drug (within-subjects)

CA1 Amplitude Frequency Decay Time

Genotype F(1,38)=1.83 p=0.18 F(1,38)=2.80 p=0.10 F(1,38)=1.94 p=0.17

Drug F(1,38)=1.49 p=0.23 F(1,38)=9.38 p=0.004 F(1,38)=107.96 p<0.001

Genotype x Drug Interaction F(1,38)=2.91 p=0.09 F(1,38)=3.11 p=0.08 F(1,38)=0.82 p=0.37

CA3 Amplitude Frequency Decay Time

Genotype F(1,21)=2.36 p=0.14 F(1,21)=1.85 p=0.19 F(1,21)=0.95 p=0.34

Drug F(1,21)=0.66 p=0.42 F(1,21)=0.09 p=0.77 F(1,21)=30.54 p<0.001

Genotype x Drug Interaction F(1,21)=0.21 p=0.65 F(1,21)=1.90 p=0.18 F(1,21)=0.25 p=0.62

DG Amplitude Frequency Decay Time

Genotype F(1,21)=1.50 p=0.23 F(1,21)=1.58 p=0.22 F(1,21)=0.01 p=0.91

Drug F(1,21)=2.58 p=0.12 F(1,21)=1.58 p=0.22 F(1,21)=47.42 p<0.001

Genotype x Drug Interaction F(1,21)=0.54 p=0.47 F(1,21)=1.33 p=0.26 F(1,21)=0.30 p=0.59

4. Tests of Hippocampal Function

Delay – Trace Fear Conditioning

Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Condition (between-subjects)

% Freezing

Genotype F(3,49)=0.38 p=0.77

Condition F(1,49)=41.57 p<0.001

Genotype x Cond. Interaction F(3,49)=0.71 p=0.55

Contextual Fear Conditioning

One-Way ANOVA; Factor: Genotype (between-subjects)

% Freezing

Table 1 continued on next page
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and a2CA1KO mice, but not in a2CA3KO or a2DGKO mice (Figure 2B; Figure 2—figure supple-

ment 1C; Table 2, Sect. 2). The changes (or the lack thereof) in open-arm and lit-compartment activ-

ity could not be attributed to nonspecific effects on general locomotor activity, as overall

locomotion was not affected by diazepam (Figure 2C; Figure 2—figure supplement 1A; Table 2,

Sect. 1, 3). These findings suggest that anxiety-like behaviors are under control of a2GABAAR-medi-

ated inhibition of principal neurons in DG and CA3, whereas a similar level of inhibition of CA1 pyra-

midal neurons does not affect anxiety-like behavior.

Behavioral tests of fear
Anxiety and fear are regulated by overlapping but somewhat distinct circuits in the brain (e.g.,

Jennings et al., 2013, Kheirbek et al., 2013, Botta et al., 2015). Next we tested whether HPC reg-

ulation of fear is mediated by an overlapping HPC microcircuit. We used two tests, both of which

involve a distinct harmful stimulus (a mild electric shock), to test fear-related behavior.

In the fear-potentiated startle (FPS; Figure 3A) test, all experimental groups showed stable base-

line startle responses that increased in magnitude with louder white noise bursts during the habitua-

tion trials (Figure 3—figure supplement 1A–D), showing that a startle magnitude at 85dB (i.e., the

magnitude of the testing phase stimulus) is not bound by floor or ceiling effects. On test day, all

vehicle-treated mice had increased startle amplitudes when the startle stimulus was preceded by the

previously fear-conditioned tone (i.e., FPS; Figure 3B–E; Table 3, Sect. 1). When GABAAR activity

was increased, the magnitude of FPS (%) was reduced significantly in a2F/F control mice. Interest-

ingly, this reduction in% FPS was also observed in a2CA3KO and a2DGKO mice, but not in

a2CA1KO mice (Figure 3F; Table 3, Sect. 1). In a separate test, we evaluated the baseline shock

sensitivity of each genotype to the 0.4 mA shock used in FPS, and found no difference between the

genotypes (Figure 3—figure supplement 1E).

In our FPS test, the fear-reducing effect of diazepam was due not only to a reduction in startle

responses in the “tone + startle” condition, but also to an increase in startle magnitude in the “star-

tle stimulus only” condition. While it complicates the interpretation of the data, this effect of diaze-

pam in C57BL/6J mice was documented previously (Smith et al., 2011). It should be noted that the

startle magnitudes in “tone+startle” condition in diazepam-treated groups was not bound by a ceil-

ing effect, as magnitudes up to 10a.u.’s were observed; thus, the reduction in% FPS in diazepam-

treated a2F/F, a2CA3KO and a2DGKO mice is not simply a result of the increased startle in the

“startle stimulus only” condition. Still, we conducted a second test of fear, Vogel Conflict Test (VCT),

to further clarify these findings.

The genotype-linked contrast between the FPS and the findings from tests of anxiety could be

due to different circuitry underlying fear and anxiety, or simply due to different circuitries being

involved in unconditioned (EPM and LDB) anxiety versus long-term fear memory. Thus, we chose the

VCT, which does not rely on long-term memory (although effects of within-session working memory

cannot be eliminated), as our second test of fear. In VCT, water-deprived animals are allowed to

drink from a spout which delivers electric shocks to the tongue, creating a conflict between the

desire to drink and the desire to avoid a painful stimulus. A reduction in fear of the shock is reflected

in increased drinking in the presence of shock. When drinking was unpunished, we found no differ-

ence between genotypes (Figure 3G; Table 3, Sect. 2). In contrast, on test day (punished drinking;

Table 1 continued

Genotype F(3,35)=5.47 p=0.003

Morris Water Maze

Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Day (within-subjects)

Time to platform

Genotype F(3,80)=5.17 p=0.01

Day F(5,80)=244.12 p<0.001

Genotype x Day Interaction F(5,80)=1.36 p=0.19

DOI: 10.7554/eLife.14120.009
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Figure 3H; Table 3, Sect. 2) elevation of GABAAR activity by diazepam significantly increased pun-

ished drinking in a2F/F, a2CA3KO and a2DGKO mice. Similar to FPS, the fear-reducing effect of

diazepam was abolished in a2CA1KO mice. We also tested the possible effects of diazepam on

unpunished drinking and found no nonspecific effects on water consumption (Figure 3—figure

Figure 2. Behavioral tests of anxiety and locomotor activity. (A) Left: Activity heat maps on the EPM of

representative a2F/F, a2CA1KO, a2CA3KO and a2DGKO mice treated with vehicle or diazepam. Right:

Percentage (Mean ± S.E.M.) of time spent in the open arms of the EPM. (B) Left: Activity heat maps on the LDB of

representative a2F/F, a2CA1KO, a2CA3KO and a2DGKO mice treated with vehicle or diazepam. The dark (red)

and lit (yellow) compartments of the box are outlined for ease of visualization. Right: Percentage (Mean ± S.E.M.)

of time spent in the lit compartment of the LDB. (C) Mean ( ± S.E.M.) distance travelled in the open field.

DOI: 10.7554/eLife.14120.010

The following source data and figure supplement are available for figure 2:

Source data 1. Raw data for elevated plus maze and light/dark box figures.

DOI: 10.7554/eLife.14120.011

Figure supplement 1. Additional measures in tests of anxiety-like behavior.

DOI: 10.7554/eLife.14120.012
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supplement 1F). Our findings suggest that the double dissociation observed between FPS/VCT and

EPM/LDB is likely due to a divergence in the HPC circuitry mediating fear versus anxiety rather than

being a consequence of the involvement of memory processes.

Changes in HPC theta oscillations induced by enhanced GABAAR
activity
Previous studies linked theta range oscillations in the HPC to behavioral manifestations of anxiety.

For instance, theta activity is enhanced in the ventral HPC (vHPC) with anxiety (Adhikari et al.,

2010) and pharmacological manipulations that reduce anxiety also reduce the frequency of HPC

theta elicited by brain stem stimulation (McNaughton et al., 1986, McNaughton and Coop, 1991 ,

Engin et al., 2009 , Yeung et al., 2012 see also Wells et al., 2013). GABAergic anxiolytic drugs

additionally reduce the slope of the function that relates brain stem stimulation current to theta fre-

quency (McNaughton et al., 2007; Engin et al., 2008). As our tests of anxiety indicated that

increasing GABAAR function can reduce anxiety in control and a2CA1KO, but not in a2CA3KO and

a2DGKO mice, we next tested whether the effect of these manipulations on HPC theta range activ-

ity is consistent with the observed behavioral effects. Whereas our genetic manipulations span the

whole HPC, previous studies implicated specifically the vHPC in anxiety-related behaviors

(Bannerman et al., 2002; Bannerman et al., 2004; Fanselow and Dong, 2010). Thus, we recorded

Table 2. Results of omnibus statistical tests of measured parameters in behavioral tests of anxiety and general locomotion.

1. Elevated Plus Maze (C57BL/6J)

Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)

% Open Arm Time % Open Arm Entries Distance Travelled

Genotype F(3,75)=1.41 p=0.25 F(3,75)=0.13 p=0.94 F(3,75)=0.85 F(3, 69) = 1.11 p=0.47

Drug F(1,75)=16.48 p<0.001 F(3,75)=2.33 p=0.13 F(3,75)=0.61 p=0.44

Genotype x Drug Interaction F(3,63)=1.54 p=0.21 F(3,75)=1.47 p=0.23 F(3,75)=1.13 p=0.34

1’. Elevated Plus Maze (129X1/SvJ)

Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)

% Open Arm Time % Open Arm Entries Distance Travelled

Genotype F(3,55)=0.17 p=0.92 F(3,55)=1.59 p=0.20 F(3,55)=1.17 p=0.33

Drug F(1,55)=11.49 P=0.001 F(1,55)=3.4649 p=0.07 F(1,55)=1.28 p=0.29

Genotype x Drug Interaction F(3,55)=2.28 p=0.09 F(3,55)=0.50 p=0.69 F(3,55)=0.82 p=0.49

2. Light / Dark Box

Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)

% Time in Light Entries to Light

Genotype F(3,73)=5.03 p=0.003 F(3,73)=0.84 p=0.48

Drug (F(1,73)=26.00 p<0.001 F(1,73)=1.45 p=0.23

Genotype x Drug Interaction F(3,73)=5.53 p=0.002 F(3,73)=2.17 p=0.09

3. Open Field

Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)

Distance Travelled

Genotype F(3,56)=1.78 p=0.16

Drug F(1,56)=0.04 p=0.84

Genotype x Drug Interaction F(3,56)=0.43 p=0.73

DOI: 10.7554/eLife.14120.013
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Figure 3. Behavioral tests of fear. (A) Representative recordings of “Startle Stimulus Only” and “Tone + Startle

Stimulus” trials in a a2F/F control mouse treated with vehicle. The increased startle amplitude in “Tone + Startle”

trials represents fear-potentiation of the startle response. (B-E) Mean ( ± S.E.M.) startle amplitude in “No Tone”

and “Tone” startle trials in vehicle and diazepam-treated (B) a2F/F, (C) aCA1KO, (D) a2CA3KO, (E) a2DGKO

mice. (F) Mean ( ± S.E.M.) percent FPS in trials preceded by the tone. Asterisks represent significant difference

from the corresponding vehicle group. (G) Mean ( ± S.E.M.) number of licks recorded in the pretest session of the

VCT where drinking is not punished (This session does not involve drug administration). (H) Mean ( ± S.E.M.)

number of licks recorded in the test session where every 20th lick is punished in vehicle- or diazepam-treated

mice. Asterisks represent significant difference from the corresponding vehicle group. *p<0.05, **p<0.01,

***p<0.001.

DOI: 10.7554/eLife.14120.014

Figure 3 continued on next page
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separately from the dorsal (dHPC) and vHPC (Figure 4A), hypothesizing that the recordings from

vHPC might be more closely linked to anxiety.

vHPC recordings indicated that the increase in GABAAR activity 30 min and 60 min following

injection of diazepam reduced the frequency of theta oscillations in the 0.04–0.10 mA stimulation

range in both a2F/F and a2CA1KO mice (Figure 4B,C; Table 4, Sect. 1), in line with the anxiolytic-

like behavioral effects of the same drug manipulation in these groups. In a2CA3KO and a2DGKO

mice, the peak frequency in theta band was reduced following diazepam, but the reductions were

smaller in size and were limited to higher stimulation intensities (Figure 4D,E; Table 4, Sect. 1). The

Figure 3 continued

The following source data and figure supplement are available for figure 3:

Source data 1. Raw data for fear-potentiated startle and Vogel conflict test figures.

DOI: 10.7554/eLife.14120.015

Figure supplement 1. Additional measures in tests of fear-related behavior.

DOI: 10.7554/eLife.14120.016

Table 3. Results of omnibus statistical tests of measured parameters in behavioral tests of fear.

1. Fear-Potentiated Startle

Within-Genotype Comparisons

Two-Way Factorial ANOVA; Factors: Tone/No Tone (within-subjects), Drug (between-subjects)

a2F/F a2CA1KO

Tone F(1,28)=33.75 p<0.001 F(1,20)=49.17 p<0.001

Drug F(1,28)=0.30 p=0.59 F(1,20)=0.51 p=0.48

Tone x Drug Interaction F(1,28)=9.95 p=0.004 F(1,20)=0.02 P=0.89

a2CA3KO a2DGKO

Tone F(1,18)=16.60 p<0.001 F(1,20)=54.46 p<0.001

Drug F(1,18)=0.09 p=0.77 F(1,20)=0.73 p=0.40

Tone x Drug Interaction F(1,18)=5.16 p=0.04 F(1,20)=10.24 p=0.01

Between-Genotype Comparisons

Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)

% FPS

Genotype F(3,86)=1.17 p=0.91

Drug F(1,86)=16.69 p<0.001

Genotype x Drug Interaction F(3,86)=2.44 p=0.07

2. Vogel Conflict Test

Pretest (Unpunished) Drinking

One-Way ANOVA; Factor: Genotype (between-subjects)

Number of licks

Genotype F(3,63)=0.63 p=0.60

Test (Punished) Drinking

Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)

Number of licks

Genotype F(3,59)=1.00 p=0.40

Drug F(1,59)=14.57 p<0.001

Genotype x Drug Interaction F(3,59)=1.21 p=0.31

DOI: 10.7554/eLife.14120.017
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slope of the linear function that relates stimulation intensity to theta frequency was also reduced in

all genotypes following diazepam injection (Figure 4F), but 30min following injection (the time point

at which we conducted our behavioral tests), the magnitude of the reduction in slope was signifi-

cantly smaller in a2CA3KO and a2DGKO mice compared to controls and a2CA1KOs (Figure 4F;

Table 4, Sect. 2). Thus, the well-validated effects of diazepam on elicited theta activity, which show

parallels with anxiolytic behavioral effects, were dampened in a2CA3KO and a2DGKO mice.

Interestingly, simultaneous recordings in the dHPC showed the opposite pattern. Diazepam

reduced the frequency of theta in control, a2CA3KO and a2DGKO mice, but there was no main

effect of diazepam injection in a2CA1KO mice (Figure 4—figure supplement 1A–D; Table 4, Sect.

4). The reduction in slope following diazepam injection was also significantly smaller in a2CA1KO

mice compared to controls (Figure 4—figure supplement 1E).

We found no parallels between behavioral tests of anxiety and fear, and power of evoked theta in

dHPC or vHPC (Figure 4—figure supplement 1F–G; Table 4, Sect. 3, 6), consistent with previous

reports (McNaughton et al., 2007).

Discussion
Our findings indicate a double dissociation in the control of anxiety versus fear by HPC microcircuits,

with increased a2GABAAR-mediated inhibition of principal neurons in the DG and CA3 nodes of the

trisynaptic pathway required for suppression of anxiety, and increased inhibition of CA1 pyramidal

neurons required for suppression of fear. Strikingly, as increased GABAAR activity was achieved

through a systemic pharmacological manipulation, our findings suggest that even if GABAAR activity

is simultaneously increased in all other parts of the circuitry underlying anxiety and/or fear responses,

such as the amygdala, bed nucleus of the stria terminalis or the medial prefrontal cortex (mPFC)

(Tovote et al., 2015) (and in the hippocampus via other GABAA receptor subtypes), it is not suffi-

cient to suppress anxiety and/or fear responses unless the corresponding HPC subregions are simul-

taneously inhibited via a2GABAA receptors.

The findings cannot be explained by changes in expression of the a2GABAARs outside of the hip-

pocampus. As seen in Figure 1 (and Figure 1—figure supplement 1), the conditional knockouts

were highly specific to the target regions in a2CA3KO and a2DGKO mice. In a2CA1KO mice, there

are no significant changes in the expression of the GABAAR a2 subunit protein in the cortex or the

amygdala, although there is an apparent change in expression in especially the medial regions of

the basolateral amygdala (BLA) in some sections (see Figure 1). While this raises the possibility that

the effects (or the lack thereof) observed in a2CA1KO mice may be partially due to changes in a2

protein expression in the BLA, our findings from ongoing studies indicate that knocking down

a2GABAARs in the BLA leads to a completely different pattern of results than that observed in

a2CA1KO mice, making this possibility highly unlikely. Our findings also cannot be explained by con-

founding factors such as gross HPC dysfunction or nonspecific behavioral changes in the gene-tar-

geted mice, as all genotypes showed normal baseline HPC function and response to diazepam, as

measured by ex vivo electrophysiology (Figure 1—figure supplement 3) and HPC-dependent

behavioral tasks (trace and context fear conditioning, Morris water maze; Figure 4—figure supple-

ment 1).

We further report that the underlying mechanism for the suppression of anxiety and fear follow-

ing the systemic elevation of GABAAR activity may be the effect of this manipulation on vHPC and

dHPC theta range activity, respectively. All classes of clinically effective anxiolytic compounds reduce

the frequency of evoked HPC theta activity, with no known false positives or false negatives, making

this a strong physiological marker of anxiolytic action (McNaughton et al., 2007). While most sys-

temic pharmacological manipulations that reduce anxiety also reduce fear, previous studies did not

investigate whether the effects of anxiolytic and fear-reducing manipulations on theta range activity

may be distinct in this specific model. There is some evidence, however, suggesting that theta range

activity recorded from dHPC may be more relevant for fear, while vHPC theta may be more relevant

for anxiety. For instance, theta range activity recorded from dHPC in CA1 and the amygdala is syn-

chronized during expression of conditioned fear responses, but not during anxiety-related responses

(Seidenbecher et al., 2003). Conversely, in recordings from vHPC, increases in theta power and syn-

chrony with mPFC in the theta band were observed during the exploration of anxiogenic arenas,

while this was not the case for recordings from the dHPC (Adhikari et al., 2010). In a similar vein,
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Figure 4. Evoked theta oscillations in the vHPC. (A) Stimulation and recording sites and representative traces

showing vHPC theta activity before and after diazepam injection in a a2F/F mouse. (B-E) Mean ( ± S.E.M.) peak

frequency in the theta range at different stimulation intensities before (Baseline), and 30 min (30min post-DZP) and

60 min (60min post-DZP) following diazepam injection in (B) a2F/F, (C) a2CA1KO, (D) a2CA3KO, (E) a2DGKO

mice. Asterisks represent significant difference from the baseline at the given stimulating current, with top ones for

30 min and the lower ones for 60 min post-injection. (F) Change from baseline slope in the stimulation intensity –

peak frequency function 30 min (left) or 60 min following diazepam injection.#p<0.09, *p<0.05, **p<0.01,

***p<0.001 compared to corresponding a2F/F group.

DOI: 10.7554/eLife.14120.018

The following source data and figure supplement are available for figure 4:

Figure 4 continued on next page
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we report that diazepam effects on vHPC theta were reduced in a2CA3KO and a2DGKO mice, while

effects on dHPC theta were reduced in a2CA1KO mice, in parallel with the effects observed in

behavioral tests of anxiety and fear, respectively. While our knockouts mostly span the septo-tempo-

ral axis of the hippocampus, these findings also point to the possibility that CA1 in the dHPC may

be important for fear, while CA3 and DG in the vHPC may be important for anxiety, integrating our

findings with previous reports (Bannerman et al., 2004; Fanselow and Dong, 2010).

The role of HPC in anxiety and fear was recognized early on (e.g., Gray, 1982) and has been

demonstrated using different approaches (Engin and Treit, 2007; Bannerman et al., 2004;

Maren, 2001). However, despite concentrated efforts in the last 15 years to understand the roles of

different HPC subregions in cognitive processes (e.g., (Nakazawa et al., 2002; McHugh et al.,

2007; Tsien et al., 1996; Kesner, 2013a; Kesner, 2013b), and a shift in the focus of anxiety and

fear research towards within-structure microcircuits and specific neuronal populations (e.g.,

Kim et al., 2013, Botta et al., 2015, Tye et al., 2011), a systematic analysis of the regulation of fear

and anxiety by HPC microcircuitry had so far not been conducted. Our experiments extend previous

research, which to a large extent treated the HPC as a unitary structure except anatomical distinc-

tions along its septo-temporal axis (Fanselow and Dong, 2010), and ignored the possible specializa-

tion within the microcircuitry of the HPC. Furthermore, the distinction between anxiety and fear, and

whether they are processes mediated by distinct neurocircuitry, has been a controversial question

(Perusini and Fanselow, 2015). Here we show that anxiety and fear, distinguished via experimental

conditions that cause each state (we operationally define “tests of fear” as those involving a distinct

harmful stimulus; e.g., an electric shock), are mediated by distinct subregions within the HPC, lend-

ing further credence to the distinction between the two states and the overlapping but distinct neu-

robiological underpinnings of fear and anxiety. In conclusion, in addition to demonstrating a

surprisingly essential role of the hippocampus in the pharmacological modulation of anxiety and

fear, our study indicates distinct molecular mechanisms underlying regulation of two distinct nega-

tive valence systems (i.e., anxiety and fear), and provides defined cellular entry points into neuronal

circuitry underlying complex behavioral states.

Materials and methods
All procedures were approved by the McLean Hospital and Yale University Medical School Institu-

tional Animal Care and Use Committees, and were in compliance with the National Research Council

Guide for Care and Use of Laboratory Animals (8th Edition, The National Academies Press, Washing-

ton, D.C.).

Animals
For the generation of the floxed Gabra2 allele, see (Witschi et al., 2011) for details. Briefly, a 6.3 kb

genomic fragment (PstI-NcoI) containing exons 5 (221 bp) and 6 (83 bp) of the Gabra2 gene was iso-

lated. A 1 kb SphI-SphI fragment containing Exon 5 was then removed from the 6.3 kb fragment and

was replaced by an oligo hybrid containing a loxP site in addition to the 1 kb SphI-SphI fragment

with exon 5. A neomycine resistance cassette (NEO; FRT-Pol2-neo-bpA-FRT-loxP) was subcloned

into the SalI site. The vector was electroporated into embryonic stem cells (C57BL6/N, Eurogentec),

clones with correctly targeted alleles were injected into blastocysts (Polygene, Rumlang, Switzer-

land), and the NEO was bred out (Gabra2tm2.1Uru). Figure 1A shows the 6.3 kb PstI-NcoI fragment

containing exon 5 (221 bp), flanked by two loxP sites, the single FRT site remaining following the

excision of the NEO, and exon 6 (83 bp). The a2 conditional knockout mice were generated by

crossing mice homozygous for the floxed Gabra2 allele (Figure 1A top; a2F/F mice) with mice that

are homozygous for the floxed Gabra2 allele and carry one of the following three cre recombinase

transgenes: CamKIIa cre (T29-1 mice; Tsien et al., 1996) to generate a CA1-selective knockout

Figure 4 continued

Source data 1. Raw data for peak frequency and stimulation intensity – peak frequency slope figures.

DOI: 10.7554/eLife.14120.019

Figure supplement 1. Frequency and power of theta range oscillations.

DOI: 10.7554/eLife.14120.020
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Table 4. Omnibus statistical tests of measured parameters in in vivo LFP recordings collected from ventral and dorsal hippocampus.

VENTRAL HIPPOCAMPUS

1. Peak Theta Frequency

Two-Way ANOVA; Factors: Stimulation intensity (within-subjects), Time before/after drug (within-subjects)

a2F/F a2CA1KO

Stimulation intensity F(4,32)=9.13 p<0.001 F(4,24)=18.12 p<0.001

Time after drug F(2,32)=22.98 p<0.001 F(2,24)=37.01 p<0.001

Stimulation x Time F(8, 32)=4.27 p<0.001 F(8,24)=9.07 p<0.001

a2CA3KO a2DGKO

Stimulation intensity F(4,32)=8.14 p<0.001 F(4,32)=3.84 P=0.02

Time after drug F(2,32)=6.14 P=0.02 F(2,32)=2.47 P=0.15

Stimulation x Time F(8, 32)=3.14 P=0.01 F(8, 32)=6.63 p<0.001

2. Stimulation Intensity – Theta Frequency Slope

One-Way ANOVA; Factor: Genotype (between-subjects)

30min post-diazepam 60min post-diazepam

Genotype F(3,15)=3.94 p=0.03 F(3,73)=0.84 p=0.48

3. Normalized Power

One-Way ANOVA; Factor: Genotype (between-subjects)

60min post-diazepam

Genotype F(3,15)=4.65 p=0.02

DORSAL HIPPOCAMPUS

4. Peak Theta Frequency

Two-Way ANOVA; Factors: Stimulation intensity (within-subjects), Time before/after drug (within-subjects)

a2F/F a2CA1KO

Stimulation intensity F(4,32)=8.19 p<0.001 F(4,32)=5.29 p=0.01

Time after drug F(2,32)=31.65 p<0.001 F(2,32)=3.03 p<0.11

Stimulation x Time F(8,32)=8.87 p=0.003 F(8,32)=1.89 p=0.10

a2CA3KO a2DGKO

Stimulation intensity F(4,40)=19.19 p<0.001 F(4,32)=8.86 p<0.001

Time after drug F(2,40)=27.08 p<0.001 F(2,32)=9.25 p=0.01

Stimulation x Time F(8,40)=4.30 p<0.001 F(8,32)=2.39 p=0.04

5. Stimulation Intensity – Theta Frequency Slope

One-Way ANOVA; Factor: Genotype (between-subjects)

30min post-diazepam 60min post-diazepam

Genotype F(3,17)=2.97 p=0.14 F(3,17)=4.32 p=0.02

6. Normalized Power

One-Way ANOVA; Factor: Genotype (between-subjects)

60min post-diazepam

Genotype F(3,15)=1.02 p=0.41

DOI: 10.7554/eLife.14120.021
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(a2CA1KO), Grik4 cre (Nakazawa et al., 2002) to generate a CA3-selective knockout (a2CA3KO)

and POMC cre (McHugh et al., 2007) to generate a DG-selective knockout (a2DGKO).

Mice were bred at McLean Hospital animal facility. For immunohistochemistry, ex vivo recordings

and FPS experiments, the mice were kept on a 12-hr light/dark cycle with lights on at 07:00 am. For

EPM, LDB, open field and VCT, the mice were maintained on a reverse 12-hr light/dark cycle with

lights on at 07:00pm, and the tests were conducted during the dark phase. For in vivo electrophysi-

ology experiments, a mix of male and female experimental mice were shipped from McLean Hospital

to Yale University at 4 weeks of age, and were allowed to acclimatize to the new environment for at

least 6 weeks before the experiments. Only male mice were used for all other experiments. a2F/F

mice carrying the corresponding cre transgene were used as experimental animals, while the a2F/F,

Cre- littermates were combined into a single a2F/F control group with approximately equal numbers

from each breeding. All mice were maintained on either a C57BL/6J background or a 129X1/SvJ

(only for the mice used in light/dark box, the secondary elevated plus maze experiments and cogni-

tive measures) background.

Immunohistochemistry
Mice were deeply anesthetized with sodium pentobarbital (200 mg/kg) and were perfused transcar-

dially with ice-cold phosphate-buffered saline (PBS), followed by 150mM sodium phosphate buffer

containing 4% paraformaldehyde and 15% picric acid. The brains were post-fixed in the same fixa-

tion solution for 4 hr, and were then processed for antigen retrieval. Briefly, whole brains were incu-

bated in sodium citrate buffer (pH 4.5) overnight at room temperature. Next day, blocks of tissue

including the regions of interest were cut, placed in fresh sodium citrate buffer and were irradiated

in a microwave for 90 sec. The brains were washed in PBS following microwave irradiation and were

placed in 30% sucrose for cryoprotection. The brains were sectioned coronally into 40 mm-thick sec-

tions using a sliding microtome, and the sections were stored at -20C in an antifreeze solution until

use.

Immunoperoxidase staining was performed using diaminobenzidine as a chromophore. The sec-

tions were incubated in a 0.3% H2O2 solution for 30 min, followed by 2 hr blocking in 3% normal

goat serum (NGS), 0.25% Triton X-100 solution for 2 hr, and were incubated overnight at 4C in pri-

mary antibodies (Guinea pig anti-a1 (1:20,000), guinea pig anti-a2 (1:1,000) and guinea pig anti-a5

(1:1,000; Fritschy and Mohler, 1995). diluted in Tris buffer containing 2% NGS and 0.2% Triton X-

100. The next day, the sections were washed and incubated in a biotinylated secondary antibody

(goat anti-guinea pig (1:300), Jackson ImmunoResearch), and then in ABC complex solution (Vectas-

tain Elite kit; Vector Laboratories, Burlingame, CA) at room temperature. The sections were incu-

bated in 0.05% diaminobenzidine tetrahydrochloride (Sigma-Aldrich, St. Lois, MO) dissolved in Tris-

Triton (pH 7.7) containing 0.02% H2O2 for approximately 10 min at room temperature, washed in

ice-cold PBS, mounted on gelatinized slides. The slides were air-dried, dehydrated and coverslipped

with Eukitt (Fluka, Sigma-Aldrich, St. Lois, MO).

For semi-quantitative analysis of the DAB-stained tissue, sections spanning the length of the HPC

were photographed at 4x and 10x magnification, and optical density was calculated in regions of

interest using the Image J software. For each area, optical density measured on a2F/F control sec-

tions was set to 1 and all other measurements were expressed as a proportion of this.

ROI dissection and RNA preparation
All procedures were carried out in an RNase free environment with surgical tools and bench space

decontaminated with RNase AWAY (Molecular Bioproducts, Carlsbad, CA). Hippocampal regions

were dissected by laser capture microdissection (LCM). Procedures for LCM were previously

described by (Chen et al., 2014). Briefly, fresh frozen brains were sectioned at 10 mm and mounted

on uncoated glass slides. The slides were then treated with a series of dehydration steps (acetone,

ethanol, and xylene) and then air-dried. Hippocampal regions of interest (ROIs), as illustrated in

Figure 1C, were captured with Arcturus XT (Applied Biosystems, Carlsbad, CA) onto CapSure LCM

caps (Applied Biosystems, Carlsbad, CA). For each brain, hippocampal ROIs were collected from 4–

5 coronal sections, bilaterally. Total RNA was then purified with PicoPure RNA isolation kit (Applied

Biosystems, Carlsbad, CA) from the caps, inspected by Synergy HT (BioTek, Winooski, VT) and nor-

malized to 2 ng/mL concentration. Amygdala and cortical specimens were obtained by manual
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dissection. Briefly, after collecting brain sections for LCM, a 300 mm section was cut from the brain

and submerged in ice cold PBS. The ROIs, as illustrated in Figure 1C, were dissected manually under

a magnifying scope. Total RNA was then purified with RNeasy mini kit (Qiagen, Valencia, CA),

inspected by Synergy HT (BioTek, Winooski, VT) and normalized to 20ng/mL concentration.

Reverse transcription and quantitative-PCR
The following primer-sets were used for q-PCR: Gabra2: forward 5’-GCTGCTTCGAATCCAGGA

TGA-3’, reverse 5’-AAATCCTCCAGGTGCATGGG-3’; Gabra3: forward 5’-CTTGGGAAGGCAA-

GAAGGTA-3’, reverse GGAGCTGCTGGTGTTTTCTT-3’; Gabra4: forward 5’-AAAGCCTCCCCCA-

GAAGTT-3’, reverse 5’-CATGTTCAAATTGGCATGTGT-3’. The selectivity of the assays was tested

by end-point gel electrophoresis and the primer efficiencies were between 85% and 105%. Refer-

ence gene (b-tubulin, forward 5’-GCGCATCAGCGTATACTACAA-3’, reverse 5’-TTCCAAGTCCAC-

CAGAATGG-3’) was selected from a pool of 5 candidate reference genes (b-Actin, Cyclin D, HGPRT,

S19, and b-tubulin) based on an initial assessment experiment showing its stable expression across

strains as well as good selectivity and efficiency. For each RNA specimen, first-strand cDNA was

made from 20 ng total RNA by Transcriptor reverse transcriptase kit (Roche Applied Science, Indian-

apolis, IN). For Gabra2 assay, 1ng cDNA was used in one LightCycler 480 SYBR Green I q-PCR reac-

tion on the LightCyclerÒ 480 Real-Time PCR System (Roche Applied Science, Indianapolis, IN). For

Gabra3 and Gabra4 assays, cDNA pre-amplification was performed with equal amount of cDNA

input using TaqMan PreAmp Kit (Life Technologies, Grand Island, NY) and q-PCR was subsequently

carried out using LightCycler 480 Probes Master (Roche Applied Science, Indianapolis, IN). The CT

values were assessed by the LC480 Software SW1.5 (Roche Applied Science, Indianapolis, IN) and

relative expression values were calculated by the DDCT-Method. Statistical analysis was performed

by One-Way ANOVA with strain as independent variable, followed by Holm-Sidak t-test against

a2F/F (control) group. One outlier and 3 failed PCR reactions were excluded from data analysis for

Gabra3 and Gabra4 mRNA expression.

Slice electrophysiology
Vibratome slices of the hippocampus (250–300 mm) were prepared from male a2CA1KO, a2CA3KO

or a2DGKO mice or corresponding littermate controls for each group (4 – 7 mice per group). Slices

were continuously superfused in solution containing (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.0

MgSO4, 1.25 NaH2PO4, 26.0 NaHCO3, 10 glucose and equilibrated with 95% O2 and 5% CO2 (pH

7.3–7.4) at 22o – 23o C. mIPSC were recorded in CA1, CA3 or DG neurons (i.e., the site of the condi-

tional knockout) in the presence of 10 mM NBQX and 1 mM TTX. Diazepam 1–5 mM was added to

the bath solution. Whole-cell recordings of mIPSCs were obtained from pyramidal neurons or gran-

ule cells under visual guidance (DIC/infrared optics) with an EPC-9 amplifier and Pulse v8.67 software

(HEKA Elektronik). Cells were classified as principal neurons based on spike frequency adaptation in

response to prolonged depolarizing current injections. The recording patch electrodes (3–5 MW

resistance) contained (in mM): 101.5 K-gluconate, 43.5 KCl, 1 MgCl2, 0.2 EGTA, 10 HEPES, 2

MgATP, and 0.2 NaGTP (adjusted to pH 7.2 with KOH). Currents were filtered at 1 kHz and digitized

at 5 kHz. mIPSCs (recorded in the presence of 1 mM TTX) were analyzed with the Mini Analysis Pro-

gram v6.0.7 (Synaptosoft Inc.).

Behavioral tests
Drugs
Diazepam (BIOMOL International, Plymouth Meeting, PA) was dissolved in a 10% (2-Hydroxypropyl)-

b-cyclodextrin vehicle solution (Sigma-Aldrich, St. Lois, MO) through sonication. Diazepam (2 mg/kg,

i.p.) or vehicle was administered 30min before the start of the behavioral tests. For in vivo electro-

physiological recordings, diazepam was administered s.c. at a dose of 1 mg/kg.

Fear-conditioning
Separate groups of mice were trained in auditory fear conditioning using a delay or a trace protocol.

For the delay protocol, on the first day of the experiment, the mice were placed in a conditioning

box (Med-Associates, Inc., St. Albans, VT) with grid floors, and were subjected to 5 tone (20 s,

70 dB, 2800 Hz) - shock (2s, 0.5 mA) pairings with 60 s intervals. The trace protocol was identical
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with the exception of a 20 s trace period between the tones and the shocks. 24 h later, the mice

were placed in a different context, the tone was played for 6 m and freezing behavior was recorded

using the Med-Associates, Inc. Video Freeze Software.

Contextual fear-conditioning was conducted on a separate group of mice. On Day1, the mice

were placed in a conditioning box and were given 2 shocks (2s, 1.5 mA, 30 s apart). 24 hr later, they

were returned to the same context for 180 s and freezing was recorded.

Morris water maze (MWM)
The MWM test was conducted in a pool (Diameter: 120 cm) filled with water (22-24oC) made opaque

with a white nontoxic dye (Premium Grade Tempera, Blick, Galesburg, IL) containing a submerged

escape platform (Diameter: 10 cm). Geometric shapes affixed to the walls served as extra-maze

cues. Mice were given 4 trials per day, released from a different quadrant each trial, with the plat-

form location constant. A trial ended either 10 s after the mouse reached the platform, or 60 s after

the start of the trial, with the experimenter guiding the mouse to the platform. On probe trials, the

platform was removed and the mice were left in the pool for 120 s, and average distance to the plat-

form during this time was measured using the tracking feature of EthoVision XT (Noldus Information

Technology, Wageningen, Netherlands). Probe trials were followed by 4 training trials. Following the

probe test on Day 12, the platform was moved from the original location to the nearest quadrant (i.

e., Reversal) and mice were given the training session with this new platform location from this point

on. The mice were placed in a cage with shredded paper towels under a heat lamp until they were

dry before being returned to their home cage at the end of testing.

Elevated plus maze (EPM)
The apparatus was a plus-shaped maze elevated 1 m from the floor consisting of two open (35 cm

long � 6 cm wide) and two closed (35 cm long � 6 cm wide � 20 cm high) arms. All testing was con-

ducted under dim lighting (30 lux on open arms). Mice were placed in the center area facing one of

the open arms and activity was recorded for 5 min and was scored automatically using the EthoVi-

sion XT video tracking system (Noldus Information Technology, Wageningen, Netherlands). The

maze was cleaned with 70% ethanol after each animal. Percentage of open arm time ([Open arm

time/5 min] � 100) and percentage of open arm entries ([Open arm entries/(Open arm entries +

Closed arm entries)] � 100) were used as measures of anxiolysis. Total distance traveled on the

maze was used as a within-test measure of general locomotor activity.

Light / dark box (LDB)
The light / dark box apparatus was comprised of one clear, brightly-lit (200 lux) chamber (28 cm x 28

cm x 31 cm) and a smaller black, dark (<10 lux) chamber (14 cm x 14 cm x 31 cm) connected with a

small opening (5 cm on each side). Mice were placed into the dark chamber 30 min. following diaze-

pam injections and were allowed to explore the whole area freely for 6 min. The session was

recorded and tracked using EthoVision XT, and total time spent in the lit chamber, as well as the

number of entries into the lit chamber were measured automatically. LDB was conducted using mice

bred on a 129X1/SvJ background, as a reliable diazepam effect was observed with control mice of

this background but not with C57BL/6J background.

Open field test (OF)
While all other experiments were conducted on naı̈ve mice, the OF test was conducted on the same

animals (C57BL/6J) that were previously tested in EPM after a one-week hiatus. Subjects were tested

in a clear Plexiglas box (42 cm � 42 cm � 31 cm) evenly illuminated at 100 lux. Subjects were placed

in one corner of the box and allowed to explore freely for 30 min. Locomotor activity, measured as

the total distance traveled (cm), was analyzed using the EthoVision XT system. Center time measures

were not included as a reliable effect of diazepam on this measure was not observed in control

mice, supposedly as a result of the relatively non-anxiogenic testing environment due to the familiar-

ity of the testing room.
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Fear-potentiated startle (FPS)
FPS test was conducted with the Med-Associates, Inc. (St. Albans, VT, USA) Startle Reflex System

and Advanced Startle software, using a six-day protocol previously optimized for C57BL/6J mice in

our laboratory (Smith et al., 2011).

On days 1–3 (Habituation Days) animals received 50 semi-random presentations of white noise

startle stimuli (20 ms; ten each of 70, 80, 85, 90 and 100 dB) with 30-sec inter-trial intervals. On day

4 (Pre-test Day), animals were first presented with 10 Leader white noise stimuli (20 ms, 85 dB) to

habituate to a baseline startle level, and then were presented with 20 “Startle Stimulus Only” (20

ms, 85 dB startle) and 20 “Tone + Startle Stimulus” (30 s, 12 kHz, 70 dB tone followed by a 20 ms,

85 dB startle) trials in a semi-random fashion. On day 5 (Conditioning Day), animals were trained to

associate the tone (30 s, 12 kHz, 70 dB) with a footshock (0.25 s, 0.4 mA) through 10 Tone - Shock

pairings.

On day 6 (Test Day), mice were assigned to a vehicle or drug group in a systematic-random fash-

ion to assure that the treatment groups were comparable in terms of percent change in startle

amplitude on “Tone + Startle Stimulus” trials versus “Startle Stimulus Only” trials based on the Pre-

Test Day data. Mice were then injected i.p. 30 min before being placed in the testing chamber for a

session identical to that presented on the PreTest Day.

Fear-potentiation of the startle reflex is indicated by a larger startle response “Tone + Startle

Stimulus” trials compared to “Startle Stimulus Only” trials on Test Day. Percent FPS was calculated

as (((Tone + Startle) � (Startle Only)/(Startle Only))] � 100 using mean startle amplitude values (in

arbitrary units) from Test Day.

In a separate test, the mice were placed in Med-Associates, Inc. (St. Albans, VT, USA) fear-condi-

tioning chambers and were given five 0.4 mA shocks to measure possible differences in shock sensi-

tivity between genotypes for the level of shock used in the FPS experiments. The average motion

value during shocks (averaged across the five shocks) measured using the Med-Associates, Inc.

Video Freeze Software was used as a proxy measure for sensitivity.

Vogel conflict test (VCT)
VCT was conducted using Med-Associates, Inc. (St. Albans, VT, USA) fear-conditioning chambers fit-

ted with a spout for water delivery on one wall. The experimental procedures were modified from

45, 46, 47, and all tests were conducted on C57Bl/6J background.

On Day 1, in the morning, mice were placed in the testing chamber for 30 min and allowed to

explore and drink water from the spout freely (Habituation). The habituation session was repeated in

the afternoon of Day 1, and one more time 24 hrs after the initial session on Day 2. Water bottles

were removed from home cages following this third habituation session to start water deprivation.

On Day 3 (Pre-test), mice were placed back in the testing chambers for another 30 min session,

with the session starting only after the first lick. The number of licks in the first 6 min following the

first lick was recorded using custom program on Med-PC Software (Med-Associates, Inc., St. Albans,

VT, USA) and the mice to be assigned to drug versus control groups were matched based on this

number. Mice were placed back in their home cages without access to water until the test session

24 hrs later. The data from this day was also used to compare drinking between genotypes when

drinking was not punished.

On Day 4 (Test), mice were placed in the chambers and the session started with the first lick and

continued for 6 min. Mice that did not lick the spout within the first 10 mins were excluded from the

test. A 0.5 sec, 0.14 mA shock was administered to the tongue following every 20th lick. Total num-

ber of licks was recorded.

In a separate experiment, the above protocol was used with the omission of shocks on Test Day

to measure the possible effects of diazepam on unpunished drinking in water-deprived control mice.

In vivo electrophysiology
Mice were anesthetized with urethane (1.5 g/kg, i.p.) and placed in a Kopf stereotaxic frame

(Tujunga, CA) on a temperature-regulated heating pad (Physitemp Instruments Inc., Clifton, NJ) set

to maintain body temperature at 370C. Local field potentials were recorded using two concentric

stainless steel bipolar electrodes (NE-100X, Rhodes Medical Instruments, Woodland Hills, CA) low-

ered into the dorsal (�1.94 mm AP, 1.5 mm LM, and -1.4 mm DV) and ventral (�3.16 mm AP,
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3.0 mm LM, and -4.2 mm DV) portions of the hippocampus (Paxinos and Franklin, 2001). Anterior-

posterior and medial-lateral coordinates were measured from bregma, while depth was calculated

relative to brain surface. Additionally, a bipolar concentric stimulating electrode (NE-100X, Rhodes

Medical Instruments, Woodland Hills, CA) was lowered into the nucleus pontis oralis (nPO; -4.0 mm

AP, 1.2 mm ML, and -3.3 mm DV). Local field potentials were amplified using an A-M System (Carls-

borg, WA) with filters set between 1 and 500 Hz. The signals were digitized at a rate of 1 kHz, and

stored for subsequent analysis using Spike2 software package, version 7 (Cambridge Electronic

Design, Cambridge, UK). Electrical stimulation of the nPO consisted of a train of 0.3 ms square

pulses delivered over 6 s at a rate of 250 Hz, and was provided by an Isoflex stimulus-isolator (A.M.

P.I. Instruments, Jerusalem, Israel). The 6-s stimulation periods were repeated with an interval of

100 s; stimulating current began at 0.02 mA, and increased in 0.02 mA increments with successive

stimulations, until a maximum of 0.10 mA was reached. In this way, a stimulus–response was

obtained over a total period of 10 min. This pattern of stimulation was repeated without interruption

for the duration of each experiment, and the first two stimulation trains were averaged to give base-

line values. Fast Fourier transform analysis was performed on the last 5 s of the EEG during each 6-s

stimulation period. The first second during stimulation was not included to avoid stimulus artifact

(Scott et al., 2012; Siok et al., 2009). During the analysis, least squares linear regression lines were

fitted to the baseline stimulation amplitude – theta frequency data of each mouse separately for ven-

tral and dorsal hippocampal recordings. Animals where increasing stimulation failed to cause a linear

frequency response (R2 values < 0.50) were excluded from further analysis (For ventral hippocampus:

2 a2F/F, 1 a2CA3KO, 2 a2DGKO mice; for dorsal hippocampus: 3 a2F/F, 1 a2CA1KO, 1 a2CA3O,

2 a2DGKO mice). As noted above, a mix of male and female mice were used in the analyses (Specifi-

cally, 2 female a2F/F and 2 female a2CA1KO mice were used in addition to males due to difficulties

in breeding the required number of male mice). While behaviorally there are substantial differences

between male and female mice, the hippocampal theta recordings from the female mice did not

show any differences from the male and none of the mice that were excluded from the analyses due

to not meeting the above-noted criteria were females.

Subsequently to baseline recordings, animals were treated with diazepam (1 mg/kg, s.c.) and the

following first to third recordings were averaged to create the 30 min post-injection values, while

average of the 4th to 6th recordings as the 60 min post-injection values. Peak theta frequency was

measured for each animal by determining where the peak power occurred in the 4–8 Hz frequency

band of the power spectrum at a frequency resolution of approximately 0.24 Hz. Stimulating current

inducing theta oscillation between 6–7 Hz frequencies was selected for power analysis. Absolute

theta power was determined by summing the power in the 4 to 8 Hz frequency band, then normal-

ized for each animal to the mean of the baseline responses prior to drug administration. Changes of

theta power from baseline in each group were tested using one-way ANOVA followed by post-hoc

Bonferroni’s test.

Statistics
The sample sizes for behavioral tests were calculated with power analyses based on previous find-

ings (Smith et al., 2012). The EPM test in the Smith et al. (Smith et al., 2012) study uses the same

background and test parameters as the EPM test on C57Bl/6J mice in the current study. Thus, the

mean and standard deviation values in the control group of the Smith et al. (Smith et al., 2012)

study were used in a power analysis to calculate sample sizes for all tests of anxiety used in the cur-

rent study (Mean 1: 0.40, Mean 2: 0.80, Standard deviation values between 0.14–0.18, alpha: 0.05,

intended power: 0.80, which yielded target sample sizes of 8–13). Similarly, the FPS test values for

control mice in the same study were used to calculate sample sizes for all tests of fear in the current

study (Mean 1: 0.45, Mean 2: 0.80, Standard deviation values between 0.24–0.31, alpha: 0.05,

intended power: 0.80, which yielded target sample sizes of 7–13). A sample size per group of 4–8

mice was chosen as the group size for in vivo electrophysiology experiments based on earlier studies

measuring hippocampal theta oscillations in mice using similar parameters, in which these sample

sizes yielded a statistical power of 0.80 or above (Scott et al., 2012). Following the exclusion of

mice based on criteria explained above (see Materials and methods – In vivo electrophysiology),

eventual sample sizes of 3–5 mice were used in statistical analyses.
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Data were expressed as means and standard errors of the mean (S.E.M.) and analyzed using the

SAS statistical software version 9.1 (SAS Institute, Inc., Cary, NC) and SigmaPlot software version

11.0 (Systat Software, Inc., Chicago, IL).

With the exception of in vitro electrophysiology, data were analyzed with Two-Way Analyses of

Variance (ANOVAs) using genotype and drug dose as the factors, followed, where the initial test is

statistically significant, by post hoc Holm-Sidak tests for multiple comparisons (unless noted other-

wise). In vitro electrophysiology data were analyzed separately for each conditional knockout, with

F/F Cre- littermates serving as controls. A two-way ANOVA was used for genotype and drug effects.

The significance level for all tests was set at p<0.05.
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