1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

  1. Aaron A Hoskins  Is a corresponding author
  2. Margaret L Rodgers
  3. Larry J Friedman
  4. Jeff Gelles
  5. Melissa J Moore
  1. University of Wisconsin-Madison, United States
  2. Brandeis University, United States
  3. Howard Hughes Medical Institute, University of Massachusetts Medical School, United States
Research Article
  • Cited 31
  • Views 2,639
  • Annotations
Cite this article as: eLife 2016;5:e14166 doi: 10.7554/eLife.14166

Abstract

The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation.

Article and author information

Author details

  1. Aaron A Hoskins

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    For correspondence
    ahoskins@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Margaret L Rodgers

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Larry J Friedman

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeff Gelles

    Department of Biochemistry, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Melissa J Moore

    Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jonathan P Staley, University of Chicago, United States

Publication history

  1. Received: January 3, 2016
  2. Accepted: May 26, 2016
  3. Accepted Manuscript published: May 31, 2016 (version 1)
  4. Version of Record published: June 27, 2016 (version 2)

Copyright

© 2016, Hoskins et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,639
    Page views
  • 715
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Andrea Loreto et al.
    Research Article Updated

    Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Lucas C Pantaleao et al.
    Research Article

    Maternal obesity during pregnancy has immediate and long-term detrimental effects on the offspring heart. In this study, we characterized the cardiac and circulatory lipid profiles in late gestation E18.5 fetuses of diet-induced obese pregnant mice and established the changes in lipid abundance and fetal cardiac transcriptomics. We used untargeted and targeted lipidomics and transcriptomics to define changes in the serum and cardiac lipid composition and fatty acid metabolism in male and female fetuses. From these analyses we observed: (1) maternal obesity affects the maternal and fetal serum lipidome distinctly; (2) female fetal heart lipidomes are more sensitive to maternal obesity than males; (3) changes in lipid supply might contribute to early expression of lipolytic genes in mouse hearts exposed to maternal obesity. These results highlight the existence of sexually dimorphic responses of the fetal heart to the same in utero obesogenic environment and identify lipids species that might mediate programming of cardiovascular health.