CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture

Abstract

Inflammation-induced release of prostaglandin E2 (PGE2) changes breathing patterns and the response to CO2 levels. This may have fatal consequences in newborn babies and result in sudden infant death. To elucidate the underlying mechanisms, we present a novel breathing brainstem organotypic culture that generates rhythmic neural network and motor activity for 3 weeks. We show that increased CO2 elicits a gap junction-dependent release of PGE2. This alters neural network activity in the preBötzinger rhythm-generating complex and in the chemosensitive brainstem respiratory regions, thereby increasing sigh frequency and the depth of inspiration. We used mice lacking eicosanoid prostanoid 3 receptors (EP3R), breathing brainstem organotypic slices and optogenetic inhibition of EP3R+/+cells to demonstrate that the EP3R is important for the ventilatory response to hypercapnia. Our study identifies a novel pathway linking the inflammatory and respiratory systems, with implications for inspiration and sighs throughout life, and the ability to autoresuscitate when breathing fails.

Article and author information

Author details

  1. David Forsberg

    Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
    Competing interests
    No competing interests declared.
  2. Zachi Horn

    Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
    Competing interests
    No competing interests declared.
  3. Evangelia Tserga

    Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
    Competing interests
    No competing interests declared.
  4. Erik Smedler

    Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
    Competing interests
    No competing interests declared.
  5. Gilad Silberberg

    Department of Neuroscience, Karolinska Institutet, Solna, Sweden
    Competing interests
    No competing interests declared.
  6. Yuri Shvarev

    Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
    Competing interests
    No competing interests declared.
  7. Kai Kaila

    Neuroscience Center, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  8. Per Uhlén

    Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
    Competing interests
    No competing interests declared.
  9. Eric Herlenius

    Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
    For correspondence
    eric.herlenius@ki.se
    Competing interests
    Eric Herlenius, employed at the Karolinska University Hospital and the Karolinska Institutet and is a coinventor of a patent application regarding biomarkers and their relation to breathing disorders, WO2009063226..

Reviewing Editor

  1. Jan-Marino Ramirez, Seattle Children's Research Institute and University of Washington, United States

Ethics

Animal experimentation: The studies were performed in strict accordance with European Community Guidelines and protocols approved by the regional ethic committee (Permit numbers: N247/13, N265/14b & N185/15).

Version history

  1. Received: January 3, 2016
  2. Accepted: June 21, 2016
  3. Accepted Manuscript published: July 5, 2016 (version 1)
  4. Version of Record published: August 4, 2016 (version 2)

Copyright

© 2016, Forsberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,784
    views
  • 536
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Forsberg
  2. Zachi Horn
  3. Evangelia Tserga
  4. Erik Smedler
  5. Gilad Silberberg
  6. Yuri Shvarev
  7. Kai Kaila
  8. Per Uhlén
  9. Eric Herlenius
(2016)
CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture
eLife 5:e14170.
https://doi.org/10.7554/eLife.14170

Share this article

https://doi.org/10.7554/eLife.14170

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Mu Qiao
    Tools and Resources

    Understanding how different neuronal types connect and communicate is critical to interpreting brain function and behavior. However, it has remained a formidable challenge to decipher the genetic underpinnings that dictate the specific connections formed between neuronal types. To address this, we propose a novel bilinear modeling approach that leverages the architecture similar to that of recommendation systems. Our model transforms the gene expressions of presynaptic and postsynaptic neuronal types, obtained from single-cell transcriptomics, into a covariance matrix. The objective is to construct this covariance matrix that closely mirrors a connectivity matrix, derived from connectomic data, reflecting the known anatomical connections between these neuronal types. When tested on a dataset of Caenorhabditis elegans, our model achieved a performance comparable to, if slightly better than, the previously proposed spatial connectome model (SCM) in reconstructing electrical synaptic connectivity based on gene expressions. Through a comparative analysis, our model not only captured all genetic interactions identified by the SCM but also inferred additional ones. Applied to a mouse retinal neuronal dataset, the bilinear model successfully recapitulated recognized connectivity motifs between bipolar cells and retinal ganglion cells, and provided interpretable insights into genetic interactions shaping the connectivity. Specifically, it identified unique genetic signatures associated with different connectivity motifs, including genes important to cell-cell adhesion and synapse formation, highlighting their role in orchestrating specific synaptic connections between these neurons. Our work establishes an innovative computational strategy for decoding the genetic programming of neuronal type connectivity. It not only sets a new benchmark for single-cell transcriptomic analysis of synaptic connections but also paves the way for mechanistic studies of neural circuit assembly and genetic manipulation of circuit wiring.

    1. Computational and Systems Biology
    2. Medicine
    Seo-Gyeong Bae, Guo Nan Yin ... Jihwan Park
    Research Article

    Erectile dysfunction (ED) affects a significant proportion of men aged 40–70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.