The wiring diagram of a glomerular olfactory system

  1. Matthew E Berck
  2. Avinash Khandelwal
  3. Lindsey Claus
  4. Luis Hernandez-Nunez
  5. Guangwei Si
  6. Christopher J Tabone
  7. Feng Li
  8. James W Truman
  9. Richard D Fetter
  10. Matthieu Louis
  11. Aravinthan DT Samuel
  12. Albert Cardona  Is a corresponding author
  1. Harvard University, United States
  2. The Barcelona Institute of Science and Technology, Spain
  3. Fly Base, United States
  4. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior.

Article and author information

Author details

  1. Matthew E Berck

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Avinash Khandelwal

    EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Lindsey Claus

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Luis Hernandez-Nunez

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Guangwei Si

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher J Tabone

    Fly Base, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Feng Li

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James W Truman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Richard D Fetter

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthieu Louis

    EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Aravinthan DT Samuel

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Albert Cardona

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    cardonaa@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Berck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,753
    views
  • 1,610
    downloads
  • 171
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew E Berck
  2. Avinash Khandelwal
  3. Lindsey Claus
  4. Luis Hernandez-Nunez
  5. Guangwei Si
  6. Christopher J Tabone
  7. Feng Li
  8. James W Truman
  9. Richard D Fetter
  10. Matthieu Louis
  11. Aravinthan DT Samuel
  12. Albert Cardona
(2016)
The wiring diagram of a glomerular olfactory system
eLife 5:e14859.
https://doi.org/10.7554/eLife.14859

Share this article

https://doi.org/10.7554/eLife.14859

Further reading

    1. Neuroscience
    Rituja S Bisen, Fathima Mukthar Iqbal ... Jan M Ache
    Research Article

    Insulin plays a key role in metabolic homeostasis. Drosophila insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings. We found that the nutritional state strongly modulates IPC activity. IPC activity decreased with increasing periods of starvation. Refeeding flies with glucose or fructose, two nutritive sugars, significantly increased IPC activity, whereas non-nutritive sugars had no effect. In contrast to feeding, glucose perfusion did not affect IPC activity. This was reminiscent of the mammalian incretin effect, where glucose ingestion drives higher insulin release than intravenous application. Contrary to IPCs, Diuretic hormone 44-expressing neurons in the pars intercerebralis (DH44PINs) responded to glucose perfusion. Functional connectivity experiments demonstrated that these DH44PINs do not affect IPC activity, while other DH44Ns inhibit them. Hence, populations of autonomously and systemically sugar-sensing neurons work in parallel to maintain metabolic homeostasis. Accordingly, activating IPCs had a small, satiety-like effect on food-searching behavior and reduced starvation-induced hyperactivity, whereas activating DH44Ns strongly increased hyperactivity. Taken together, we demonstrate that IPCs and DH44Ns are an integral part of a modulatory network that orchestrates glucose homeostasis and adaptive behavior in response to shifts in the metabolic state.

    1. Neuroscience
    Yichun Shuai, Megan Sammons ... Yoshinori Aso
    Tools and Resources

    The mushroom body (MB) is the center for associative learning in insects. In Drosophila, intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines. Here we describe a new collection of over 800 split-GAL4 and split-LexA drivers that cover approximately 300 cell types, including sugar sensory neurons, putative nociceptive ascending neurons, olfactory and thermo-/hygro-sensory projection neurons, interneurons connected with the MB-extrinsic neurons, and various other cell types. We characterized activation phenotypes for a subset of these lines and identified a sugar sensory neuron line most suitable for reward substitution. Leveraging the thousands of confocal microscopy images associated with the collection, we analyzed neuronal morphological stereotypy and discovered that one set of mushroom body output neurons, MBON08/MBON09, exhibits striking individuality and asymmetry across animals. In conjunction with the EM connectome maps, the driver lines reported here offer a powerful resource for functional dissection of neural circuits for associative learning in adult Drosophila.