The wiring diagram of a glomerular olfactory system

  1. Matthew E Berck
  2. Avinash Khandelwal
  3. Lindsey Claus
  4. Luis Hernandez-Nunez
  5. Guangwei Si
  6. Christopher J Tabone
  7. Feng Li
  8. James W Truman
  9. Richard D Fetter
  10. Matthieu Louis
  11. Aravinthan DT Samuel
  12. Albert Cardona  Is a corresponding author
  1. Harvard University, United States
  2. The Barcelona Institute of Science and Technology, Spain
  3. Fly Base, United States
  4. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior.

Article and author information

Author details

  1. Matthew E Berck

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Avinash Khandelwal

    EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Lindsey Claus

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Luis Hernandez-Nunez

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Guangwei Si

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher J Tabone

    Fly Base, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Feng Li

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James W Truman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Richard D Fetter

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthieu Louis

    EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Aravinthan DT Samuel

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Albert Cardona

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    cardonaa@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: January 30, 2016
  2. Accepted: May 6, 2016
  3. Accepted Manuscript published: May 13, 2016 (version 1)
  4. Version of Record published: July 1, 2016 (version 2)

Copyright

© 2016, Berck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,362
    Page views
  • 1,559
    Downloads
  • 127
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew E Berck
  2. Avinash Khandelwal
  3. Lindsey Claus
  4. Luis Hernandez-Nunez
  5. Guangwei Si
  6. Christopher J Tabone
  7. Feng Li
  8. James W Truman
  9. Richard D Fetter
  10. Matthieu Louis
  11. Aravinthan DT Samuel
  12. Albert Cardona
(2016)
The wiring diagram of a glomerular olfactory system
eLife 5:e14859.
https://doi.org/10.7554/eLife.14859

Share this article

https://doi.org/10.7554/eLife.14859

Further reading

    1. Developmental Biology
    2. Neuroscience
    Athina Keramidioti, Sandra Schneid ... Charles N David
    Research Article

    The Hydra nervous system is the paradigm of a ‘simple nerve net’. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.

    1. Neuroscience
    Anna-Maria Grob, Hendrik Heinbockel ... Lars Schwabe
    Research Article

    Maintaining an accurate model of the world relies on our ability to update memory representations in light of new information. Previous research on the integration of new information into memory mainly focused on the hippocampus. Here, we hypothesized that the angular gyrus, known to be involved in episodic memory and imagination, plays a pivotal role in the insight-driven reconfiguration of memory representations. To test this hypothesis, participants received continuous theta burst stimulation (cTBS) over the left angular gyrus or sham stimulation before gaining insight into the relationship between previously separate life-like animated events in a narrative-insight task. During this task, participants also underwent EEG recording and their memory for linked and non-linked events was assessed shortly thereafter. Our results show that cTBS to the angular gyrus decreased memory for the linking events and reduced the memory advantage for linked relative to non-linked events. At the neural level, cTBS targeting the angular gyrus reduced centro-temporal coupling with frontal regions and abolished insight-induced neural representational changes for events linked via imagination, indicating impaired memory reconfiguration. Further, the cTBS group showed representational changes for non-linked events that resembled the patterns observed in the sham group for the linked events, suggesting failed pruning of the narrative in memory. Together, our findings demonstrate a causal role of the left angular gyrus in insight-related memory reconfigurations.