Reconstruction of genetically identified neurons imaged by serial-section electron microscopy

  1. Maximilian Joesch
  2. David Mankus
  3. Masahito Yamagata
  4. Ali Shahbazi
  5. Richard Shalek
  6. Adi Suissa-Peleg
  7. Markus Meister
  8. Jeff w Lichtman
  9. Walter J Scheirer
  10. Joshua R Sanes  Is a corresponding author
  1. Harvard University, United States
  2. University of Notre Dame, United States
  3. California Institute of Technology, United States
  4. Harvard, United States

Abstract

Resolving patterns of synaptic connectivity in neural circuits currently requires serial section electron microscopy. However, complete circuit reconstruction is prohibitively slow and may not be necessary for many purposes such as comparing neuronal structure and connectivity among multiple animals. Here, we present an alternative strategy, targeted reconstruction of specific neuronal types. We used viral vectors to deliver peroxidase derivatives, which catalyze production of an electron-dense tracer, to genetically identified neurons, and developed a protocol that enhances the electron-density of the labeled cells and while retaining quality of the ultrastructure. The high contrast of the marked neurons enabled two innovations that dramatically speed data acquisition: targeted high-resolution reimaging of regions selected from rapidly-acquired lower resolution reconstruction, and an unsupervised segmentation algorithm. This pipeline reduces imaging and reconstruction times by at least two orders of magnitude, facilitating directed inquiry of circuit motifs.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Maximilian Joesch

    Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. David Mankus

    Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Masahito Yamagata

    Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8193-2931
  4. Ali Shahbazi

    University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Richard Shalek

    Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Adi Suissa-Peleg

    School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Markus Meister

    Division of Biology, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2136-6506
  8. Jeff w Lichtman

    Center for Brain Science, Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Walter J Scheirer

    University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joshua R Sanes

    Center for Brain Science, Harvard University, Cambridge, United States
    For correspondence
    sanesj@mcb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8926-8836

Ethics

Animal experimentation: Animals were used in accordance with NIH guidelines and protocols approved by Institutional Animal Use and Care Committee at Harvard University (Protocol 233 #92_19).

Copyright

© 2016, Joesch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,220
    views
  • 1,705
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maximilian Joesch
  2. David Mankus
  3. Masahito Yamagata
  4. Ali Shahbazi
  5. Richard Shalek
  6. Adi Suissa-Peleg
  7. Markus Meister
  8. Jeff w Lichtman
  9. Walter J Scheirer
  10. Joshua R Sanes
(2016)
Reconstruction of genetically identified neurons imaged by serial-section electron microscopy
eLife 5:e15015.
https://doi.org/10.7554/eLife.15015

Share this article

https://doi.org/10.7554/eLife.15015

Further reading

    1. Cell Biology
    Mitsuhiro Abe, Masataka Yanagawa ... Yasushi Sako
    Research Article

    Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.

    1. Cell Biology
    Jeongsik Kim, Dahyun Kim ... Dae-Sik Lim
    Research Article

    Cell survival in metazoans depends on cell attachment to the extracellular matrix (ECM) or to neighboring cells. Loss of such attachment triggers a type of programmed cell death known as anoikis, the acquisition of resistance to which is a key step in cancer development. The mechanisms underlying anoikis resistance remain unclear, however. The intracellular F-actin cytoskeleton plays a key role in sensing the loss of cell–ECM attachment, but how its disruption affects cell fate during such stress is not well understood. Here, we reveal a cell survival strategy characterized by the formation of a giant unilocular vacuole (GUVac) in the cytoplasm of the cells whose actin cytoskeleton is disrupted during loss of matrix attachment. Time-lapse imaging and electron microscopy showed that large vacuoles with a diameter of >500 nm accumulated early after inhibition of actin polymerization in cells in suspension culture, and that these vacuoles subsequently coalesced to form a GUVac. GUVac formation was found to result from a variation of a macropinocytosis-like process, characterized by the presence of inwardly curved membrane invaginations. This phenomenon relies on both F-actin depolymerization and the recruitment of septin proteins for micron-sized plasma membrane invagination. The vacuole fusion step during GUVac formation requires PI(3)P produced by VPS34 and PI3K-C2α on the surface of vacuoles. Furthermore, its induction after loss of matrix attachment conferred anoikis resistance. Our results thus show that the formation of a previously unrecognized organelle promotes cell survival in the face of altered actin and matrix environments.