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Abstract Salmonella Typhi is the causative agent of typhoid. Typhoid is diagnosed by blood

culture, a method that lacks sensitivity, portability and speed. We have previously shown that

specific metabolomic profiles can be detected in the blood of typhoid patients from Nepal

(Näsström et al., 2014). Here, we performed mass spectrometry on plasma from Bangladeshi and

Senegalese patients with culture confirmed typhoid fever, clinically suspected typhoid, and other

febrile diseases including malaria. After applying supervised pattern recognition modelling, we

could significantly distinguish metabolite profiles in plasma from the culture confirmed typhoid

patients. After comparing the direction of change and degree of multivariate significance, we

identified 24 metabolites that were consistently up- or down regulated in a further Bangladeshi/

Senegalese validation cohort, and the Nepali cohort from our previous work. We have identified

and validated a metabolite panel that can distinguish typhoid from other febrile diseases, providing

a new approach for typhoid diagnostics.
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Introduction
Typhoid is a systemic infection caused by the bacterium Salmonella Typhi (S. Typhi) (Parry et al.,

2002; Dougan and Baker, 2014). With an estimated 21 million cases annually, typhoid remains a

persistent global health issue (Buckle et al., 2012; Ochiai et al., 2008). The symptoms of typhoid

arise after the organism invades the gastrointestinal wall and enters the bloodstream (Everest et al.,

2001). Isolating the organism from the bloodstream is the mainstay of typhoid diagnostics

(Gilman et al., 1975; Parry et al., 2011), but this method lacks sensitivity and researchers are aiming

to discover biomarkers that may become a more reliable and rapid approach to diagnosing disease

(Baker et al., 2010). One approach for discovering biomarkers is metabolomics, a method detecting

low-molecular-weight metabolites in biological materials by mass spectrometry (Madsen et al.,

2010). Our previous work demonstrated that significant and reproducible metabolite profiles could

segregate S. Typhi cases, Salmonella Paratyphi A cases, and asymptomatic controls in a Nepali

patient cohort (Näsström et al., 2014). Further, we found that a combination of six metabolites

could define the infecting pathogen in the blood of febrile patients. These data represented a major

step forward in the discovery of biomarkers with the potential to be future typhoid diagnostics. We

have applied a similar approach with plasma samples collected from febrile patients in Bangladesh

and Senegal to further investigate and validate our previous findings.

Results

Plasma metabolites in Bangladeshi typhoid fever patients
By hierarchical multivariate curve resolution, we resolved 394 peaks from the GCxGC-TOFMS data

(Materials and methods) in 30 plasma samples from febrile patients in Bangladesh (Table 1); after fil-

tering to remove low-quality peaks and metabolites with a high run order correlation we detected

236 metabolite peaks suitable for modeling. Of the detected metabolite peaks, 65/236 (27.5%) had

a putative annotation, 8/236 (3.4%) had a metabolite class, 32/236 (13.6%) were of uncertain iden-

tity, and 131/236 (55.5%) were unknown (Supplementary file 1A). Initial modeling of these 236

metabolites revealed one outlying sample in the fever control group, which was excluded. We

applied a supervised pattern recognition approach using Orthogonal Partial Least Squares with Dis-

criminant Analysis (OPLS-DA) to differentiate the metabolite profiles between two sample classes

(culture positive typhoid patients and fever controls). This model was then used to predict the iden-

tity of the individual samples in a third sample class (clinically suspected typhoid). The OPLS-DA

model provided excellent predictive power for distinguishing between culture-positive typhoid

patients and fever controls in the first predictive component using 236 informative primary metabo-

lite features (t[1] and tcv[1]) (p=0.006) (Figure 1A and Supplementary file 1B).

Prediction of culture-negative/clinically suspected typhoid fever
A major challenge in diagnosing typhoid is identifying true typhoid patients but have a negative

blood culture result (Moore et al., 2014). We observed a significant overlap between the culture-

negative/clinically suspected typhoid metabolite profiles with both the culture-positive group and

the fever control group (Figure 1B). We used the OPLS-DA model that distinguished between the

culture-positive typhoid patients and the fever controls to predict the clinically suspected typhoid

samples. We found that 5/9 plasma samples had a metabolite profile indicative of culture-positive

typhoid and three exhibited a greater degree of resemblance to fever controls (one indifferent)

(Figure 1B). Notably, 3/5 clinically suspected typhoid samples with a metabolite profile indicative of

typhoid were additionally PCR amplification positive for S. Typhi in blood (Table 1 and Figure 1B).

We also investigated potential diagnostic typhoid signatures in urine samples from the same

patients using UPLC-Q-TOFMS (Materials and methods). Examination of 941 putative metabolite

peaks obtained from urine using positive ionization an OPLS-DA model resulted in significantly dif-

ferent metabolite profiles between the S. Typhiculture-positive patients and the fever controls

(p=0.025) (Figure 1—figure supplement 1 and Supplementary file 1B).

Näsström et al. eLife 2017;6:e15651. DOI: 10.7554/eLife.15651 2 of 10

Research advance Biochemistry Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.15651


Table 1. Patient group metadata for the Bangladeshi cohort.

Clinical parameter* Culture confirmed typhoid† (n = 10)¶ Suspected typhoid‡ (n = 9) Fever controls§ (n = 10)

Age (years) 23 (20–30) 22 (16–30) 46 (20–65)

Sex (male) 5 6 8

Fever duration (days) 7 (5–11) 10 (6–12) 5 (5–9)

Abdominal pain 5 5 5

Diarrhoea 5 3 2

Constipation 1 4 2

Vomiting 5 7 3

Cough 2 1 7

Rash 0 2 0

Dysuria 0 0 2

Headache 6 4 6

Seizure 0 0 0

Drowsy 0 2 2

Bloody stool/ Melaena 1 0 1

Confusion/unconscious 0 1 0

Axillary temperature (oC) 38.6 (38.3–39.4) 38.9 (38.5–39.4) 38.6 (38.3–38.9)

Pulse (bpm) 108 (97–114) 100 (92–110) 105 (86–123)

Jaundice 0 1 1

Hepatomegaly 1 2 1

Splenomegaly 0 0 1

Hb 11.9 (10.4–12.9 12.0 (9.6–12.1) 12.6 (10.4–14.0)

WBC 6.6 (4.9–8.4) 7.0 (4.2–8.5) 14.4 (10.7–21.1)

Neutrophils (%) 79 (70–81) 70 (63–72) 80 (78–88)

Lymphocytes (%) 19 (15–26) 25 (24–33) 15 (8–18)

Monocytes (%) 2 (2–3) 2 (2–4) 2 (2–4)

Eosinophils (%) 1 (1–1) 1 (1–2) 1 (1–2)

Platelets 170 (160–232) 180 (160–265) 280 (180–320)

Urea 24.6 (21.4–28.0) 24.1 (22.1–29.5) 67.9 (21.4–81.2)

Creatinine 0.9 0.6–1.0) 0.9 (.7–1.0) 1.6 (0.8–2.4)

AST 101 (47–137) 51 (33–199) 32 (16–78)

ALT 93 (48–137) 36 (28–105) 31 (20–43)

Complications** 2 0 4

Died†† 0 0 2

*Median and interquartile range (IQR) for each patient group given for quantitative parameters and number of patients with presence of symptom/char-

acteristics for qualitative parameters.
†Typhoid confirmed by a positive blood culture for S. Typhi.
‡Clinical suspected typhoid fever with a negative blood culture, final diagnoses included: Clinically suspected typhoid with blood PCR amplification pos-

itive for S. Typhi (3); clinical suspected typhoid (4); clinical suspected typhoid or leptospirosis (1); possible typhoid encephalopathy (1).
§Fever controls included: pneumonia (3), malaria (2), meningitis (2); sepsis (1), cellulitis (1), urinary tract infection (1).
¶One sample removed from analysis due to discrepant metabolite profile.

**Complications were: gastrointestinal bleeding and severe anaemia requiring transfusion in the typhoid group; respiratory failure, hepatorenal failure,

septic shock and cardiopulmonary arrest, coma and cardiopulmonary arrest, and an acute myocardial infarction in the fever controls.
††Deaths in this group were associated with sepsis and malaria.

DOI: 10.7554/eLife.15651.004
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Reproducible typhoid metabolite patterns in Bangladeshi and Nepali
cohorts
We next compared informative plasma metabolites of Bangladeshi S. Typhiculture-positive patients

with the metabolites in the S. Typhi patients from our previous investigation in Nepal

(Näsström et al., 2014). We found 99 informative metabolites in plasma from both cohorts. Com-

paring the direction of change and the degree of significance we identified 33 metabolites that were

consistently up- or downregulated between the culture-positive S. Typhi patients and fever/asymp-

tomatic controls in the two studies (Supplementary file 1C). Fifteen of the 33 metabolites were mul-

tivariate significant with a stricter criteria (w*>|�x ±SD|) in the Bangladeshi cohort and all 33

metabolites were multivariate significant (w*>|0.03|) in the Nepali cohort. OPLS-DA models with the

15 multivariate significant metabolites resulted in significant separations between S. Typhiculture-

positive patients and fever controls in the current study (Bangladeshi cohort) (p=0.016), and the

asymptomatic controls in the previous study (Nepali cohort) (p<0.0001) (Figure 2 and

Supplementary file 1B). Models based on all 33 correspondingly up or downregulated metabolites

could also distinguish the S. Typhiculture-positive patients from the fever/asymptomatic controls

(current study: p=0.077, previous study: p<0.0001) (Supplementary file 1B).

Figure 1. OPLS-DA model of plasma metabolites from a Bangladeshi cohort of patients with culture-positive typhoid and fever controls, with prediction

of suspected typhoid. (A) OPLS-DA model generated from GCxGC-TOFMS data from the plasma of 10 patients with culture-positive typhoid and 10

fever controls using 236 metabolites. Regular (circles) and cross-validated (squares) scores for the first predictive component (t[1] and tcv[1],

respectively, linked by broken line) showing a separation between culture-positive typhoid (red) and fever control samples (grey) (p=0.006). (B) Column

plot of the predicted scores for the first predictive component (tPS[1]) where clinically suspected typhoid samples (n = 9) (blue columns) have been

predicted into the model distinguishing between culture-positive typhoid (red) and fever control samples (grey). Plot shows five samples were more

similar to the culture-positive typhoid samples and three more similar to the controls; one sample remained marginal. The blue stars identify PCR-

amplification-positive samples.

DOI: 10.7554/eLife.15651.002

The following figure supplement is available for figure 1:

Figure supplement 1. OPLS-DA model of urine metabolites from a Bangladeshi cohort including patients with culture-positive typhoid and fever

controls, with prediction of suspected typhoid.

DOI: 10.7554/eLife.15651.003
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Figure 2. The identification and validation of typhoid diagnostic metabolites. OPLS-DA models generated from GCxGC-TOFMS data using 15

informative metabolites from the current study (Bangladeshi cohort) and the previous study in Nepali cohort that were consistently up- or

downregulated and significantly different in a multivariate model separating culture-positive S. Typhi patients from controls. (A) Regular (circles) and

cross-validated (squares) scores for the first predictive component (t[1] and tcv[1], respectively, linked by broken line) showing a separation between

culture-positive typhoid (red; n = 10) and fever control samples (grey; n = 10) (p=0.016) in the Bangladeshi cohort. (B) Column plot of model covariance

loadings (w*[1]) for the first predictive component for the 15 common named metabolites in the Bangladeshi cohort, showing metabolites with a higher

relative concentration in the culture-positive typhoid group in red and metabolites with a higher relative concentration in the fever control group in

grey. (C) Regular (circles) and cross-validated (squares) scores for the first predictive component (t[1] and tcv[1], respectively, linked by broken line)

Figure 2 continued on next page
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Typhoid fever metabolites in Bangladeshi and Senegalese validation
cohorts
For further validation, we analyzed an additional 54 plasma samples from febrile patients from Ban-

gladesh and Senegal using a different analytical technique (GC-TOFMS, methods). This validation

cohort included samples from patients with confirmed typhoid and samples from patients with

malaria or infections caused by other pathogens. Through an independent targeted processing

approach, we detected 247 putative metabolites; after manual filtering, 104 metabolites were suit-

able for modeling (Supplementary file 1D). Initially, a three-class OPLS-DA model was obtained

indicating the discrimination of typhoid samples from the two control groups (malaria and other

pathogens) (Figure 3—figure supplement 1 and Supplementary file 1B). Furthermore, a two-class

OPLS-DA model for separation between typhoid and all control samples together showed significant

separation for the new Bangladeshi samples (one overlapping control) and the majority of the Sene-

galese samples (p<0.0001) (Figure 3A and Supplementary file 1B). Malaria presents with a clinical

syndrome that can be indistinguishable from typhoid fever; therefore, distinguishing between the

diseases using their metabolite profiles is an important diagnostic approach. The typhoid samples

were compared to the malaria positive samples in a separate OPLS-DA model and showed signifi-

cant separation (p=0.0001), with two overlapping Senegalese typhoid samples, potentially signifying

co-infection (Figure 3B and Supplementary file 1B).

The informative plasma metabolites from the Bangladeshi/Senegalese validation cohort were

compared to the primary Bangladeshi and Nepali cohorts. We identified 49 common metabolites

across all datasets. After comparing the direction of change and degree of multivariate significance,

we found 24 metabolites that were consistently up- or downregulated in the Bangladeshi/Senegal-

ese validation cohort and the Bangladeshi cohort and/or the Nepali cohort (Supplementary file 1D).

OPLS-DA models of the consistently up- or downregulated metabolites resulted in significant sepa-

rations between those with typhoid and the control samples for the Bangladeshi/Senegalese valida-

tion cohort (p<0.0001) (Figure 3—figure supplement 2A) and for the Nepali cohort (p<0.0001)

(Figure 3—figure supplement 2C), the model was weaker for the primary Bangladeshi cohort

(p=0.39) (Figure 3—figure supplement 2B) (Supplementary file 1B).

Discussion
This study augments our previous findings and provides additional insight into next generation

typhoid diagnostics (Näsström et al., 2014). Previously, we aimed to identify metabolite profiles

that could distinguish between patients with S. Typhi and S. Paratyphi A infections. We hypothesized

that metabolite profiles might differentiate clinically indistinguishable infections caused by these

genetically related pathogens (Didelot et al., 2007; Maskey et al., 2006); asymptomatic individuals

constituted the control group. Here, we aimed to identify S. Typhi metabolite profiles in different

settings without S. Paratyphi A disease (Maude et al., 2015). This approach was a greater challenge

given a heterogeneous fever control group and a group of patients with suspected typhoid fever.

We suggest this study more closely reflects a real situation given the non-specific presentation of

febrile diseases. We also assessed the diagnostic potential of urine using this methodology as it is a

convenient specimen (Gilman et al., 1975).

Using a validation cohort from Asia and Africa we were able to identify significant, reproducible

metabolite profiles in the blood of patients with typhoid. The identified metabolites significantly dis-

criminated S. Typhi-culture-positive individuals from patients with alternative febrile diseases, includ-

ing malaria. Among patients with clinically suspected typhoid but a negative blood culture, we

identified metabolite profiles consistent with the confirmed typhoid patient profiles (Nga et al.,

2010). The metabolite profiles in urine also significantly segregated the typhoid patients from the

Figure 2 continued

showing a separation between culture-positive typhoid (red; n = 33 including eight analytical replicates) and afebrile control samples (grey; n = 32

including seven analytical replicates) (p<0.0001) from the Nepali cohort. (D) Column plot of model covariance loadings (w*[1]) for the first predictive

component for the 15 common named metabolites in the Nepali cohort, showing metabolites with a higher relative concentration in the typhoid group

in red and metabolites with a higher relative concentration in the afebrile control group in grey.

DOI: 10.7554/eLife.15651.005
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febrile controls, but did not provide the same predictions as the plasma samples for the culture-neg-

ative patients. The culturenegative clinically suspected typhoid group is challenging because of the

lack of a satisfactory reference standard diagnostic test, but this innovative method allows a new

approach to investigate this problematic patient group using plasma samples.

The most important finding from this study was the identification and validation of significantly

variable metabolites that can identify blood culture confirmed typhoid fever patients in distinct

patient cohorts (Asia and Africa) with differing control populations. At least 24 metabolites have the

potential to identify typhoid fever patients in these patients. These included glycerol-3-phosphate

(carbon source and precursor for phospholipid biosynthesis) (Austin and Larson, 1991), stearic acid

(component of liposome)(Galdiero et al., 1994), and linoleic acid (bactericidal activity) (Yang et al.,

2010), pyruvic acid, and creatinine. Furthermore, leucine and phenylalanine were consistently up- or

downregulated between all collections.

New approaches are needed for the diagnosis of tropical febrile diseases. We have identified and

validated a panel of metabolites that can identify febrile patients with typhoid. The next challenges

are to corroborate these targets in larger patient numbers and incorporate into simple diagnostic

test formats. This approach could be potentially expanded into other tropical febrile diseases.

Figure 3. OPLS-DA models of plasma metabolites from Bangladeshi/Senegalese validation cohorts of patients with typhoid, malaria and other

infections. OPLS-DA models generated from GC-TOFMS using 104 metabolites. (A) Column plot of the first predictive component scores, t[1] showing

a separation of typhoid infection samples (red; n = 14) from the two control groups; malaria (light grey; n = 15) and infections caused by other bacteria/

pathogens (grey; n = 25) (p<0.0001). For the Bangladeshi samples, there is a clear separation except for one control sample behaving as a typhoid

sample, there is more overlap for the Senegalese samples. (B) Column plot of the first predictive component scores, t[1] showing a separation of

typhoid infection samples (red; n = 14) from malaria samples (light grey; n = 15) (p<0.001). There is a clear separation for the Bangladeshi samples and

for the Senegalese samples except two typhoid samples behaving as malaria.

DOI: 10.7554/eLife.15651.006

The following figure supplements are available for figure 3:

Figure supplement 1. Three-class OPLS-DA model of GC-TOFMS data of plasma samples from a Bangladeshi/Senegalese validation cohort including

patients with typhoid, malaria and other infections based on 104 metabolites.

DOI: 10.7554/eLife.15651.007

Figure supplement 2. Comparison of metabolites for three sample cohorts.

DOI: 10.7554/eLife.15651.008

Näsström et al. eLife 2017;6:e15651. DOI: 10.7554/eLife.15651 7 of 10

Research advance Biochemistry Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.15651.006
http://dx.doi.org/10.7554/eLife.15651.007
http://dx.doi.org/10.7554/eLife.15651.008
http://dx.doi.org/10.7554/eLife.15651


Materials and methods
To measure the systemic metabolite profiles associated with typhoid, we selected plasma and urine

samples from 30 patients in a febrile disease study conducted in Chittagong, Bangladesh

(Maude et al., 2015): Ten patients had blood culture S. Typhi confirmed typhoid; nine patients had

a clinical diagnosis of typhoid (blood culture negative ± PCR positive for S. Typhi); and 11 matched

individuals had a febrile disease other than typhoid (fever controls) (Table 1 and Supplementary file

2). The study sites, population and study design are described in detail in the supplementary infor-

mation and are published elsewhere (Maude et al., 2015). Validation samples included plasma sam-

ples from 54 patients from Bangladesh and Senegal with 14 patients having confirmed S. Typhi

infection, 15 patients having malaria and 25 having an infection caused by other bacteria/pathogens

(Supplementary file 2) (von Kalckreuth et al., 2016; Marks et al., 2017). Chromatograms and

mass spectra of the Bangladeshi plasma samples were generated and analysed as previously

described by blinded operator in a random order using comprehensive two-dimensional gas chro-

matography with time-of-Flight Mass Spectrometry (GCxGC-TOFMS) (Näsström et al., 2014). Chro-

matograms and mass spectra of urine samples were generated using high-throughput ultra-

performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-

TOFMS). Chromatograms and mass spectra of the Bangladeshi/Senegalese validation plasma sam-

ples were generated using one-dimensional gas chromatography with time-of-flight mass spectrom-

etry (GC-TOFMS). Acquired and processed data was analyzed using chemometrics based pattern

recognition. All methods are described in detail in Supplementary file 3.
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