1. Computational and Systems Biology
  2. Ecology
Download icon

Community-level cohesion without cooperation

  1. Mikhail Tikhonov  Is a corresponding author
  1. Harvard University, United States
Research Article
  • Cited 37
  • Views 2,911
  • Annotations
Cite this article as: eLife 2016;5:e15747 doi: 10.7554/eLife.15747

Abstract

Recent work draws attention to community-community encounters ('coalescence') as likely an important factor shaping natural ecosystems. This work builds on MacArthur's classic model of competitive coexistence to investigate such community-level competition in a minimal theoretical setting. It is shown that the ability of a species to survive a coalescence event is best predicted by a community-level 'fitness' of its native community rather than the intrinsic performance of the species itself. The model presented here allows formalizing a macroscopic perspective whereby a community harboring organisms at varying abundances becomes equivalent to a single organism expressing genes at different levels. While most natural communities do not satisfy the strict criteria of multicellularity developed by multi-level selection theory, the effective cohesion described here is a generic consequence of resource partitioning, requires no cooperative interactions, and can be expected to be widespread in microbial ecosystems.

Article and author information

Author details

  1. Mikhail Tikhonov

    Center of Mathematical Sciences and Applications, Harvard University, Cambridge, United States
    For correspondence
    tikhonov@fas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Carl T Bergstrom, University of Washington, United States

Publication history

  1. Received: March 2, 2016
  2. Accepted: June 10, 2016
  3. Accepted Manuscript published: June 16, 2016 (version 1)
  4. Version of Record published: July 15, 2016 (version 2)

Copyright

© 2016, Tikhonov

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,911
    Page views
  • 709
    Downloads
  • 37
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Homa MohammadiPeyhani et al.
    Tools and Resources

    The discovery of a drug requires over a decade of intensive research and financial investments – and still has a high risk of failure. To reduce this burden, we developed the NICEdrug.ch resource, which incorporates 250,000 bioactive molecules, and studied their enzymatic metabolic targets, fate, and toxicity. NICEdrug.ch includes a unique fingerprint that identifies reactive similarities between drug–drug and drug–metabolite pairs. We validated the application, scope, and performance of NICEdrug.ch over similar methods in the field on golden standard datasets describing drugs and metabolites sharing reactivity, drug toxicities, and drug targets. We use NICEdrug.ch to evaluate inhibition and toxicity by the anticancer drug 5-fluorouracil, and suggest avenues to alleviate its side effects. We propose shikimate 3-phosphate for targeting liver-stage malaria with minimal impact on the human host cell. Finally, NICEdrug.ch suggests over 1300 candidate drugs and food molecules to target COVID-19 and explains their inhibitory mechanism for further experimental screening. The NICEdrug.ch database is accessible online to systematically identify the reactivity of small molecules and druggable enzymes with practical applications in lead discovery and drug repurposing.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Wellington Miranda S et al.
    Research Article Updated

    Many bacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). In these systems, a signal synthase produces an AHL to which its paired receptor selectively responds. Selectivity is fundamental to cell signaling. Despite its importance, it has been challenging to determine how this selectivity is achieved and how AHL QS systems evolve and diversify. We hypothesized that we could use covariation within the protein sequences of AHL synthases and receptors to identify selectivity residues. We began by identifying about 6000 unique synthase-receptor pairs. We then used the protein sequences of these pairs to identify covariation patterns and mapped the patterns onto the LasI/R system from Pseudomonas aeruginosa PAO1. The covarying residues in both proteins cluster around the ligand-binding sites. We demonstrate that these residues are involved in system selectivity toward the cognate signal and go on to engineer the Las system to both produce and respond to an alternate AHL signal. We have thus demonstrated that covariation methods provide a powerful approach for investigating selectivity in protein-small molecule interactions and have deepened our understanding of how communication systems evolve and diversify.