TY - JOUR TI - DAPK interacts with Patronin and the microtubule cytoskeleton in epidermal development and wound repair AU - Chuang, Marian AU - Hsiao, Tiffany I AU - Tong, Amy AU - Xu, Suhong AU - Chisholm, Andrew D A2 - Stainier, Didier YR VL - 5 PY - 2016 DA - 2016/09/23 SP - e15833 C1 - eLife 2016;5:e15833 DO - 10.7554/eLife.15833 UR - https://doi.org/10.7554/eLife.15833 AB - Epidermal barrier epithelia form a first line of defense against the environment, protecting animals against infection and repairing physical damage. In C. elegans, death-associated protein kinase (DAPK-1) regulates epidermal morphogenesis, innate immunity and wound repair. Combining genetic suppressor screens and pharmacological tests, we find that DAPK-1 maintains epidermal tissue integrity through regulation of the microtubule (MT) cytoskeleton. dapk-1 epidermal phenotypes are suppressed by treatment with microtubule-destabilizing drugs and mimicked or enhanced by microtubule-stabilizing drugs. Loss of function in ptrn-1, the C. elegans member of the Patronin/Nezha/CAMSAP family of MT minus-end binding proteins, suppresses dapk-1 epidermal and innate immunity phenotypes. Over-expression of the MT-binding CKK domain of PTRN-1 triggers epidermal and immunity defects resembling those of dapk-1 mutants, and PTRN-1 localization is regulated by DAPK-1. DAPK-1 and PTRN-1 physically interact in co-immunoprecipitation experiments, and DAPK-1 itself undergoes MT-dependent transport. Our results uncover an unexpected interdependence of DAPK-1 and the microtubule cytoskeleton in maintenance of epidermal integrity. KW - Patronin KW - CAMSAP KW - epithelial cells KW - suppression JF - eLife SN - 2050-084X PB - eLife Sciences Publications, Ltd ER -