DPP9 is a novel component of the N-end rule pathway targeting the Tyrosine Kinase Syk

  1. Daniela Justa-Schuch
  2. Maria Silva-Garcia
  3. Esther Pilla
  4. Michael Engelke
  5. Markus Kilisch
  6. Christof Lenz
  7. Ulrike Möller
  8. Fumihiko Nakamura
  9. Henning Urlaub
  10. Ruth Geiss-Friedlander  Is a corresponding author
  1. University Medical Center Goettingen, Germany
  2. MRC Laboratory of Molecular Biology, United Kingdom
  3. Harvard Medical School, United States

Abstract

The aminopeptidase DPP9 removes dipeptides from N-termini of substrates having a proline or alanine in second position. Although linked to several pathways including cell survival and metabolism, the molecular mechanisms underlying these outcomes are poorly understood. We identified a novel interaction of DPP9 with Filamin A, which recruits DPP9 to Syk, a central kinase in B-cell signalling. Syk signalling can be terminated by degradation, requiring the ubiquitin E3 ligase Cbl. We show that DPP9 cleaves Syk to produce a neo N-terminus with serine in position 1. Pulse-chases combined with mutagenesis studies reveal that Ser1 strongly influences Syk stability. Furthermore, DPP9 silencing reduces Cbl interaction with Syk, suggesting that DPP9 processing is a prerequisite for Syk ubiquitination. Consistently, DPP9 inhibition stabilizes Syk, thereby modulating Syk signalling. Taken together, we demonstrate DPP9 as a negative regulator of Syk and conclude that DPP9 is a novel integral aminopeptidase of the N-end rule pathway.

Article and author information

Author details

  1. Daniela Justa-Schuch

    Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Silva-Garcia

    Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Esther Pilla

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Engelke

    Institute of Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Markus Kilisch

    Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Christof Lenz

    Bioanalytics, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0946-8166
  7. Ulrike Möller

    Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Fumihiko Nakamura

    Hematology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Henning Urlaub

    Bioanalytics, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ruth Geiss-Friedlander

    Department of Molecular Biology, University Medical Center Goettingen, Goettingen, Germany
    For correspondence
    rgeiss@gwdg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1720-3440

Funding

Deutsche Forschungsgemeinschaft (2234/1-2)

  • Ruth Geiss-Friedlander

Heidenreich von Siebold-Programm, Universitaetsmedizin Goettingen

  • Ruth Geiss-Friedlander

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Justa-Schuch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniela Justa-Schuch
  2. Maria Silva-Garcia
  3. Esther Pilla
  4. Michael Engelke
  5. Markus Kilisch
  6. Christof Lenz
  7. Ulrike Möller
  8. Fumihiko Nakamura
  9. Henning Urlaub
  10. Ruth Geiss-Friedlander
(2016)
DPP9 is a novel component of the N-end rule pathway targeting the Tyrosine Kinase Syk
eLife 5:e16370.
https://doi.org/10.7554/eLife.16370

Share this article

https://doi.org/10.7554/eLife.16370

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.