Direction-dependent arm kinematics reveal optimal integration of gravity cues

  1. Jeremie Gaveau  Is a corresponding author
  2. Bastien Berret
  3. Dora E Angelaki
  4. Charalambos Papaxanthis
  1. Université Bourgogne Franche-Comté, INSERM CAPS UMR 1093, France
  2. CIAMS, Université Paris-Sud, Université Paris Saclay, France
  3. Baylor College of Medicine, United States

Abstract

The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort.

Article and author information

Author details

  1. Jeremie Gaveau

    Université Bourgogne Franche-Comté, INSERM CAPS UMR 1093, Dijon, France
    For correspondence
    jeremie.gaveau@u-bourgogne.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8827-1486
  2. Bastien Berret

    CIAMS, Université Paris-Sud, Université Paris Saclay, Orsay, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Dora E Angelaki

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9650-8962
  4. Charalambos Papaxanthis

    Université Bourgogne Franche-Comté, INSERM CAPS UMR 1093, Dijon, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Institut National de la Santé et de la Recherche Médicale

  • Jeremie Gaveau
  • Charalambos Papaxanthis

Agence Nationale de la Recherche (projet MOTION, 14-CE30-007-01)

  • Charalambos Papaxanthis

National Institute of Neurological Disorders and Stroke (R21-NS-075944-02)

  • Jeremie Gaveau
  • Dora E Angelaki
  • Charalambos Papaxanthis

Centre National d'Etudes Spatiales

  • Jeremie Gaveau
  • Bastien Berret
  • Charalambos Papaxanthis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained from all participants. The regional ethics committee of Burgundy (C.E.R) and the ethics committee of INSERM (Institut National de la Santé et de la Recherche Médicale) approved experimental protocols. All procedures were carried out in agreement with local requirements and international norms (Declaration of Helsinki, 1964).

Copyright

© 2016, Gaveau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,837
    views
  • 296
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremie Gaveau
  2. Bastien Berret
  3. Dora E Angelaki
  4. Charalambos Papaxanthis
(2016)
Direction-dependent arm kinematics reveal optimal integration of gravity cues
eLife 5:e16394.
https://doi.org/10.7554/eLife.16394

Share this article

https://doi.org/10.7554/eLife.16394

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.