Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome

  1. An Van den Bossche  Is a corresponding author
  2. Steven W Hardwick
  3. Pieter-Jan Ceyssens
  4. Hanne Hendrix
  5. Marleen Voet
  6. Tom Dendooven
  7. Katarzyna J Bandyra
  8. Marc De Maeyer
  9. Abram Aertsen
  10. Jean-Paul Noben
  11. Ben F Luisi  Is a corresponding author
  12. Rob Lavigne  Is a corresponding author
  1. KU Leuven, Belgium
  2. University of Cambridge, United Kingdom
  3. Scietific Institute of Public Health, Belgium
  4. UHasselt, Belgium

Abstract

In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage ΦKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, ΦKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells.

Data availability

The following data sets were generated
    1. Steven Hardwick
    (2016) crystal structure
    Publicly available at the RCSB Protein Data Bank (accession no: 5FT1).
    1. An Van den Bossche
    2. Jean-Paul Noben
    (2015) Mass spectrometry data set
    Publicly available at the PRIDE Archive (accession no: PXD003285).

Article and author information

Author details

  1. An Van den Bossche

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    For correspondence
    An.vandenbossche@wiv-isp.be
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven W Hardwick

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Pieter-Jan Ceyssens

    Division of Bacterial diseases, Scietific Institute of Public Health, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanne Hendrix

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Marleen Voet

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Tom Dendooven

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Katarzyna J Bandyra

    Department of Biochemsitry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Marc De Maeyer

    Biochemistry, Molecular and Structural Biology Scetion, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Abram Aertsen

    Laboratory of Microbiology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  10. Jean-Paul Noben

    Biomedical Research Institute and Transnational University Limburg, UHasselt, Diepenbeek, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  11. Ben F Luisi

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    bfl20@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  12. Rob Lavigne

    Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
    For correspondence
    rob.lavigne@biw.kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7377-1314

Funding

Fonds Wetenschappelijk Onderzoek (G.0599.11 & Scolarship AV)

  • An Van den Bossche
  • Pieter-Jan Ceyssens
  • Hanne Hendrix
  • Rob Lavigne

Agentschap voor Innovatie door Wetenschap en Technologie (SBO 100042)

  • An Van den Bossche
  • Pieter-Jan Ceyssens
  • Rob Lavigne

Onderzoeksraad, KU Leuven (CREA/09/017 & IDO/10/012)

  • Abram Aertsen
  • Rob Lavigne

Wellcome Trust (scholarship SH, BL)

  • Steven W Hardwick
  • Ben F Luisi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Van den Bossche et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,620
    views
  • 527
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. An Van den Bossche
  2. Steven W Hardwick
  3. Pieter-Jan Ceyssens
  4. Hanne Hendrix
  5. Marleen Voet
  6. Tom Dendooven
  7. Katarzyna J Bandyra
  8. Marc De Maeyer
  9. Abram Aertsen
  10. Jean-Paul Noben
  11. Ben F Luisi
  12. Rob Lavigne
(2016)
Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome
eLife 5:e16413.
https://doi.org/10.7554/eLife.16413

Share this article

https://doi.org/10.7554/eLife.16413

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.