

1

2 **Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA**
3 **transcription during Wnt signaling in single living cells**

4

5

6 Pinhas Kafri, Sarah E. Hasenson, Itamar Kanter, Jonathan Sheinberger, Noa Kinor, Sharon
7 Yunger, and Yaron Shav-Tal^{*}

8

9 The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology,
10 Bar-Ilan University, Ramat Gan 52900, Israel

11

12

13 ^{*}Correspondence should be addressed to Y.S-T. (e-mail: Yaron.Shav-Tal@biu.ac.il)

14

15 **ABSTRACT**

16 Signal propagation from the cell membrane to a promoter can induce gene expression.

17 To examine signal transmission through sub-cellular compartments and its effect on

18 transcription levels in individual cells within a population, we used the Wnt/β-catenin

19 signaling pathway as a model system. Wnt signaling orchestrates a response through

20 nuclear accumulation of β-catenin in the cell population. However, quantitative live-cell

21 measurements in individual cells showed variability in nuclear β-catenin accumulation,

22 which could occur in two waves, followed by slow clearance. Nuclear accumulation

23 dynamics were initially rapid, cell cycle independent and differed substantially from LiCl

24 stimulation, presumed to mimic Wnt signaling. β-catenin levels increased

25 simultaneously at adherens junctions and the centrosome, and a membrane-

26 centrosome transport system was revealed. Correlating β-catenin nuclear dynamics to

27 *cyclin D1* transcriptional activation showed that the nuclear accumulation rate of change

28 of the signaling factor, and not actual protein levels, correlated with the transcriptional

29 output of the pathway.

30 **INTRODUCTION**

31 Imaging of gene expression in individual cells using quantitative microscopy has become
32 a central experimental approach for unraveling the dynamic aspects of mRNA
33 transcription¹⁻³, and for examining various events of gene expression in real time⁴⁻⁹. Cells
34 govern specific transcriptional responses to various stimuli by use of signaling pathways
35 and transducing factors that relay the signal to the promoters of induced target
36 genes^{10,11}. Studies of transcription factor dynamics in single cells in response to signaling
37 have revealed dynamic aspects of transcription factor nuclear translocation and
38 modulation¹²⁻¹⁷. This study centers on the dynamics of the Wnt/β-catenin signaling
39 pathway and its control of *cyclin D1* gene expression, as a model system for examining
40 the dissemination of a signal in the cell and the transcriptional response it elicits.

41 The Wnt/β-catenin canonical signaling pathway is activated by the binding of the Wnt
42 ligand to plasma membrane receptors, thereby triggering downstream events that
43 culminate in the accumulation of β-catenin in the cytoplasm and its translocation into
44 the nucleus¹⁸⁻²⁰. The interaction of β-catenin with transcription factors of the TCF/LEF
45 family in the nucleus modifies gene expression of crucial genes, thus leading to changes
46 in key cellular pathways, such as proliferation, migration and cell fate²¹. Mechanistically,
47 in the absence of Wnt, cytoplasmic β-catenin protein is constantly degraded²² via the
48 “destruction complex” and proteosomal degradation²³⁻²⁵, thus preventing β-catenin
49 nuclear targeting. In many pathological cases β-catenin is not degraded but accumulates
50 in the nucleus and activates genes, some of which are associated with cell proliferation,
51 such as *MYC* and *cyclin D1*^{26,27}. The cyclin D1 protein is a major player in the regulation

52 of the cell cycle^{28,29} and its expression is regulated at several levels, including mRNA
53 transcription³⁰ via an elaborate promoter region³¹. Cyclin D1 levels were shown to be
54 induced by the Wnt/β-catenin canonical signaling pathway^{26,27,32-37}.

55 The Wnt/β-catenin signaling pathway has received much experimental attention due to
56 its centrality in gene expression patterning, and its involvement in many cancer types³⁸.
57 While the endpoint of β-catenin protein stabilization by Wnt signaling has been well
58 studied biochemically, the kinetic aspects of this signaling pathway in living cells, for the
59 β-catenin protein and the target mRNA, remain under-studied. To address this topic we
60 used a cell system for the *in vivo* visualization and analysis of mammalian mRNA
61 transcriptional kinetics of single alleles^{39,40}. Whereas, we had previously followed
62 transcription from a single *cyclin D1* (*CCND1*) gene in living human cells, we now set out
63 to examine the real-time behavior of β-catenin during active signaling in a population of
64 living cells, and the effect of signaling on the activity pattern of the target gene.

65 **RESULTS**

66 **System for studying Wnt/β-catenin signaling and gene activation in single living cells**

67 We previously generated a cell system in which a *CCND1* gene was integrated as a single
68 copy allele into human HEK293 cells using Flp-In recombination³⁹. Transcription kinetics
69 on this gene were visualized and quantified using RNA FISH and live-cell imaging
70 techniques. RNA tagging was achieved using a series of MS2 sequence repeats⁴¹
71 inserted into the long 3'UTR of *CCND1*. The MS2 repeats form stem-loop structures in
72 the transcribed mRNA. By co-expressing a fluorescent coat protein termed MS2-CP-GFP
73 that binds to the MS2 stem-loops, we obtained fluorescent tagging of the mRNAs
74 produced from this gene, designated *CCND1-MS2*^{39,40}. This *CCND1-MS2* allele is under
75 the regulation of the endogenous *cyclin D1* promoter⁴² and therefore serves as a
76 candidate gene for activation by Wnt/β-catenin signaling⁴³.

77 Studying individual living cells, we found that the *CCND1-MS2* gene transits between
78 transcriptionally active and non-active states under steady-state conditions³⁹. At steady
79 state, only around 40-50% of cells were actively transcribing *CCND1-MS2*. In order to
80 verify that the Wnt signaling pathway activates the *CCND1-MS2* gene we added Wnt3a
81 conditioned medium to the cells and imaged the cells over time. Indeed, on the
82 population level, after 75 min over 80% of cells had shown an actively transcribing
83 *CCND1-MS2* gene (Figure 1a, b, Supplementary file 1a, Video 1).

84 Since an imaging-based approach for studying signaling dynamics requires that relevant
85 molecules be fluorescently tagged, we verified using a luciferase assay, that a YFP-

86 tagged version of β -catenin¹⁹ activates the *CCND1* promoter, and observed 2.3 fold
87 activation after transient transfection of the protein into the HEK293 *CCND1-MS2* cells
88 (Figure 1-figure supplement 1a). We note that HEK293 cells are known to have a low
89 background of β -catenin activity⁴⁴, and are not known to have mutations in proteins
90 associated with Wnt signaling⁴⁵. Immunofluorescence with an antibody to the
91 endogenous β -catenin protein showed normal β -catenin localization at the cell
92 membrane region (a portion of β -catenin is located in adherens junctions and functions
93 in cell adhesion⁴⁶), as well as low cytoplasmic levels under non-induced conditions,
94 compared to a predominant increase in cytoplasmic and nuclear distribution after the
95 addition of Wnt3a (Figure 1c). In summary, this cell system enables the measurement of
96 *CCND1* transcription activation kinetics in single cells following Wnt signaling.

97 To mimic endogenous β -catenin distribution using YFP- β -catenin, we generated a
98 HEK293 *CCND1-MS2* cell clone that stably expressed YFP- β -catenin. Since high
99 overexpression conditions of YFP- β -catenin typically result in increased subcellular
100 distribution and high accumulation in the nucleus prior to any signal (Figure 1-figure
101 supplement 1b), which is in stark contrast to the endogenous β -catenin protein that is
102 observed mainly at the membrane (Figure 1c), we screened and identified a clone that
103 stably expressed low levels of YFP- β -catenin. The clone phenotypically resembled
104 endogenous protein localization and distribution, namely, membrane localization in the
105 non-induced state, and enhanced nuclear localization following Wnt stimulation (Figure
106 1d). Characterization of endogenous β -catenin and YFP- β -catenin accumulation levels by
107 Western blotting showed that YFP- β -catenin expression levels were ~80% of the

108 endogenous β -catenin, thus doubling β -catenin levels in the cell, and that the
109 accumulation dynamics of both proteins were identical (Figure 1e). The time-scale of β -
110 catenin induction is in agreement with other studies^{47,48}. The addition of YFP- β -catenin
111 to the cell clone did not influence the cell cycle or *CCND1* expression at steady state as
112 quantified by single molecule RNA FISH^{39,40} (Figure 1-figure supplement 1c-h).

113

114 **Real-time β -catenin dynamics in a cell population in response to Wnt signaling**

115 To understand the intra-cellular dynamics of β -catenin in a cell population under living
116 cell conditions, cells were imaged for over 12 hours. Rapid nuclear accumulation of β -
117 catenin was observed in most cells that were stimulated with Wnt3a, compared to no
118 change in β -catenin levels in control cells that received mock conditioned medium
119 without Wnt3a (Figure 2a, b, Video 2). Rising levels of β -catenin in the cytoplasm and
120 the nucleus were detected 15 min after Wnt3a addition, and the accumulation peak was
121 observed 2-3 hrs later (Figure 2c), during which β -catenin levels increased 3-fold
122 compared to the initial state. Recombinant Wnt3a (200ng/ml) showed the same
123 dynamics (data not shown). The rate at which β -catenin levels increased in the nucleus
124 was faster than in the cytoplasm, leading to a higher nucleus/cytoplasm (N/C) protein
125 ratio, whereas in the control cells there was no change (Figure 2d).

126 Analyzing the rate of change in β -catenin levels in the nucleus and cytoplasm over time
127 ($\Delta I/\Delta t$) showed that the accumulation was comprised of two phases; an initial rapid one,
128 in which the peak of the change in accumulation was reached 60 min after induction,

129 and a second accumulation phase in which cellular β -catenin continued to amass but at
130 a declining rate up until 180 min (Figure 2e). Subsequently, the rate of change turned
131 negative, meaning that β -catenin levels were declining, probably due to degradation. In
132 control cells, the rate of change in β -catenin remained unaltered.

133 To examine whether the dynamics of nuclear entry of β -catenin were modified during
134 Wnt activation and how they compared to β -catenin shuttling out of the nucleus, we
135 used fluorescence recovery after photobleaching (FRAP). Nuclei of cells showing nuclear
136 β -catenin, either after 2 hrs of Wnt3a activation or transiently overexpressing β -catenin,
137 were photobleached, and nuclear import of β -catenin was monitored over time (Figure
138 2-figure supplement 1a top). The dynamics were relatively slow, however, the import
139 rate under Wnt3a conditions was more rapid than transient overexpression, showing
140 the advantage of measurements performed at low expression conditions (Figure 2-
141 figure supplement 1a, b, Supplementary file 1b). The incomplete recovery of YFP- β -
142 catenin during the FRAP time-course meant that a significant population of β -catenin
143 molecules had already accumulated and had been retained in the nucleus prior to
144 photobleaching. Next, we photobleached the cytoplasm and found that the rate of β -
145 catenin shuttling out from the nucleus was slower than the import rate (Figure 2-figure
146 supplement 1a bottom, c, Supplementary file 1c). Similarly, fluorescence loss in
147 photobleaching (FLIP), either in the nucleus or in the cytoplasm, showed that β -catenin
148 shuttling out of the nucleus was slower than its nuclear entry (Figure 2-figure
149 supplement 1d, Supplementary file 1d). Altogether, the data suggest that Wnt signaling

150 causes a transient shift in the dynamic interplay between β -catenin stabilization and
151 degradation processes, towards protein stabilization and accumulation.

152

153 **Individual cells in the population present a variable response of β -catenin dynamics**

154 The averaged population data obtained from living cells presented above (Figure 2) are
155 in agreement with biochemical data as seen by Western blotting of protein extracts
156 from large cell populations, showing the accumulation of β -catenin beginning from
157 around 30 min after Wnt and peaking at 3 hrs^{47,49}. However, the averaged behavior of a
158 population does not necessarily represent the actual dynamics in individual cells.
159 Examining the dynamic behavior of β -catenin accumulation in the nucleus and
160 cytoplasm of individual cells after Wnt3a showed that although an increase in β -catenin
161 levels was initiated in most cells, the subsequent dynamics were variable (Figure 3a, b,
162 Video 3). For instance, comparing cells 1,2 and 4 (Figure 3a) showed a major and rapid
163 wave of β -catenin nuclear accumulation in cell 1 (30-165 min) that subsided and then
164 mildly rose again (465-585 min); a similar range of events occurred in cell 2 but the two
165 waves were less intense and the second wave occurred earlier compared to cell 1 (first
166 wave 30-150 min, second wave 330-435 min); in contrast, cell 4 showed a longer
167 accumulation period (30-240 min). Cells 3 and 6 showed slow nuclear accumulation,
168 peaking late only after 825 min and 525 min, respectively, from Wnt3a stimulation. This
169 analysis showed that the dynamic behavior of β -catenin in the cytoplasm and the
170 nucleus was highly similar within the same cell, but that the time-frames of

171 accumulation could be quite different between individual cells, some showing 2 cycles
172 of nuclear accumulation. In these cases, the first cycle of accumulation lasted 360 min
173 on average and the second cycle 180 min on average.

174 The similar dynamics of decline in β -catenin levels in the nucleus and the cytoplasm
175 suggests that β -catenin is not simply shuttling in and out of the nucleus, but rather
176 reflects an enhanced activity of the degradation arm controlling β -catenin levels. To test
177 this, we added lithium chloride (LiCl, 20 mM), a glycogen synthase kinase-3 β (GSK3 β)
178 inhibitor that mimics Wnt signaling^{50,51}. Indeed, LiCl caused β -catenin nuclear and
179 cytoplasmic accumulation, but the dynamics were completely different than Wnt3a
180 (Figure 3-figure supplement 1a, b, and Video 4). β -catenin accumulation occurred
181 synchronously and continuously throughout 10-11 hrs in all cells, and only then did the
182 accumulation cease. The increasing accumulation rate of change ($\Delta I/\Delta t$) in the nucleus
183 and cytoplasm continued for 10 hrs, compared to 3 hrs, in response to Wnt3a (Figure 3-
184 figure supplement 1c, d). The levels of β -catenin were 4-fold higher in LiCl treated cells
185 compared to Wnt3a. Since LiCl prevents β -catenin degradation, we hypothesized that
186 Wnt3a treatment together with the proteasome inhibitor MG132, which stabilizes β -
187 catenin, but not through GSK3 β phosphorylation, should have a similar effect on β -
188 catenin dynamics. Indeed, accumulation dynamics under Wnt3a+MG132 were similar to
189 LiCl treatment (Figure 3-figure supplement 1e). Treatment with MG132 without Wnt3a
190 showed the same dynamics (data not shown). When the curve describing the dynamics
191 of β -catenin in response to Wnt3a (Figure 2c) was fitted with a two-phase exponential
192 fit that describes production and degradation (Figure 2-figure supplement 1e), we found

193 linear accumulation in the first phase, showing that degradation was very low, as
194 expected⁴⁷. β -catenin production rates did not change significantly during the
195 accumulation and clearance phases, whereas, the degradation rate became
196 predominant during the clearance phase. β -catenin degradation had a characteristic
197 time of 2.75 hours. These data exemplify the difference between a signaling molecule
198 and a chemical that target the same signaling pathway. While drug action is less
199 influenced by endogenous molecules, a signaling molecule will relay a transient signaling
200 effect, depending on the level of other signaling molecules that are present in the cell at
201 the time of induction.

202 Since the maximum levels of β -catenin accumulation differed between cells in the
203 population (Figure 3-figure supplement 2a-e), and we could identify intense and
204 prolonged accumulation in some Wnt3a-treated cells, we examined whether there was
205 a correlation between the time to reach the maximum level and the peak of the
206 response. However, a low correlation score (0.28) was observed for the Wnt3a-treated
207 cells, and a more prominent correlation score (0.53) in LiCl-treated cells (Figure 3-figure
208 supplement 2f, g). The latter was expected due to the continuous accumulation over
209 time. But for Wnt3a treatment, this meant that a longer Wnt3a signaling response did
210 not necessarily result in higher levels of β -catenin accumulation. Moreover, calculating
211 the integral of the fluorescence signal that accumulated over the whole observation
212 period in a cell population (from Figure 3), showed that the total accumulation in most
213 cells was similar (Figure 3-figure supplement 2h), and that differences between single
214 cells were pronounced mainly at earlier time points of the response.

215

216 **The response of cells to Wnt3a is not cell cycle dependent**

217 Cluster analysis of the dynamic behavior of β -catenin in individual living cells, shows the
218 dramatic difference between Wnt signaling activation by Wnt3a compared to LiCl
219 (Figure 4a; membrane and centrosome will be discussed below). ~80% of the cells
220 showed similar dynamics (e.g. Figure 2c) and ~20% portrayed different behavior
221 patterns (e.g. Figure 3). In order to determine whether the variabilities in β -catenin
222 dynamics in the cell population in response to Wnt3a, may be due to the cell cycle
223 stage, we examined time-lapse movies in which cells had undergone mitosis, and in
224 which daughter cells could be identified. For example, in the population of cells seen
225 accumulating β -catenin in response to Wnt3a in Figure 4b (Video 5), there were two
226 dividing cells at the beginning of the movie, both with low β -catenin levels prior to
227 mitosis. In the daughter cells originating from the top dividing cell there was low β -
228 catenin accumulation, whereas in the bottom dividing cell, one daughter cell responded
229 rapidly and accumulated very high levels of β -catenin, while the other daughter cell
230 responded later and accumulated to low levels (Figure 4 b-e). In summary, we could not
231 detect a pattern of β -catenin accumulation in daughter cells.

232 To examine the cell cycle and Wnt response more closely in a large population of living
233 cells we used the Fucci system (Video 6 and Video 7), which uses two fluorescent cell
234 cycle markers to identify cell cycle phases⁵². We introduced the Fucci molecules into the
235 CCND1-MS2 cells containing YFP- β -catenin. Cells did not show any special pattern of

236 YFP- β -catenin accumulation (Figure 4-figure supplement 1a), and cells passing through
237 mitosis also exhibited different accumulation levels in the mother cell and between
238 daughter cells (Figure 4-figure supplement 1b). In summary, we did not identify a cell
239 cycle dependent pattern of YFP- β -catenin levels in response to Wnt.

240

241 **Wnt signaling induces β -catenin accumulation at the cell membrane and the**
242 **centrosome**

243 β -catenin is normally present in adherens junctions proximal to the cell membrane, and
244 is bound to E-cadherin in the membrane and to α -catenin, which mediates the
245 connection between the adherens junction and the actin cytoskeleton^{53,54}. Not much is
246 known about the subcellular localization of this β -catenin population in response to
247 Wnt. Before treatment, β -catenin was observed as a string of punctate sub-regions
248 distributed along the cell outline only at cell-cell contacts (Figure 3a, Video 3). Since we
249 could detect changes in the intensity of the puncta after Wnt, we followed the intensity
250 of β -catenin at the membrane during Wnt activation and found an increase with similar
251 dynamics to the cytoplasmic and nuclear sub-populations (Figure 5a, Video 8). There
252 was no obvious reduction in the membrane levels even after many hours (Figure 5b).
253 However, the relative increase at the membrane was lower than the nucleus and the
254 cytoplasm, and the rate of β -catenin accumulation ($\Delta I/\Delta t$) at the membrane was less
255 rapid than the nuclear accumulation rates (Figure 5b, c). LiCl caused longer β -catenin

256 accumulation times and significantly higher accumulation at the membrane (Figure 5c,
257 d).

258 To examine if Wnt signaling changed the dynamics of β -catenin at the membrane we
259 performed FRAP experiments on this region and found that the recovery dynamics were
260 slow and indicative of slow exchange of β -catenin molecules at the membrane. Yet,
261 similar recovery in unactivated, Wnt3a-treated and LiCl-treated cells was observed,
262 meaning that there was no change in the dynamics of protein exchange but rather an
263 increase in the number of β -catenin molecules in the membrane-bound fraction (Figure
264 5-figure supplement 1, Supplementary file 1e, f).

265 In many of the Wnt-induced cells that were followed in the live-cell movies we noticed
266 the appearance of β -catenin in a single prominent dot (Figure 3a, Video 3). β -catenin
267 can localize at the centrosome during interphase and mitosis, and functions in centriolar
268 cohesion⁵⁵⁻⁵⁷. Since the β -catenin dot was in proximity to the nucleus, and since the
269 centrosome is juxtaposed to the nucleus, we examined if centrosomal accumulation of
270 β -catenin was occurring. Indeed, movies of dividing cells demonstrated that each
271 daughter cell received one β -catenin-labeled body after division, reminiscent of
272 centrosome behavior (Figure 6a, Video 5 and Video 9). Immunofluorescence of
273 pericentrin (a centrosome marker), together with either endogenous β -catenin or YFP-
274 β -catenin, showed accumulation of β -catenin at the centrosome following activation
275 (Figure 6b).

276 The accumulation dynamics of β -catenin at the centrosome occurred in parallel to the
277 accumulation seen in the nucleus, cytoplasm and adherens junctions. However,
278 centrosomal levels were significantly high, 5-fold higher compared to the initial state
279 (Figure 6c). The rates of change were the highest and most rapid of all measured cell
280 compartments (Figure 6d). LiCl also led to β -catenin localization at the centrosome, but
281 here too with very different dynamics from Wnt3a (Figure 6d; Figure 3-figure
282 supplement 1f). To obtain a more general outlook of the changes in β -catenin levels in
283 all 4 compartments, we performed a correlation analysis (Figure 6c, e). As was seen in
284 individual cells, the highest correlation in accumulation dynamics following Wnt3a, was
285 observed between the cytoplasm and the nucleus, whereas the lowest correlation was
286 between the centrosome and the membrane.

287 Interestingly, in some cells we observed β -catenin puncta detaching from the
288 membrane and traveling in the cell (Video 10 and Video 11). When these structures
289 were tracked during movement in the cell, they usually ended up at the centrosome
290 (Figure 6-figure supplement 1). This phenomenon was frequently seen in cells treated
291 with Wnt3a, LiCl and MG132, and less frequently in unactivated cells. We did not
292 observe a correlation with the timing of Wnt addition, and perhaps detection was easier
293 after Wnt due to the increase of β -catenin at the membrane following stimulation.
294 Tracking of the detached β -catenin puncta showed that they reached the centrosome
295 between 30 to 90 min after detachment. To examine whether the residence times of β -
296 catenin molecules at the centrosome resembled the membrane region, we performed
297 FRAP analysis, which showed very rapid recovery kinetics at the centrosome, in

298 comparison to all other cell regions (Figure 6-figure supplement 2). This implied that β -
299 catenin duration at the centrosome is short-lived, with a half-time of fluorescence
300 recovery ($t_{1/2}$) of 1.9 sec, similar to other centrosomal components⁵⁸. Altogether, this
301 suggests that the molecular interactions of β -catenin at the membrane in adherens
302 junctions are significantly more stable than at the centrosome, where the exchange of
303 β -catenin molecules is highly rapid.

304

305 **Wnt signaling modulates the transcriptional output of the *cyclin D1* gene**

306 We next examined the influence of Wnt signaling dynamics on *CCND1* gene activity. As
307 shown (Figure 1a), a significant increase in the percentage of cells actively transcribing
308 *CCND1*-MS2 could be seen starting 15 min post-activation, and peaking after 75-90 min.
309 Cells returned to steady state activity levels after 6 hrs. We examined several
310 parameters of the transcriptional response. First, we measured the time for an active
311 *CCND1*-MS2 transcribing gene to appear in the population. In the control unstimulated
312 population (mock conditioned medium), after 120 min most cells had activated the gene
313 once, whereas in Wnt3a-induced cells, gene activation in the population was reached
314 more quickly, already after 60 min. The response time for *CCND1* activation following
315 Wnt3a was also short, ranging at 15 min (Figure 7a-b). This meant that Wnt signaling
316 increased the probability of *CCND1* to initiate transcription.

317 We next examined whether the periods of gene activity were altered after Wnt
318 activation. When *CCND1* was at first non-active and began to transcribe after Wnt3a,

319 there was prolonged transcriptional activation for a time-frame of 180 min, compared
320 to a shorter activity period of 65 min in unactivated cells (Figure 7c, e, Video 12). This
321 meant that Wnt signaling increased the time-frame of *CCND1* promoter activity.
322 Surprisingly, if the gene was detected in an already active state, and Wnt3a was then
323 added, there was no difference in the activity period compared to that in unactivated
324 cells. Under both conditions, activation persisted for an average of 130 min (Figure 7d),
325 meaning that if the promoter was already activated then there was no Wnt-induced
326 change in this time-frame.

327 When we examined the levels of *CCND1*-MS2 activity after Wnt activation in living cells
328 (Figure 8-figure supplement 1a-c), we found that even if the gene was active before
329 Wnt3a addition, the intensity of MS2-GFP fluorescence on the gene showed higher
330 levels, indicative of higher expression levels due to signaling, meaning that the promoter
331 could integrate additional signals (Figure 8-figure supplement 1b). We measured a 1.5-
332 1.7 increase in the maximum MS2-GFP intensity levels, and observed that the maximum
333 intensity distribution for Wnt3a-treated cells shifted such that many more cells
334 displayed higher levels of gene activity (Figure 8a, b, and Figure 8-Figure supplement
335 1d). The time required to reach the maximum point of activity did not seem to change
336 when examining the whole population (Figure 8-Figure supplement 1e). However, this
337 time was actually shortened from 170 min to 120 min in cells where the gene was
338 initially inactive, and the distribution of cells shifted to shorter times to reach maximum
339 levels of transcription (Figure 8c). This time did not change in cells where the gene was
340 initially active (Figure 8d). When gene activity and gene inactivity patterns were further

341 examined, not only was an expected increase in the duration of gene activity found, but
342 also a reduction in the rest duration. This means that Wnt activation not only increases
343 the duration time for gene activity, but also reduces periods of inactivity by increasing
344 the frequency of promoter firing events (Figure 7-figure supplement 1).

345 These measurements suggested that Wnt3a signaling increases promoter firing events
346 so that more CCND1 mRNAs are transcribed. To further examine this on the single
347 mRNA level, we performed quantitative RNA FISH on CCND1-MS2 mRNA molecules in
348 parallel to measuring β -catenin nuclear levels within the same single cell (fixed cells).
349 We counted the number of cellular and nascent CCND1-MS2 mRNAs in Wnt3a-treated
350 cells (Figure 8e) and compared this value to the accumulation levels of nuclear β -catenin
351 in the different cells. Cells that had accumulated β -catenin had significantly higher
352 numbers of cellular CCND1-MS2 mRNAs (3-fold; Figure 8e, f) and nascent CCND1-MS2
353 mRNAs (3.8-fold; Figure 8e, g, j), which correlated well with the transcription
354 measurements in living cells (Figure 8-figure supplement 1c). Correlating between
355 cellular and nascent CCND1-MS2 mRNA numbers and β -catenin levels showed two sub-
356 populations of high- and low-expressing CCND1-MS2 cells, in correlation with nuclear β -
357 catenin accumulation, respectively (Figure 8h, i). Regarding gene activation, altogether
358 we find that Wnt signaling leads to increased promoter firing frequency, increased gene
359 activity duration time, reduced gene rest time, and significantly higher numbers of
360 mRNAs in the cell.

361 **DISCUSSION**

362 Signaling factors that translocate into the nucleus following signal transduction do so via
363 different modes of shuttling. For instance, some factors display continuous nucleo-
364 cytoplasmic oscillations (p53, mdm2, NF- κ B, ERK)^{10,12,14,59}, while some show a rapid and
365 limited pulse of nuclear build-up (NFAT)¹³, or a prolonged presence in the nucleus
366 (MAL)⁶⁰. These dynamics have been characterized using microscopy studies performed
367 in single cells. Biochemical examination of these dynamics can give a true sense of the
368 time-scales of the accumulation as seen by studying protein levels in Western blots^{47,48}.
369 However, such approaches cannot provide an accurate temporal dynamic profile of the
370 response as it unfolds within the cell, since they represent an average picture of the
371 behavior of the whole cell population from which the proteins were extracted⁶¹. By
372 characterizing β -catenin accumulation dynamics in several subcellular compartments
373 within individual living cells, we could examine how varying responses in individual cells
374 translate into a well-timed response of the cell population.

375 Using a cell system we previously generated to follow *CCND1* transcription in real-time
376 on the single gene level³⁹, we now measured β -catenin sub-cellular dynamics, as well as
377 characterized the transcriptional response of *CCND1* to Wnt. Even though Wnt/ β -
378 catenin signaling has been highly studied, the basic propagation dynamics of this signal
379 in single living cells have not been characterized. This is due to the lack of an
380 appropriate system that would allow analysis of the behavior of a fluorescent β -catenin
381 protein that resembles the endogenous protein⁶². Previous studies using transiently
382 overexpressed β -catenin and photobleaching methods were important in establishing

383 the characteristics of its intra-cellular mobility^{19,20}. However, the subcellular distribution
384 of transiently overexpressed fluorescent β -catenin is different than the endogenous
385 protein, since the overexpressed protein is found throughout the whole cell including
386 the nucleus (even without a signal), membrane staining is lacking, and cytoskeletal
387 organization is disrupted^{19,20,63}. Even the use of nanobodies targeting endogenous β -
388 catenin in living cells did not mimic the membrane localization of non-induced cells⁶⁴.
389 Hence, using our cell system in which YFP- β -catenin was stably expressed at relatively
390 low levels (80% over the endogenous protein) and was distributed similarly to the
391 endogenous protein, we were able to follow the subcellular dynamics of β -catenin in
392 real-time.

393 Upon Wnt activation, β -catenin levels in the cell population portrayed a relatively rapid
394 increase in the cells. The general time-scale of hours of β -catenin accumulation
395 concurred with Western blotting experiments^{47,48}, and altogether portrayed an
396 orchestrated response of the cell population to the Wnt signal. However, examination of
397 the accumulation profiles in single cells showed response patterns deviating from the
398 average behavior in at least 20% of the population; accumulation rates and levels
399 varied, and in some cells additional but less intense waves of β -catenin nuclear
400 accumulation were observed. We suggest that the balance between accumulation and
401 degradation affects the outcome in β -catenin build-up in each cell. The Kirschner group
402 has shown⁴⁷ that Wnt does not completely abolish the activity of the destruction
403 complex. We therefore suggest that if the total levels of accumulation are similar in

404 most cells (e.g. integral analysis), then the level of inhibition of the destruction complex
405 is expected to vary in each cell and to determine the response.

406 However, the fact that *CCND1* transcriptional activation occurs within the same time
407 frame as the main initial phase of β -catenin nuclear accumulation means that in most
408 cells in the population, the *CCND1* gene will become activated shortly after Wnt
409 activation. Possibly, later phases of β -catenin nuclear accumulation could have an
410 influence on prolonging *CCND1* activity (steady state activity levels return after 6 hrs).

411 Indeed, measurements of *CCND1* activity in living cells following Wnt activation showed
412 a positive change in several parameters relating to gene activation; not only did the
413 frequency of *CCND1* activation in the cell population rise and the time to activate *CCND1*
414 shorten, but the levels of *CCND1* transcriptional output increased, the timeframe of
415 gene activity became substantially longer, and gene resting periods were shortened.

416 Overall, this means that Wnt signaling increases the number of *CCND1* mRNAs
417 generated, by increasing the frequency of RNA polymerase II recruitment to the
418 promoter and by lengthening the time of promoter responsiveness. Interestingly, even
419 when an already active *CCND1* gene received the Wnt signal, the levels of gene activity
420 increased.

421 Although we were unable to examine YFP- β -catenin dynamics and *CCND1*-MS2
422 transcription activity simultaneously in living cells, by integrating the measurements of
423 *CCND1* transcriptional activity with the measured dynamics of β -catenin nuclear
424 accumulation from the separate experiments, we found that the rate of change of
425 nuclear β -catenin correlated well with transcription induction (Figure 9a), specifically

426 during the first rapid phase of nuclear β -catenin accumulation. This fits in well with a
427 previous study demonstrating that the fold change in β -catenin nuclear levels is the
428 element affecting target gene activity⁶⁵, and that the transcriptional machinery is
429 capable of computing the fold change in β -catenin, thereby determining the
430 transcriptional response⁶⁵. Similar behavior was observed for the ERK signaling
431 pathway⁶⁶. Hence, it is not the absolute number of β -catenin molecules in the nucleus
432 that correlates with transcription rates, but the rate of change of β -catenin levels over
433 time, and particularly the rapid change during the first phase of induction that elicits the
434 transcriptional effect (Figure 9b). The advantage of such a sensing mechanism would be
435 its ability to buffer out cellular noise and variability in the cell population.

436 Concurrent β -catenin accumulation the cell membrane and the centrosome were
437 quantified. β -catenin demarcates the cell outline when there are cell-cell contacts due
438 to its presence in adherens junctions⁴⁶. Generally, while the nuclear accumulation of β -
439 catenin has been the focus of Wnt signaling studies, the membrane region has not been
440 considered a major target of the response. However, one study has shown localization
441 of unphosphorylated β -catenin to the membrane upon Wnt activation within 30 min, in
442 cells lacking E-cadherin, although the function was unclear⁶⁷. We found increased β -
443 catenin levels in the membrane following Wnt activation. The punctate membranal
444 pattern persisted during activation, suggesting that Wnt increases the recruitment of β -
445 catenin to existing adherens junctions. Indeed, β -catenin dynamics in the membrane
446 showed a relatively slow exchange both before and after Wnt activation, similar to a
447 study conducted in LiCl induced cells⁶⁸. This implies long residence times of β -catenin in

448 the membrane and that potential binding sites for β -catenin molecules at adherens
449 junctions exist constantly, and only when the protein becomes abundant, do they fill up.

450 Centrosomal localization of β -catenin is known^{55-57,69-72}. The exact function is not clear
451 and it probably plays a role in regulation of cell separation. It has been suggested that
452 Wnt signaling abolishes the phosphorylation of β -catenin and leads to centrosome
453 splitting⁵⁶. Our study shows for the first time, the highly rapid accumulation rates of β -
454 catenin at the centrosome in real-time, following Wnt signaling. β -catenin at the
455 centrosome is highly mobile as seen in our FRAP study and in another⁵⁷. Interestingly,
456 we identified a connection between the membranal and centrosomal β -catenin
457 fractions. Puncta of membranal β -catenin were detected moving relatively slowly from
458 the membrane region and ending up at the centrosome, sometimes several in parallel in
459 the same cell. Since unphosphorylated β -catenin is found in the membrane after Wnt⁶⁷,
460 we can postulate that the β -catenin fraction moving to the centrosome is
461 unphosphorylated, and may be involved in driving cell division.

462 Notably, our study also provides a temporal view of β -catenin dynamics in single cells
463 under conditions of LiCl activation. Although LiCl is considered a chemical that mimics
464 Wnt activation and increases β -catenin levels in the nucleus, it is obvious that the
465 dynamics, build-up rates and levels of β -catenin in all subcellular compartments were
466 dramatically exaggerated and unregulated in comparison to Wnt activation. This should
467 be taken into account when inferring information regarding Wnt signaling and β -catenin
468 from LiCl treatment.

469 The Wnt pathway has been implicated in cell cycle regulation, and levels of
470 phosphorylated β -catenin oscillate and increase towards mitosis^{73,74}. Examining cells that
471 had undergone mitosis after Wnt activation, did not show a pattern of β -catenin levels
472 in daughter cells, nor did Fucci labeling uncover a cell cycle pattern of β -catenin
473 accumulation following Wnt. This suggests that Wnt-induced nuclear accumulation is
474 not cell cycle dependent.

475 The propagation of a signal from a membrane receptor to the gene promoter can follow
476 different types of kinetics. Single-cell analysis revealed significant variability in the
477 dynamics of β -catenin nuclear buildup, but also that most cells did finally accumulate
478 the same total level of β -catenin over time. This behavior is quite different than the
479 serum activation pathway that activates β -actin via MAL shuttling⁷⁵. β -actin
480 transcriptional activation begins less than 5 minutes after serum addition, and β -actin
481 alleles respond in the same manner and same time-frame; i.e. variability of the response
482 in single cells is low. Hence, some signaling cascades must relay the information rapidly
483 and tightly since this will lead to the translation of a highly required protein, e.g. β -actin,
484 to generate a protein that is required for cell motility in response to environmental
485 sensing^{76,77}. Other pathways such as Wnt/ β -catenin may also signal to activate gene
486 expression, but their response emerges much later, probably since the required
487 biological outcomes, such as cell proliferation, require more regulation points. The
488 changes in β -catenin levels in response to Wnt, in several subcellular compartments,
489 indicate that the signaling pathway does not only activate gene expression but is

490 involved in additional processes. Further studies should reveal the exact roles of these
491 subpopulations of β -catenin in response to signal transduction.

492 **METHODS**

493 **Cells and transfections**

494 HEK293 Flp-in CCND1-MS2 cells³⁹ were maintained in Dulbecco's modified Eagle's
495 medium (DMEM) containing 10% FBS (HyClone Laboratories) and hygromycin selection
496 (100 µg/ml; Sigma). Stable expression of MS2-GFP was obtained by co-transfection of
497 the cells with MS2-GFP (10 µg) and puromycin resistance (300 ng) plasmids using
498 calcium phosphate transfection, and selection with puromycin (1 µg/ml; Invivogen) and
499 hygromycin (100 µg/ml). Stable expression of YFP-β-catenin¹⁹ (10 µg) was performed by
500 calcium phosphate transfection, and selection with neomycin (500 µg/ml; Sigma) and
501 hygromycin (100 µg/ml). Cells with very low expression levels were collected by FACS
502 (FACSAria III, BD Biosciences). Transient expression of YFP-β-catenin was performed
503 using PolyJET (SignaGen).

504 For generation of Wnt3a conditioned medium (CM) and mock CM, L-Wnt-3A and L-
505 mouse fibroblasts cells were grown in DMEM and 10% FBS, and CM was prepared
506 according to American Tissue Culture Collection (ATCC) instructions⁷⁸. Wnt activation
507 was performed with either Wnts3a-CM or with recombinant human Wnt3a (200 ng/ml;
508 R&D Systems). Wnt3a-CM or mock-CM were added 1:1 to the volume of the cells
509 medium. Cells were also treated with LiCl (20 mM; Sigma) and MG132 (20 µM; Sigma).

510 The Fucci system (Clontech) was used for cell cycle phase detection. For G1 phase
511 detection, the pRetroX-G1-Red vector (mCherry-hCdt1) was used, and for S/G2/M phase
512 the pRetroX-SG2M-Cyan vector (AmCyan-hGeminin). The Fucci system, being a viral-

513 based system first required the introduction of the mouse ecotropic retroviral receptor
514 on the membrane surface of HEK293 CCND1-MS2 cells expressing YFP- β -catenin.
515 Transient transfection was performed 24 hours prior to infection using PolyJet
516 transfection with the pBABE ecotropic receptor plasmid (Addgene #10687). This step
517 was performed twice for each infection. After mCherry-hCdt1 infection, mCherry
518 positive cells were collected by FACS and maintained in medium containing puromycin
519 (1 μ g/ml; Invivogen). Cells were then transfected with the pBABE ecotropic receptor
520 plasmid and 24 hrs post-transfection, the cells infected with AmCyan-hGeminin. Positive
521 cells were collected by FACS and maintained in medium containing neomycin (500
522 μ g/ml) and puromycin (1 μ g/ml). For infections, HEK293T cells were maintained in
523 DMEM containing 10% FBS and used to package the Fucci retroviruses, which were
524 collected over a period of three days before infecting the ecotropic HEK293 cells.

525

526 **Western blotting**

527 SDS-PAGE and Western blotting were performed as previously described⁷⁹. Primary
528 antibodies used were mouse anti- β -catenin (BD Transduction Laboratories, cat# 610154)
529 and rabbit anti-tubulin (Abcam). The secondary antibody was a HRP-conjugated goat
530 anti-rabbit or anti-mouse IgG (Sigma). Immunoreactive bands were detected by the
531 Enhanced Chemiluminescence kit (ECL, Pierce). Experiments were performed 3 times.

532

533

534 **Luciferase assay**

535 HEK293 CCND1-MS2 cells were co-transfected with the cyclin D1 promoter -
536 1745CD1LUC Firefly luciferase construct⁴² and either YFP-β-catenin or eYFP-C1 (mock),
537 together with a *Renilla* luciferase construct using PolyJet transfection. 50 ng of each
538 plasmid were used. A luciferase assay was performed after 24 hrs using the Dual-Glo
539 Luciferase assay system (Promega). After standardization with *Renilla* luciferase activity,
540 a relative luciferase activity was obtained and the mean and standard deviation from
541 triplicate wells was calculated. Each experiment was performed 3 times. YFP-β-catenin¹⁹
542 was obtained from Jürgen Behrens (University of Erlangen-Nürnberg).

543

544 **Flow cytometry**

545 Cells were harvested and DNA quantification was performed using 5 µg/ml DAPI
546 solution (Sigma). The BD FACSAria III cell sorter was used. For quantifying DNA in fixed
547 cells, we used a 405nm laser for excitation and a 450/40nm bandpass filter for
548 detection. Data were processed and analyzed using FlowJo software. The average
549 quantification of 3 repeated experiments is presented (mean±s.d.).

550

551 **Immunofluorescence**

552 Cells were grown on coverslips coated by Cell-Tak (BD Biosciences), washed with PBS
553 and fixed for 20 min in 4% PFA. Cells were then permeabilized in 0.5% Triton X-100 for 3

554 min. After blocking, cells were immunostained for 1 hr with a primary antibody, and
555 after subsequent washes the cells were incubated for 1 hr with secondary fluorescent
556 antibodies. Primary antibodies: mouse anti- β -catenin and rabbit anti-pericentrin
557 (Abcam, cat# ab4448). Secondary antibodies: Alexa488-labeled goat anti-mouse IgG and
558 Alexa594-labeled goat anti-rabbit (Invitrogen). Nuclei were counterstained with Hoechst
559 33342 (Sigma) and coverslips were mounted in mounting medium.

560

561 **Fluorescence *in situ* hybridization**

562 CCND1-MS2 cells were grown on coverslips coated by Cell-Tak (BD Biosciences) and
563 fixed for 20 min in 4% paraformaldehyde, and overnight with 70% ethanol at 4°C. The
564 next day cells were washed with 1x PBS and treated for 2.5 min with 0.5% Triton X-100.
565 Cells were washed with 1x PBS and incubated for 10 min in 40% formamide (4% SSC;
566 Sigma). Cells were hybridized overnight at 37°C in 40% formamide with a specific
567 fluorescently-labeled Cy3 DNA probe (~10 ng probe, 50 mer). The next day, cells were
568 washed twice with 40% formamide for 15 min and then washed for two hours with 1X
569 PBS. Nuclei were counterstained with Hoechst 33342 and coverslips were mounted in
570 mounting medium. The probe for the MS2 binding site was:

571 CTAGGCAATTAGGTACCTAGGATCTAATGAACCCGGGAATACTGCAGAC.

572

573

574 **mRNA quantification**

575 3D stacks (0.2 μ m steps, 76 or 51 planes) of the total volume of the cells were collected
576 from fixed CCND1-MS2 cells. The 3D stacks were deconvolved and the specific signals of
577 mRNAs were identified (Imaris, Bitplane). mRNA identification was performed in
578 comparison to deconvolved stacks from cells not containing the MS2 integration, which
579 therefore served as background levels of nonspecific fluorescence. No mRNAs were
580 identified in control cells. The sum of intensity for each mRNA particle and active alleles
581 was measured in the same cells using Imaris, as previously described^{39,40}. The single
582 mRNA intensities were pooled and the frequent value was calculated. The sum of
583 intensity at the transcription site was divided by the frequent value of a single mRNA.
584 This ratio provided the number of mRNAs associated with the transcription unit from
585 the point of the MS2-region and onwards. As mRNAs should be associated with a
586 polymerase, this number should reflect the maximum number of polymerases engaged
587 with this region. Quantification and counting experiments were applied to experiments
588 performed on different days.

589

590 **Fluorescence microscopy, live-cell imaging and data analysis**

591 Wide-field fluorescence images were obtained using the Cell[^]R system based on an
592 Olympus IX81 fully motorized inverted microscope (60X PlanApo objective, 1.42 NA)
593 fitted with an Orca-AG CCD camera (Hamamatsu) driven by the Cell[^]R software. Live-cell
594 imaging was carried out using the Cell[^]R system with rapid wavelength switching. For

595 time-lapse imaging, cells were plated on glass-bottomed tissue culture plates (MatTek,
596 Ashland, MA) coated by Cell-Tak (BD Biosciences) in medium containing 10% FBS at
597 37°C. The microscope is equipped with an incubator that includes temperature and CO₂
598 control (Life Imaging Services, Reinach, Switzerland). For long-term imaging, several cell
599 positions were chosen and recorded by a motorized stage (Scan IM, Märzhäuser,
600 Wetzlar-Steindorf, Germany). In these experiments, HEK293 Flp-in CCND1-MS2
601 expressing MS2-GFP cells were imaged in 3D (26 planes per time point) every 15 min, at
602 0.26 μ m steps for 6 hrs. HEK293 Flp-in CCND1-MS2 cells expressing YFP- β -catenin were
603 imaged in 3D (15 planes per time point) at 0.7 μ m steps, every 15 min, up to 18 hrs. For
604 presentation of the movies, the 4D image sequences were transformed into a time
605 sequence using the maximum or sum projection options or manually selecting the in-
606 focus plane using the ImageJ software. Time-lapse data was collected from single cells in
607 several fields and on several days until reaching an appropriate sample size, and then all
608 single-cell data were pooled and either averaged and presented as plots, or presented
609 as single cell data.

610

611 **Tracking and data analysis**

612 The intensity of the active transcription sites labeled with MS2-GFP fluorescence in
613 time-lapse movies were corrected for photobleaching using ImageJ, and the 3D movies
614 were transformed to 2D by choosing the in-focus plane in which the intensity of the
615 transcription site is the highest. Movies were manually tracked and the intensity

616 measured for each frame (I_s). Background from another location in the nucleus (I_n) was
617 subtracted for each frame, and the final intensity was calculated using: $I = I_s(t) - I_n(t)$
618 and then normalized to the initial intensity.

619 Measuring the intensity of the YFP- β -catenin signal in the subcellular compartments was
620 performed manually using ImageJ, and background was subtracted from all
621 measurements. When YFP- β -catenin levels were low, DIC images that were acquired in
622 parallel were used for nucleus detection. For measurements of centrosome intensity,
623 the intensity of the centrosome in each frame (I_c) was multiplied by the area occupied
624 by the centrosome (A_c): $I = I_c(t) * A_c(t)$. For membrane intensity, a sum projection of the
625 3D movies was used.

626 Intensity was normalized either to the initial frame or to the highest intensity measured.
627 Values of the nucleus/cytoplasm (N/C) ratio of YFP- β -catenin were obtained by division
628 of the YFP- β -catenin intensity levels measured. Correlation coefficient values were
629 calculated by comparing the intensity of β -catenin over time between all possible pairs
630 of sub-cellular compartments, from Wnt activation onset. Values of rate of change
631 ($\Delta I / \Delta t$) in YFP- β -catenin in the sub-cellular compartments over time were obtained by
632 measuring the intensity difference (ΔI) between 2 consecutive time points divided by
633 the time difference (Δt) between the 2 time points:

$$634 \frac{\Delta I}{\Delta t_{(t)n+1/2}} = \frac{I_{(t)n+1} - I_{(t)n}}{t_{n+1} - t_n}$$

635 **FRAP and FLIP**

636 FRAP and FLIP experiments were performed using a 3D-FRAP system (Photometrics)
637 built on an Olympus IX81 microscope (636 Plan-Apo, 1.4 NA) equipped with an EM-CCD
638 (Quant-EM, Roper), 491nm laser, Lambda DG-4 light source (Sutter), XY&Z stages (Prior),
639 and driven by MetaMorph (Molecular Devices). Experiments were performed at 37°C
640 with 5% CO₂ using a live-cell chamber system (Tokai). For each acquisition, YFP-β-
641 catenin was bleached using the 491 nm laser. Six pre-bleach images were acquired. In
642 FRAP, post-bleach images were acquired every 0.8 sec for 80 sec in the cytoplasm and
643 the nucleus, every 1 sec for 2 min in adherens junctions, every 0.4 sec for 40 sec at the
644 centrosome, and every 1.5 sec for 8 min to measure nuclear import and export rates. In
645 FLIP, images were acquired every 1.9 sec for 280 sec in the cytoplasm and the nucleus.
646 The experiments were analyzed using ImageJ macros previously described ⁷⁹. Data from
647 at least 10 experiments for each cell line were collected and the averaged FRAP and FLIP
648 measurements were fitted by Matlab with a double exponential model:
649
$$I(t) = \alpha_1 * \exp(-\tau_1 * t) + \alpha_2 * \exp(-\tau_2 * t) + c$$
 Where $t=0$ is the time immediately
650 after photobleaching.

651 $t_{0.5}$ was defined as time where $I(t = t_{0.5}) = \frac{I(t=\infty)}{2}$.

652

653

654

655 **Modeling β -catenin dynamics**

656 We used a simple model for describing β -catenin concentration (C) dynamics in the
657 nucleus based on the data presented in the plot from Figure 2c:

658

$$\frac{dC}{dt} = P(t) - \alpha(t)C$$

659 Where α is the time dependent degradation rate, and P is the time dependent
660 production rate. Both rates are allowed to change when $t=T$:

$$\alpha(t) = \begin{cases} \alpha_1; & \text{for } t \leq T \\ \alpha_2; & \text{for } t > T \end{cases}$$

$$P(t) = \begin{cases} P_1; & \text{for } t \leq T \\ P_2; & \text{for } t > T \end{cases}$$

661 The solution is:

$$C(t) = \begin{cases} \left[C(0) - \frac{P_1}{\alpha_1} \right] * e^{-\alpha_1 * t} + \frac{P_1}{\alpha_1}; & \text{for } t \leq T \\ \left[C(T) - \frac{P_2}{\alpha_2} \right] * e^{-\alpha_2 * (t-T)} + \frac{P_2}{\alpha_2}; & \text{for } t > T \end{cases}$$

662 Where:

$$C(T) = \left[C(0) - \frac{P_2}{\alpha_1} \right] * e^{-\alpha_1 * T} + \frac{P_2}{\alpha_1}$$

663 We fit the model by minimizing the sum of the squares of the residuals with the
664 function “fmincon” in MATLAB using the “active-set” algorithm.

665

666 **Statistical analysis**

667 Two tailed t-test was performed in the following experiments: Quantitative FISH,
668 Luciferase assay, N/C ratio of YFP- β -catenin and live cell analysis. A Mann-Whitney test
669 was performed in FRAP and FLIP experiments (Supplementary file 1).

670 **ACKNOWLEDGEMENTS**

671 We thank Yinon Ben-Neriah (Hebrew University Medical School) for the L-Wnt-3A and L-
672 mouse fibroblasts cells and Jürgen Behrens (University of Erlangen-Nürnberg) for YFP- β -
673 catenin. This work was supported by the European Research Council and the Israel
674 Cancer Research Fund (YST).

675

676 **AUTHOR CONTRIBUTIONS**

677 PK designed and performed all the experiments. PK and IK analyzed the data. Others
678 assisted in: cell cycle analysis (SH), Fucci infections (JS), Western blotting (NK), cell line
679 generation (SY). YST wrote the paper.

680

681 **COMPETING FINANCIAL INTERESTS**

682 The authors declare no competing financial interests.

683 **References**

684

- 685 1. Darzacq, X, Yao, J, Larson, DR, Causse, SZ, Bosanac, L, de Turris, V, Ruda, VM, Lionnet, T,
686 Zenklusen, D, Guglielmi, B, Tjian, R & Singer, RH. Imaging transcription in living cells.
687 (2009) *Annu Rev Biophys* **38**, 173-96.
- 688 2. Coulon, A, Chow, CC, Singer, RH & Larson, DR. Eukaryotic transcriptional dynamics: from
689 single molecules to cell populations. (2013) *Nat Rev Genet* **14**, 572-84.
- 690 3. Hager, GL, McNally, JG & Misteli, T. Transcription dynamics. (2009) *Mol Cell* **35**, 741-53.
- 691 4. Darzacq, X, Shav-Tal, Y, de Turris, V, Brody, Y, Shenoy, SM, Phair, RD & Singer, RH. In vivo
692 dynamics of RNA polymerase II transcription. (2007) *Nat Struct Mol Biol* **14**, 796-806.
- 693 5. Huranova, M, Ivani, I, Benda, A, Poser, I, Brody, Y, Hof, M, Shav-Tal, Y, Neugebauer, KM
694 & Stanek, D. The differential interaction of snRNPs with pre-mRNA reveals splicing
695 kinetics in living cells. (2010) *J Cell Biol* **191**, 75-86.
- 696 6. Brody, Y, Neufeld, N, Bieberstein, N, Causse, SZ, Bohnlein, EM, Neugebauer, KM,
697 Darzacq, X & Shav-Tal, Y. The in vivo kinetics of RNA polymerase II elongation during co-
698 transcriptional splicing. (2011) *PLoS Biol* **9**, e1000573.
- 699 7. Martins, SB, Rino, J, Carvalho, T, Carvalho, C, Yoshida, M, Klose, JM, de Almeida, SF &
700 Carmo-Fonseca, M. Spliceosome assembly is coupled to RNA polymerase II dynamics at
701 the 3' end of human genes. (2011) *Nat Struct Mol Biol* **18**, 1115-23.
- 702 8. Yao, J, Munson, KM, Webb, WW & Lis, JT. Dynamics of heat shock factor association
703 with native gene loci in living cells. (2006) *Nature* **442**, 1050-3.
- 704 9. Mueller, F, Mazza, D, Stasevich, TJ & McNally, JG. FRAP and kinetic modeling in the
705 analysis of nuclear protein dynamics: what do we really know? (2010) *Curr Opin Cell Biol*
706 **22**, 403-11.
- 707 10. Purvis, JE & Lahav, G. Encoding and Decoding Cellular Information through Signaling
708 Dynamics. (2013) *Cell* **152**, 945-56.
- 709 11. Carmo-Fonseca, M, Platani, M & Swedlow, JR. Macromolecular mobility inside the cell
710 nucleus. (2002) *Trends Cell Biol* **12**, 491-5.
- 711 12. Kalo, A & Shav-Tal, Y. Acting on impulse: dissecting the dynamics of the NFAT
712 transcriptional response. (2013) *Genome Biol* **14**, 102.

- 713 13. Yissachar, N, Sharar Fischler, T, Cohen, AA, Reich-Zeliger, S, Russ, D, Shifrut, E, Porat, Z &
714 Friedman, N. Dynamic Response Diversity of NFAT Isoforms in Individual Living Cells.
715 (2012) *Mol Cell* **49**, 322-30.
- 716 14. Lahav, G, Rosenfeld, N, Sigal, A, Geva-Zatorsky, N, Levine, AJ, Elowitz, MB & Alon, U.
717 Dynamics of the p53-Mdm2 feedback loop in individual cells. (2004) *Nat Genet* **36**, 147-
718 50.
- 719 15. Loewer, A, Batchelor, E, Gaglia, G & Lahav, G. Basal dynamics of p53 reveal
720 transcriptionally attenuated pulses in cycling cells. (2010) *Cell* **142**, 89-100.
- 721 16. Nelson, DE, Ihekweaba, AE, Elliott, M, Johnson, JR, Gibney, CA, Foreman, BE, Nelson, G,
722 See, V, Horton, CA, Spiller, DG, Edwards, SW, McDowell, HP, Unitt, JF, Sullivan, E,
723 Grimley, R, Benson, N, Broomhead, D, Kell, DB & White, MR. Oscillations in NF-kappaB
724 signaling control the dynamics of gene expression. (2004) *Science* **306**, 704-8.
- 725 17. Vartiainen, MK, Guettler, S, Larijani, B & Treisman, R. Nuclear actin regulates dynamic
726 subcellular localization and activity of the SRF cofactor MAL. (2007) *Science* **316**, 1749-
727 52.
- 728 18. Clevers, H & Nusse, R. Wnt/beta-catenin signaling and disease. (2012) *Cell* **149**, 1192-
729 205.
- 730 19. Krieghoff, E, Behrens, J & Mayr, B. Nucleo-cytoplasmic distribution of beta-catenin is
731 regulated by retention. (2006) *J Cell Sci* **119**, 1453-63.
- 732 20. Jamieson, C, Sharma, M & Henderson, BR. Regulation of beta-catenin nuclear dynamics
733 by GSK-3beta involves a LEF-1 positive feedback loop. (2011) *Traffic* **12**, 983-99.
- 734 21. Cadigan, KM & Waterman, ML. TCF/LEFs and Wnt signaling in the nucleus. (2012) *Cold
735 Spring Harb Perspect Biol* **4**.
- 736 22. Stamos, JL & Weis, WI. The beta-catenin destruction complex. (2013) *Cold Spring Harb
737 Perspect Biol* **5**, a007898.
- 738 23. Aberle, H, Bauer, A, Stappert, J, Kispert, A & Kemler, R. beta-catenin is a target for the
739 ubiquitin-proteasome pathway. (1997) *EMBO J* **16**, 3797-804.
- 740 24. Salomon, D, Sacco, PA, Roy, SG, Simcha, I, Johnson, KR, Wheelock, MJ & Ben-Ze'ev, A.
741 Regulation of beta-catenin levels and localization by overexpression of plakoglobin and
742 inhibition of the ubiquitin-proteasome system. (1997) *J Cell Biol* **139**, 1325-35.

- 743 25. Orford, K, Crockett, C, Jensen, JP, Weissman, AM & Byers, SW. Serine phosphorylation-
744 regulated ubiquitination and degradation of beta-catenin. (1997) *J Biol Chem* **272**,
745 24735-8.
- 746 26. Shtutman, M, Zhurinsky, J, Simcha, I, Albanese, C, D'Amico, M, Pestell, R & Ben-Ze'ev, A.
747 The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. (1999) *Proc Natl Acad
748 Sci U S A* **96**, 5522-7.
- 749 27. Tetsu, O & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon
750 carcinoma cells. (1999) *Nature* **398**, 422-6.
- 751 28. Johnson, DG & Walker, CL. Cyclins and cell cycle checkpoints. (1999) *Annu Rev
752 Pharmacol Toxicol* **39**, 295-312.
- 753 29. Sherr, CJ. G1 phase progression: cycling on cue. (1994) *Cell* **79**, 551-5.
- 754 30. Hosokawa, Y & Arnold, A. Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in
755 human cancer cells: analysis of allele-specific expression. (1998) *Genes Chromosomes
756 Cancer* **22**, 66-71.
- 757 31. Klein, EA & Assoian, RK. Transcriptional regulation of the cyclin D1 gene at a glance.
758 (2008) *J Cell Sci* **121**, 3853-7.
- 759 32. Chocarro-Calvo, A, Garcia-Martinez, JM, Ardila-Gonzalez, S, De la Vieja, A & Garcia-
760 Jimenez, C. Glucose-induced beta-catenin acetylation enhances Wnt signaling in cancer.
761 (2013) *Mol Cell* **49**, 474-86.
- 762 33. Willert, J, Epping, M, Pollack, JR, Brown, PO & Nusse, R. A transcriptional response to
763 Wnt protein in human embryonic carcinoma cells. (2002) *BMC Dev Biol* **2**, 8.
- 764 34. Lin, SY, Xia, W, Wang, JC, Kwong, KY, Spohn, B, Wen, Y, Pestell, RG & Hung, MC. Beta-
765 catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression
766 and cancer progression. (2000) *Proc Natl Acad Sci U S A* **97**, 4262-6.
- 767 35. Porfiri, E, Rubinfeld, B, Albert, I, Hovanes, K, Waterman, M & Polakis, P. Induction of a
768 beta-catenin-LEF-1 complex by wnt-1 and transforming mutants of beta-catenin. (1997)
769 *Oncogene* **15**, 2833-9.
- 770 36. Yun, MS, Kim, SE, Jeon, SH, Lee, JS & Choi, KY. Both ERK and Wnt/beta-catenin pathways
771 are involved in Wnt3a-induced proliferation. (2005) *J Cell Sci* **118**, 313-22.
- 772 37. Torre, C, Benhamouche, S, Mitchell, C, Godard, C, Veber, P, Letourneur, F, Cagnard, N,
773 Jacques, S, Finzi, L, Perret, C & Colnot, S. The transforming growth factor-alpha and

- 774 cyclin D1 genes are direct targets of beta-catenin signaling in hepatocyte proliferation.
775 (2011) *J Hepatol* **55**, 86-95.
- 776 38. Klaus, A & Birchmeier, W. Wnt signalling and its impact on development and cancer.
777 (2008) *Nat Rev Cancer* **8**, 387-98.
- 778 39. Yunger, S, Rosenfeld, L, Garini, Y & Shav-Tal, Y. Single-allele analysis of transcription
779 kinetics in living mammalian cells. (2010) *Nat Methods* **7**, 631-3.
- 780 40. Yunger, S, Rosenfeld, L, Garini, Y & Shav-Tal, Y. Quantifying the transcriptional output of
781 single alleles in single living mammalian cells. (2013) *Nat Protoc* **8**, 393-408.
- 782 41. Bertrand, E, Chartrand, P, Schaefer, M, Shenoy, SM, Singer, RH & Long, RM. Localization
783 of ASH1 mRNA particles in living yeast. (1998) *Mol Cell* **2**, 437-45.
- 784 42. Albanese, C, Johnson, J, Watanabe, G, Eklund, N, Vu, D, Arnold, A & Pestell, RG.
785 Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through
786 distinguishable regions. (1995) *J Biol Chem* **270**, 23589-97.
- 787 43. Fu, M, Wang, C, Li, Z, Sakamaki, T & Pestell, RG. Minireview: Cyclin D1: normal and
788 abnormal functions. (2004) *Endocrinology* **145**, 5439-47.
- 789 44. Kang, YJ, Park, HJ, Chung, HJ, Min, HY, Park, EJ, Lee, MA, Shin, Y & Lee, SK. Wnt/beta-
790 catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells.
791 (2012) *Mol Pharmacol* **82**, 168-77.
- 792 45. Tan, CW, Gardiner, BS, Hirokawa, Y, Layton, MJ, Smith, DW & Burgess, AW. Wnt
793 signalling pathway parameters for mammalian cells. (2012) *PLoS One* **7**, e31882.
- 794 46. Harris, TJ & Tepass, U. Adherens junctions: from molecules to morphogenesis. (2010)
795 *Nat Rev Mol Cell Biol* **11**, 502-14.
- 796 47. Hernandez, AR, Klein, AM & Kirschner, MW. Kinetic responses of beta-catenin specify
797 the sites of Wnt control. (2012) *Science* **338**, 1337-40.
- 798 48. Lustig, B, Jerchow, B, Sachs, M, Weiler, S, Pietsch, T, Karsten, U, van de Wetering, M,
799 Clevers, H, Schlag, PM, Birchmeier, W & Behrens, J. Negative feedback loop of Wnt
800 signaling through upregulation of conductin/axin2 in colorectal and liver tumors. (2002)
801 *Mol Cell Biol* **22**, 1184-93.
- 802 49. Li, VS, Ng, SS, Boersema, PJ, Low, TY, Karthaus, WR, Gerlach, JP, Mohammed, S, Heck,
803 AJ, Maurice, MM, Mahmoudi, T & Clevers, H. Wnt signaling through inhibition of beta-
804 catenin degradation in an intact Axin1 complex. (2012) *Cell* **149**, 1245-56.

- 805 50. Klein, PS & Melton, DA. A molecular mechanism for the effect of lithium on
806 development. (1996) *Proc Natl Acad Sci U S A* **93**, 8455-9.
- 807 51. Hedgepeth, CM, Conrad, LJ, Zhang, J, Huang, HC, Lee, VM & Klein, PS. Activation of the
808 Wnt signaling pathway: a molecular mechanism for lithium action. (1997) *Dev Biol* **185**,
809 82-91.
- 810 52. Sakaue-Sawano, A, Kurokawa, H, Morimura, T, Hanyu, A, Hama, H, Osawa, H, Kashiwagi,
811 S, Fukami, K, Miyata, T, Miyoshi, H, Imamura, T, Ogawa, M, Masai, H & Miyawaki, A.
812 Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. (2008) *Cell*
813 **132**, 487-98.
- 814 53. Yap, AS, Brieher, WM & Gumbiner, BM. Molecular and functional analysis of cadherin-
815 based adherens junctions. (1997) *Annu Rev Cell Dev Biol* **13**, 119-46.
- 816 54. Brembeck, FH, Rosario, M & Birchmeier, W. Balancing cell adhesion and Wnt signaling,
817 the key role of beta-catenin. (2006) *Curr Opin Genet Dev* **16**, 51-9.
- 818 55. Kaplan, DD, Meigs, TE, Kelly, P & Casey, PJ. Identification of a role for beta-catenin in the
819 establishment of a bipolar mitotic spindle. (2004) *J Biol Chem* **279**, 10829-32.
- 820 56. Hadjihannas, MV, Bruckner, M & Behrens, J. Conductin/axin2 and Wnt signalling
821 regulates centrosome cohesion. (2010) *EMBO Rep* **11**, 317-24.
- 822 57. Bahmanyar, S, Kaplan, DD, Deluca, JG, Giddings, TH, Jr., O'Toole, ET, Winey, M, Salmon,
823 ED, Casey, PJ, Nelson, WJ & Barth, AI. beta-Catenin is a Nek2 substrate involved in
824 centrosome separation. (2008) *Genes Dev* **22**, 91-105.
- 825 58. Hames, RS, Crookes, RE, Straatman, KR, Merdes, A, Hayes, MJ, Faragher, AJ & Fry, AM.
826 Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1,
827 and localized proteasomal degradation. (2005) *Mol Biol Cell* **16**, 1711-24.
- 828 59. Shankaran, H, Ippolito, DL, Chrisler, WB, Resat, H, Bollinger, N, Opresko, LK & Wiley, HS.
829 Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth
830 factor. (2009) *Mol Syst Biol* **5**, 332.
- 831 60. Cui, Y, Hameed, FM, Yang, B, Lee, K, Pan, CQ, Park, S & Sheetz, M. Cyclic stretching of
832 soft substrates induces spreading and growth. (2015) *Nat Commun* **6**, 6333.
- 833 61. Levsky, JM & Singer, RH. Gene expression and the myth of the average cell. (2003)
834 *Trends Cell Biol* **13**, 4-6.
- 835 62. Tan, CW, Gardiner, BS, Hirokawa, Y, Smith, DW & Burgess, AW. Analysis of Wnt signaling
836 beta-catenin spatial dynamics in HEK293T cells. (2014) *BMC Syst Biol* **8**, 44.

- 837 63. Ligon, LA, Karki, S, Tokito, M & Holzbaur, EL. Dynein binds to beta-catenin and may
838 tether microtubules at adherens junctions. (2001) *Nat Cell Biol* **3**, 913-7.
- 839 64. Traenkle, B, Emele, F, Anton, R, Poetz, O, Haeussler, RS, Maier, J, Kaiser, PD, Scholz, AM,
840 Nueske, S, Buchfellner, A, Romer, T & Rothbauer, U. Monitoring interactions and
841 dynamics of endogenous beta-catenin with intracellular nanobodies in living cells.
842 (2015) *Mol Cell Proteomics* **14**, 707-23.
- 843 65. Goentoro, L & Kirschner, MW. Evidence that fold-change, and not absolute level, of
844 beta-catenin dictates Wnt signaling. (2009) *Mol Cell* **36**, 872-84.
- 845 66. Cohen-Saidon, C, Cohen, AA, Sigal, A, Liron, Y & Alon, U. Dynamics and variability of
846 ERK2 response to EGF in individual living cells. (2009) *Mol Cell* **36**, 885-93.
- 847 67. Hendriksen, J, Jansen, M, Brown, CM, van der Velde, H, van Ham, M, Galjart, N,
848 Offerhaus, GJ, Fagotto, F & Fornerod, M. Plasma membrane recruitment of
849 dephosphorylated beta-catenin upon activation of the Wnt pathway. (2008) *J Cell Sci*
850 **121**, 1793-802.
- 851 68. Johnson, M, Sharma, M, Jamieson, C, Henderson, JM, Mok, MT, Bendall, L & Henderson,
852 BR. Regulation of beta-catenin trafficking to the membrane in living cells. (2009) *Cell
853 Signal* **21**, 339-48.
- 854 69. Bahmanyar, S, Guiney, EL, Hatch, EM, Nelson, WJ & Barth, AI. Formation of extra
855 centrosomal structures is dependent on beta-catenin. (2010) *J Cell Sci* **123**, 3125-35.
- 856 70. Mbom, BC, Siemers, KA, Ostrowski, MA, Nelson, WJ & Barth, AI. Nek2 phosphorylates
857 and stabilizes beta-catenin at mitotic centrosomes downstream of Plk1. (2014) *Mol Biol
858 Cell* **25**, 977-91.
- 859 71. Huang, P, Senga, T & Hamaguchi, M. A novel role of phospho-beta-catenin in
860 microtubule regrowth at centrosome. (2007) *Oncogene* **26**, 4357-71.
- 861 72. Vora, S & Phillips, BT. Centrosome-Associated Degradation Limits beta-Catenin
862 Inheritance by Daughter Cells after Asymmetric Division. (2015) *Curr Biol* **25**, 1005-16.
- 863 73. Davidson, G & Niehrs, C. Emerging links between CDK cell cycle regulators and Wnt
864 signaling. (2010) *Trends Cell Biol* **20**, 453-60.
- 865 74. Hadjihannas, MV, Bernkopf, DB, Bruckner, M & Behrens, J. Cell cycle control of
866 Wnt/beta-catenin signalling by conductin/axin2 through CDC20. (2012) *EMBO Rep* **13**,
867 347-54.

- 868 75. Kalo, A, Kanter, I, Shraga, A, Sheinberger, J, Tzemach, H, Kinor, N, Singer, RH, Lionnet, T
869 & Shav-Tal, Y. Cellular Levels of Signaling Factors Are Sensed by beta-actin Alleles to
870 Modulate Transcriptional Pulse Intensity. (2015) *Cell Rep* **11**, 419-32.
- 871 76. Kislauskis, EH, Zhu, X & Singer, RH. Sequences responsible for intracellular localization of
872 beta-actin messenger RNA also affect cell phenotype. (1994) *J Cell Biol* **127**, 441-51.
- 873 77. Latham, VM, Jr., Kislauskis, EH, Singer, RH & Ross, AF. Beta-actin mRNA localization is
874 regulated by signal transduction mechanisms. (1994) *J Cell Biol* **126**, 1211-9.
- 875 78. Shibamoto, S, Higano, K, Takada, R, Ito, F, Takeichi, M & Takada, S. Cytoskeletal
876 reorganization by soluble Wnt-3a protein signalling. (1998) *Genes Cells* **3**, 659-70.
- 877 79. Aizer, A, Brody, Y, Ler, LW, Sonenberg, N, Singer, RH & Shav-Tal, Y. The dynamics of
878 mammalian P body transport, assembly, and disassembly in vivo. (2008) *Mol Biol Cell* **19**,
879 4154-66.
- 880 80. Golding, I, Paulsson, J, Zawilski, SM & Cox, EC. Real-time kinetics of gene activity in
881 individual bacteria. (2005) *Cell* **123**, 1025-36.

882

883

884 **Figure legends**

885

886 **Figure 1.** Cell system for following β -catenin intra-cellular dynamics and *CCND1* transcription in single living
887 cells. (a) *CCND1*-MS2 HEK293 cells stably expressing MS2-GFP-CP were treated with Wnt3a and followed for 6
888 hrs (every 15 min). Several frames from Video 1 are presented. The number of cells exhibiting transcriptionally
889 active *CCND1*-MS2 genes (green dot in nucleus, white arrow) was counted over time. Scale bar, 10 μ m. (b)
890 Plots showing the percentage of cells in the population with actively transcribing *CCND1*-MS2 genes in Wnt3a-
891 treated (red, n=98) and mock treated (blue, n=128) cells. Mean \pm s.d from 3 fields imaged on different days -
892 see Supplementary file 1a for statistics. (c) Immunofluorescence showing that endogenous β -catenin (green) is
893 prominent at the cell membrane in untreated HEK293 cells (top) and accumulates in the cytoplasm and
894 nucleus following activation by Wnt3a for 2 hrs (bottom). Hoechst DNA stain is in blue. (d) Similar changes in
895 subcellular distribution following activation are seen in the YFP- β -catenin low-expressing clone. Bar=10 μ m. (e)
896 Western blot time course of endogenous β -catenin and YFP- β -catenin protein accumulation following either
897 Wnt3a (top) or LiCl (bottom) stimulation. Anti- β -catenin antibody was used for the detection of both β -catenin
898 proteins. Tubulin was used as a loading control. Time 0 is the time point of activator addition. Blots are
899 representative of 3 repeated experiments. The average quantification of 3 repeated experiments is presented
900 in the plots below (mean \pm s.d). There is no statistical difference between the endogenous and exogenous
901 levels of β -catenin in the two plots.

902

903 **Figure 2.** The dynamics of β -catenin accumulation following Wnt3a activation in cell populations. Frames from
904 live-cell movies (Video 2) showing YFP- β -catenin dynamics in cells treated with (a) mock conditioned medium
905 or (b) Wnt3a for 12 hrs. Red bordered frames compare between the 0 min and 120 min time points. Bar=20
906 μ m. (c) The relative average intensity of β -catenin measured in the cytoplasm (n=24) and nucleus (n=31) of

907 cells treated with Wnt3a for 12 hrs, compared to mock-treated control cells (n=13). **(d)** Nucleus to cytoplasm
908 ratio (N/C) of fluorescence intensities over 12 hrs from **c**. The initial ratio was designated as 1. Inset plot shows
909 the statistical significance p values (t test) at each time point between the two treatments over the
910 experiment time course. **(e)** The rate of change in β -catenin levels ($\Delta I/\Delta t$), during accumulation or degradation,
911 in the cytoplasm and nucleus over time in cells from **c**.

912

913 **Figure 3.** Variability of β -catenin accumulation dynamics following Wnt3a activation in individual cells. **(a)**
914 Frames from time-lapse Video 3 showing YFP- β -catenin accumulation in a population of cells. The YFP signal is
915 pseudo-coloured using ImageJ 'Green Fire Blue' look-up table. White and yellow arrows point to cells in which
916 β -catenin levels increase and decrease twice during the movie. The pink arrow points to centrosomal
917 accumulation. Bar=10 μ m. **(b)** β -catenin levels in the nucleus (left) and cytoplasm (right) in individual cells (as
918 numbered in **a**) are plotted in different colors. The grey background plots show the complete set of plots from
919 all the cells. Maximum β -catenin intensity in each cell was normalized to 1.

920

921 **Figure 4.** Variability of β -catenin dynamics in the cell population and during the cell cycle. **(a)** Heat map and
922 cluster analysis of normalized β -catenin accumulation dynamics in sub-cellular compartments following Wnt3a
923 (top, n(nucleus)=31, n(cytoplasm)=24, n(membrane)=21, n(centrosome)=11) or LiCl (bottom, n(nucleus)=18,
924 n(cytoplasm)=17, n(membrane)=9, n(centrosome)=14) treatments. Data were taken from live-cell movies with
925 each column representing one cell, and rows representing time from Wnt addition. Relative levels of β -catenin
926 are depicted from low (green) to high (red). Hierarchical cluster analysis depicted above the plots shows
927 homogenous behavior in LiCl-treated cells and heterogeneous behavior in Wnt3a-treated cells. Most cells reach
928 maximal levels of β -catenin within 2-3 hours. **(b)** (Top) Frames from time-lapse Video 5 showing YFP- β -catenin
929 accumulation in a population of cells. The YFP signal is pseudo-colored using the ImageJ 'Fire' look-up table.

930 Boxes denote cells that go through mitosis, and enlargements are shown below. Green arrows point to
931 mother cells, and yellow and white arrows point to the daughter cells. Bar=10 μ m. Plots showing the relative
932 intensity levels of YFP- β -catenin in the cytoplasm and nucleus of the (c) top and (d) bottom daughter cells of
933 each cell division. (e) Plot comparing the relative intensity levels in the nuclei of the four daughter cells.

934

935 **Figure 5.** The dynamics of β -catenin accumulation at the membrane following Wnt3a activation. (a) Frames
936 from time-lapse Video 8 showing YFP- β -catenin accumulation at the cell membrane. The YFP signal is pseudo-
937 colored using the ImageJ 'Green Fire Blue' look-up table. Bar=10 μ m. (b) The relative average intensity of β -
938 catenin measured in the membrane (n=21), cytoplasm and nucleus (from Figure 2) of Wnt3a-treated cells. (c)
939 The rate of change in β -catenin levels ($\Delta I/\Delta t$) accumulation or degradation in the membrane, cytoplasm and
940 nucleus over time in Wnt3a- and LiCl-treated cells. (d) The relative average intensity of β -catenin measured in
941 the membrane, cytoplasm and nucleus of LiCl-treated cells.

942

943 **Figure 6.** Accumulation of β -catenin at the centrosome after Wnt3a activation. (a) Frames from time-lapse
944 Video 9 showing YFP- β -catenin accumulation at the centrosome (white arrowheads) and after cell division.
945 Bar=10 μ m. (b) The colocalization (white arrowheads) of YFP- β -catenin (top) or endogenous β -catenin
946 (bottom) with the centrosomal marker pericentrin (red immunofluorescence) in untreated and LiCl-treated
947 cells. Hoechst DNA stain is in blue, and DIC in grey. Boxes show enlarged centrosomal areas. Bar=10 μ m. (c)
948 The relative average intensity of YFP- β -catenin measured in the centrosome (n=11), membrane, cytoplasm
949 and nucleus (from Figures 2 & 5) of Wnt3a-treated cells. Correlation scores (r) between the nucleus (n),
950 cytoplasm (c), membrane (m) and centrosome (ce) YFP- β -catenin levels are presented at the bottom. (d) The
951 rate of change in YFP- β -catenin levels ($\Delta I/\Delta t$) accumulation or degradation in the centrosome, membrane,
952 cytoplasm and nucleus over time in Wnt3a- and LiCl-treated cells. (e) Plots of YFP- β -catenin levels in the sub-

953 cellular compartments of individual cells (from Figure 3). Boxes show the correlation scores (r) between the
954 nucleus (n), cytoplasm (c), membrane (m) and centrosome (ce).

955

956 **Figure 7.** Measuring the transcriptional response of *CCND1-MS2* to Wnt3a activation in living cells. (a) The
957 percentage of cells in a population of either mock-treated (blue) or Wnt3a-activated cells (red) showing an
958 active *CCND1-MS2* transcribing gene, over time. (b) The promoter response time of *CCND1-MS2* activation
959 from the addition of Wnt3a (n=27) or in mock-treated conditions (n=22). In the boxplots, the median is
960 indicated by a red line, the box represents the interquartile range, the whiskers represent the maximum and
961 minimum values, and red dots represent outliers. ($P=0.01$). (c, d) Periods of gene activity measured in mock-
962 treated and Wnt3a-treated cells. Population was divided into cases where the gene was either not transcribing
963 before addition of Wnt3a or mock-treatment (“off”, n(Wnt3a)=27, n(Con)=22, $P=0.01$) or if the gene was
964 already active (“on”, n(Wnt3a)=37, n(Con)=52, $P=0.77$). * $P<0.05$, n.s. = $P>0.05$. (e) Frames from Video 12
965 showing the activation of the *CCND1-MS2* gene detected by MS2-GFP mRNA tagging (arrow) following Wnt3a
966 treatment. Bar= 10 μ m.

967

968 **Figure 8.** Quantification of *CCND1* activity levels following Wnt activation in single fixed and living cells. (a,b)
969 Boxplots showing the maximal MS2-GFP intensity levels reached on actively transcribing *CCND1-MS2* genes
970 during 6 hrs in Wnt3a-treated and mock-treated (Con) cells, when (a) the gene was either not transcribing
971 before addition of Wnt3a or mock-treatment (“off”, n(Wnt3a)=27, n(Con)=22, $P=0.0001$) or (b) if the gene was
972 already active (“on”, n(Wnt3a)=37, n(Con)=52, $P=0.0006$). The median is indicated by a red line, the box
973 represents the interquartile range, the whiskers represent the maximum and minimum values, and red dots
974 represent outliers. (c, d) Boxplots showing the time required to reach the maximal intensity levels when (c) the
975 gene was either not transcribing before addition of Wnt3a (“off”, $P=0.03$) or (d) if the gene was already active

976 ("on", $P=0.42$). (e) YFP- β -catenin (yellow) together with RNA FISH images obtained with a probe hybridizing to
977 the MS2 region in the 3'UTR of the CCND1-MS2 mRNA (cyan), showing CCND1 nascent mRNAs on active genes
978 (large dots) and cellular mRNAs (small dots) in Wnt3a-treated cells (2 hrs), in comparison to YFP- β -catenin
979 levels. Nuclei are stained with Hoechst (pseudo-colored red). Bottom row is the pseudo-colored YFP signal
980 using the ImageJ 'Royal' look-up table. Cells are numbered. Bar=10 μ m. (f) Quantification of the number of
981 cellular CCND1-MS2 mRNAs (ordered from low to high) compared to YFP- β -catenin levels. (g) Quantification of
982 the number of nascent CCND1-MS2 mRNAs compared to YFP- β -catenin levels. (h, i) Correlation analysis
983 between (h) the number of cellular CCND1-MS2 mRNAs and YFP- β -catenin levels and (i) between the number
984 of nascent CCND1-MS2 mRNAs and YFP- β -catenin levels. Blue dots – subpopulation with low nuclear YFP- β -
985 catenin levels and low numbers of cellular/nascent CCND1-MS2 mRNAs. Red dots – subpopulation with high
986 nuclear YFP- β -catenin levels and high numbers of cellular/nascent CCND1-MS2 mRNAs. Total correlation score
987 between the number of cellular/nascent CCND1-MS2 mRNAs and YFP- β -catenin levels is 0.88 and 0.59,
988 respectively. (j) The field from panel e demonstrating higher intensity of active CCND1-MS2 genes in cells with
989 high nuclear YFP- β -catenin levels (red arrows) compared to cells with low nuclear YFP- β -catenin levels (yellow
990 arrows). Active genes are pseudo-colored using the ImageJ 'Red Hot' look-up table. The fluorescent signal of
991 the active genes was enhanced using ImageJ 'Spot Enhancing Filter 2D'. This enhancement led to reduced
992 detectability of single mRNAs in this presentation of the image, in order to emphasize the difference in
993 transcriptional activity between low and high levels of nuclear YFP- β -catenin. Bar=10 μ m.

994

995 **Figure 9.** Comparing the kinetics of CCND1 transcriptional activation to the dynamics of β -catenin nuclear
996 accumulation rate of change following Wnt signaling in living cells. (a) Plots of the average transcriptional
997 activation kinetics of CCND1-MS2 (red) following Wnt3a activation, compared to the plot of rate of change in
998 β -catenin nuclear accumulation (green). (b) Scheme of the dynamic changes occurring in the studied cell
999 system following Wnt signaling. Top - from left to right: Levels of β -catenin (yellow) in the nucleus are

000 normally low but after addition of Wnt3a to the medium a significant and rapid increase in the nucleus is
001 observed, peaking after 2-3 hrs. β -catenin levels later decline in the nucleus and cytoplasm due to
002 degradation. While this is the average behavior in the population (e.g. cells 1 and 2), when examining
003 individual cells, different dynamics such as multiple pulsations (e.g. cell 3) and rapid initial accumulation (e.g.
004 cell 4) are observed. β -catenin levels increase simultaneously at the membrane and at the centrosome.
005 Bottom- β -catenin induces cyclin D1 transcriptional activity (green dot), and modulation of transcriptional
006 reaction can be observed as the gene reaches higher levels of activity, for longer periods of time. The rate of
007 change in β -catenin accumulation (blue curve, top), rather than the actual levels of β -catenin in the nucleus,
008 correlate with the kinetics of transcriptional activation.

009

010 **Supplementary Figure legends**

011

012 **Figure 1-figure supplement 1.** Measuring the effect of YFP- β -catenin expression in HEK293 cells. **(a)** Luciferase
013 assay showing the levels of cyclin D1 promoter activation following the transient transfection of YFP- β -catenin
014 into HEK293 cells. $P=0.003$. **(b)** Overexpression of YFP- β -catenin shows that overexpressed protein localization
015 does not resemble endogenous β -catenin under non-activated conditions, since it is highly present in the
016 nucleus prior to Wnt activation, and does not appear at the membrane. Bar= 10 μ m. **(c)** Cell cycle analysis of
017 HEK293 CCND1-MS2 cells with and without YFP- β -catenin. **(d)** Quantification of CCND1-MS2 nascent mRNAs
018 (left) ($P=0.8$) and cellular mRNAs (right) ($P=0.16$) levels by RNA FISH in HEK293 CCND1-MS2 cell clones with or
019 without YFP- β -catenin ($n=18$, $n=26$ respectively). ** $P<0.01$, n.s. = $P>0.05$. **(e-h)** Example of single molecule
020 mRNA FISH quantification procedure with a probe that hybridizes to the MS2 region in the 3'UTR of the
021 CCND1-MS2 mRNA. **(e)** Raw 3D image (76 planes in z stack) showing the active transcription site (red) and
022 single mRNA molecules. Hoechst DNA stain is in blue. **(f)** Deconvolved 3D image. Boxes show the transcription

023 site (bottom) and single cellular mRNAs (top). **(g)** Identification of “spots” of single mRNAs and transcription
024 site (green dots) by Imaris. **(h)** Generation of a 3D shell for each spot to be taken for intensity measurements.
025 Bar= 10 μ m. Then the sum of intensity at the transcription site was divided by the frequent intensity value of a
026 single mRNA. This ratio provided the number of mRNAs associated with the transcription unit, as explained in
027 the Methods section.

028

029 **Figure 2-figure supplement 1.** FRAP and FLIP measurements of YFP- β -catenin import and export dynamics. **(a)**
030 Frames showing one pre-bleach frame, the bleach of the YFP- β -catenin in the nucleus (top) or cytoplasm
031 (bottom) of a Wnt3a-treated cell (2 hrs, arrows point to bleached region), and frames following the recovery
032 of signal over time (frame every 1.5 sec for 8 min). Bar=10 μ m. **(b)** Averaged data plot of FRAP recovery import
033 curves from Wnt3a-treated cells (n=27, red curve), and transiently overexpressing YFP- β -catenin cells (n=33,
034 blue curve). Pink curve shows the decline in YFP- β -catenin in the cytoplasm of Wnt3-treated cells concurrent
035 with nuclear import (red curve). **(c)** Averaged data plot of FRAP recovery export curves (green) from Wnt3a-
036 treated cells (n=14), compared to the import curve (red). **(d)** FLIP curves for Wnt3a-treated cells
037 photobleached continuously in the nucleus to show import rates from the cytoplasm (n=15, red curve)
038 compared with cells photobleached continuously in the cytoplasm to show export rates from the nucleus
039 (n=16, blue curve). Statistics can be found in Supplementary File 1. **(e)** Data from Figure 2c (blue dots) of
040 nuclear YFP- β -catenin accumulation were fit with a two-phase exponential (red curve).

041

042 **Figure 3-figure supplement 1.** β -catenin accumulation dynamics in response to LiCl activation in individual
043 cells. **(a)** Frames from time-lapse Video 4 showing YFP- β -catenin accumulation in a population of cells. The YFP
044 signal is pseudo-colored using the ImageJ ‘Green Fire Blue’ look-up table. Bar=10 μ m. **(b)** β -catenin levels in
045 the nucleus (top) and cytoplasm (bottom) of individual cells (as numbered in **a**) are plotted in different colors.

046 The grey background plots show the complete set of plots from all the cells. The maximum intensity of β -
047 catenin in each cell was normalized to 1. (c) The relative average intensity of β -catenin measured in the
048 cytoplasm (n=17) and nucleus (n=18) of individual cells treated with LiCl for 12 hrs, compared to Wnt3a-
049 treated cells (from Figure 2). (d) The rate of change in β -catenin levels ($\Delta I/\Delta t$) accumulation or degradation in
050 the cytoplasm and nucleus over time in cells from c. (e) Frames from a time-lapse movie showing YFP- β -
051 catenin accumulation in a population of Wnt3a+MG132-treated cells. The YFP signal is pseudo-colored using
052 the ImageJ 'Green Fire Blue' look-up table. Bar=10 μ m. (f) The relative average intensity of β -catenin
053 measured in the centrosome, membrane, cytoplasm and nucleus of LiCl-treated cells.

054

055 **Figure 3-figure supplement 2.** The relationship between YFP- β -catenin levels of accumulation and time of
056 Wnt3a activation. (a) Frames from a time-lapse movie showing YFP- β -catenin accumulation in a population of
057 cells in the field. The YFP signal is pseudo-colored using the ImageJ 'Royal' look-up table. Red arrows point to
058 cells with very high β -catenin levels. Bar=10 μ m. Plots showing the relative maximal levels of β -catenin
059 measured in nuclei of (b) Wnt3a-treated (n=31) or (c) LiCl-treated cells (n=18). Order of cells is according to
060 increasing relative intensities. Plots showing the time from the addition of the activator until reaching the
061 maximal levels of β -catenin in the same set of (d) Wnt3a-treated or (e) LiCl-treated cells. (f,g) The respective
062 correlation plots and scores for a Pearson correlation analysis between the maximum intensity in each cell and
063 the time to reach the highest accumulation. (h) The integral of the fluorescence values in the 6 cells (from
064 figure 3) showing the total accumulation levels over time during the whole observation period (left). The right-
065 hand plot shows the differences between accumulation in the cells at earlier times.

066

067 **Figure 4-figure supplement 1.** YFP- β -catenin dynamics during the cell cycle in Wnt3a induced cells. HEK293
068 CCND1-MS2 YFP- β -catenin cells were stably infected with the Fucci system (mCherry-Cdt1 and AmCyan1-

069 Geminin). Cdt1 levels peak during G1 (red cells), and as cells transition into S, Cdt1 levels decline and Geminin
070 levels rise (cyan cells), remaining high from G2 onwards. (a) Frames from Video 6. Before Wnt3a treatment
071 (time 0 min), β -catenin levels are low in the cytoplasm and nucleus of all cells marked by arrowheads (cells in
072 G1 or G2). At time 255 min after Wnt3a, the cells marked with blue, green and pink arrowheads show an
073 increase in the β -catenin levels in response to Wnt signaling. The cell marked with a white arrowhead has not
074 responded yet. At time 780 min, the cell marked with a pink arrowhead has gone through mitosis and the
075 three cells marked by blue, green and white arrowheads have similar β -catenin levels. At time 1065 min, cells
076 marked by white and blue arrowheads are increasing further, while the cell marked with the green arrowhead
077 is not changing. (b) Frames from Video 7. Before Wnt3a treatment (time 0 min), all the cells marked with
078 arrowheads (green, blue, white and pink) are in G2. At time 240 min after Wnt3a, the cell marked by a green
079 arrowhead has gone through mitosis and the daughter cells have similar β -catenin levels. At time 420 min, all
080 four cells have gone through mitosis. β -catenin levels in each of the two daughter cells in all four cases are
081 similar to each other. At time 705 min, the daughter cells marked by blue, green and pink arrowheads are
082 different from each other. The cells marked with white arrowheads have similar levels. Bottom rows are the
083 same frames without Fucci labels. Bar=10 μ m.
084

085 **Figure 5-figure supplement 1.** FRAP measurements of YFP- β -catenin dynamics at adherens junctions. (a)
086 Frames showing one pre-bleach frame, the bleach of the YFP- β -catenin in the membrane region of a Wnt3a-
087 treated cell, and frames following the recovery of signal over time. Circle denotes the bleached region. Bar=10
088 μ m. (b) Averaged data plot of FRAP recovery curves from mock-treated (control, n=21), Wnt3a-treated (n=32)
089 and LiCl-treated cells (n=18). Statistics can be found in Supplementary file 1e, f.
090

091 **Figure 6-figure supplement 1.** Detachment of membranal YFP- β -catenin puncta and movement towards the
092 centrosome. (a) Frames from Video 10 showing the tracks of several YFP- β -catenin membranal puncta
093 (colored tracks) moving from the membrane region towards the centrosome area (red circle). Time is minutes
094 after addition of Wnt3a. YFP signal is shown in negative greyscale colors. Bar=10 μ m. (b) Maximum time
095 projections of movements of membranal YFP- β -catenin puncta (arrows) towards the centrosome region
096 (circles) in four different cells. The YFP signal is pseudo-colored using the ImageJ 'Green Fire Blue' look-up
097 table. Top row are Wnt3a-treated cells. Bottom row are Wnt3a + MG132-treated cells. Bar=10 μ m.

098

099 **Figure 6-figure supplement 2.** Summary of FRAP measurements of YFP- β -catenin dynamics in subcellular
100 compartments in response to Wnt3a treatment. (a) Frames showing one pre-bleach frame, the bleach of the
101 YFP- β -catenin in the centrosome of a Wnt3a-treated cell, and frames following the recovery of signal over
102 time. Circle denotes the bleached region. Bar=10 μ m. (b) Averaged data plot of FRAP recovery curves in the
103 cytoplasm (n=24), nucleus (n=25), membrane (n=32) and centrosome (n=13). Membrane recovery from **Figure**
104 **5-figure supplement 1** and import rate to nucleus from **Figure 2-figure supplement 1** are also plotted.

105

106 **Figure 7-figure supplement 1.** Wnt signaling causes shorter rest duration in addition to an increase in the gene
107 burst duration. Plots of single cells demonstrate the active (blue) and inactive (red) state of CCND1-MS2
108 transcribing gene along 6 hrs in (a) mock-treated cells (Control, n=74) and (b) Wnt3a-treated cells (n=64). Data
109 were taken from live-cell movies with each column representing one cell along 6 hrs. Histograms showing the
110 distribution of (c) active and (d) inactive state durations in Wnt3a-treated and mock-treated (Control) cells
111 ($P=0.02$, $P=0.0004$ respectively). The curves are a fit to exponential distribution⁸⁰.

112

113 **Figure 8-figure supplement 1.** Transcription site intensity levels in living cells following Wnt3a activation. Plots
114 showing the MS2-GFP average intensity levels measured on active CCND1-MS2 transcription sites during 6 hrs
115 in Wnt3a-treated and in mock-treated cells, when **(a)** the gene was either not transcribing before addition of
116 Wnt3a or mock-treatment (“off”, n(Wnt3a)=27, n(Con)=22) (y axis is “relative intensity” going from an “off”
117 state to an “on” state) or **(b)** if the gene was already active to begin with (“on”, n(Wnt3a)=37, n(Con)=52) (y
118 axis is the fold change compared to the beginning of the movie). Results were normalized to the intensity at
119 time 0. **(c)** Combined data from **a** and **b**. **(d)** Boxplot (left) showing the MS2-GFP maximal intensity levels
120 reached on active CCND1-MS2 transcription sites during 6 hrs in Wnt3a-treated and in mock-treated cells. In
121 the boxplots, the median is indicated by a red line, the box represents the interquartile range, the whiskers
122 represent the maximum and minimum values, and red dots represent outliers. The histograms (right) show
123 the distribution of maximal intensity levels in these cells (combined data from Figure. 8a and Figure 8b
124 ($P=2.13e-06$)). The histograms show normalized data such that the area of each bar is relative to the number
125 of observations (i.e. graph height is the probability density of the bar value, and graph area is equal to
126 the probability of obtaining the bar value). The sum area of all bars is 1. The data was fitted with a Gaussian
127 curve. **(e)** Boxplot (left) showing the time required to reach the maximal intensity in Wnt3a-treated and in
128 mock-treated cells. The histograms showing the distribution of this time in these cells (combined data from
129 Figure 8c and Figure 8d, $P=0.69$). *** $P<0.001$, n.s. = $P>0.05$.

135

136

137

138

139 **Supplemental File 1**

140

141 Statistical analysis performed in this study. (a) The statistical significance p values (t test) at each time point for
142 the percentage of cells showing an active CCND1-MS2 gene (refers to **Figure 1b**) between control and Wnt3a-
143 treated cells. (b-f) Mann-Whitney test for comparison between two independent FRAP/FLIP experiments. A
144 statistical comparison between all datasets of two individual FRAP/FLIP experiments are depicted in each plot
145 and are illustrated as a single red circle which marks the p-value (y axis) for all intensity values measured for
146 each time point (x axis). The top and bottom dotted lines indicate where p-value equals 0.05. (b) Statistically
147 significant difference between the FRAP dynamics of YFP- β -catenin in the nucleus under Wnt3a treatment
148 versus overexpression of YFP- β -catenin that enters the nucleus without signal, and (c) between the FRAP and
149 (d) FLIP import and export dynamics (refers to **Figure 2-figure supplement 1**). (e) No statistically significant
150 difference between YFP- β -catenin at the cell membrane between mock-treated and Wnt3a-treated cells
151 (refers to **Figure 5-figure supplement 1**). (f) No statistically significant difference between YFP- β -catenin at the
152 cell membrane between mock-treated and LiCl-treated cells (refers to **Figure 5-figure supplement 1**).
153
154

155 **Supplemental Movies**

156

157 **Video 1. Transcriptional activation of CCND1 in response to Wnt3a.** HEK293 CCND1-MS2 cells stably
158 expressing MS2-GFP (green) were treated with Wnt3a. The transcribed CCND1 mRNA on the active gene is
159 seen as a bright green dot. The fluorescent signal on the active genes was enhanced using ImageJ 'Spot
160 Enhancing Filter 2D' in order to clearly present the active sites in the movie. Cells were imaged every 15 min
161 for 3 hrs.

162

163 **Video 2. YFP-β-catenin dynamics at steady state and after Wnt3a activation.** HEK293 CCND1-MS2 cells stably
164 expressing YFP-β-catenin were treated with Wnt3a (top) and showed nuclear and cytoplasmic accumulation of
165 YFP-β-catenin, followed by slow egress. No change in YFP-β-catenin levels was seen in mock-treated cells
166 (bottom). Right – The YFP signal is pseudo-colored using ImageJ 'Royal' look-up table to show YFP-β-catenin
167 levels. Cells were imaged every 15 min for 510 min.

168

169 **Video 3. YFP-β-catenin dynamics in individual cells.** HEK293 CCND1-MS2 cells stably expressing YFP-β-catenin
170 were treated with Wnt3a, and the dynamics of the protein were observed in individual cells. The YFP signal is
171 pseudo-colored using ImageJ "Green Fire Blue" look-up table to show YFP-β-catenin levels. Cells were imaged
172 every 15 min for 825 min.

173

174 **Video 4. YFP-β-catenin dynamics in response to LiCl.** HEK293 CCND1-MS2 cells stably expressing YFP-β-
175 catenin were treated with LiCl and increased accumulation of the protein was observed. The YFP signal is

176 pseudo-colored using ImageJ "Green Fire Blue" look-up table to show YFP- β -catenin levels. Cells were imaged
177 every 15 min for 825 min.

178

179 **Video 5. YFP- β -catenin dynamics following Wnt3a activation during cell division.** HEK293 CCND1-MS2 cells
180 stably expressing YFP- β -catenin were treated with Wnt3a, and the dynamics of the protein in the nucleus
181 were followed over time. Two cells that undergo mitosis were observed in the field. The levels of the protein
182 in the daughter cells formed from the upper cell were low (also note the appearance and division of the
183 centrosome detected via YFP- β -catenin). In comparison, in the bottom mitotic cell, one daughter cell
184 accumulated high YFP- β -catenin levels very rapidly, while the other responded slowly and had very low levels.
185 The YFP signal is pseudo-colored using ImageJ "Fire" look-up table to show YFP- β -catenin levels. Cells were
186 imaged every 15 min for 225 min.

187

188 **Video 6. YFP- β -catenin dynamics following Wnt3a activation during the cell cycle.** HEK293 CCND1-MS2 cells
189 stably expressing YFP- β -catenin (yellow) and the Fucci markers for G1 (red) and G2 (cyan), were treated with
190 Wnt3a, and the dynamics of the protein were followed over time.

191

192 **Video 7. YFP- β -catenin dynamics following Wnt3a activation during cell division.** HEK293 CCND1-MS2 cells
193 stably expressing YFP- β -catenin (yellow) and the Fucci markers for G1 (red) and G2 (cyan), were treated with
194 Wnt3a, and the dynamics of the protein were followed over time in four cells that undergo mitosis.

195

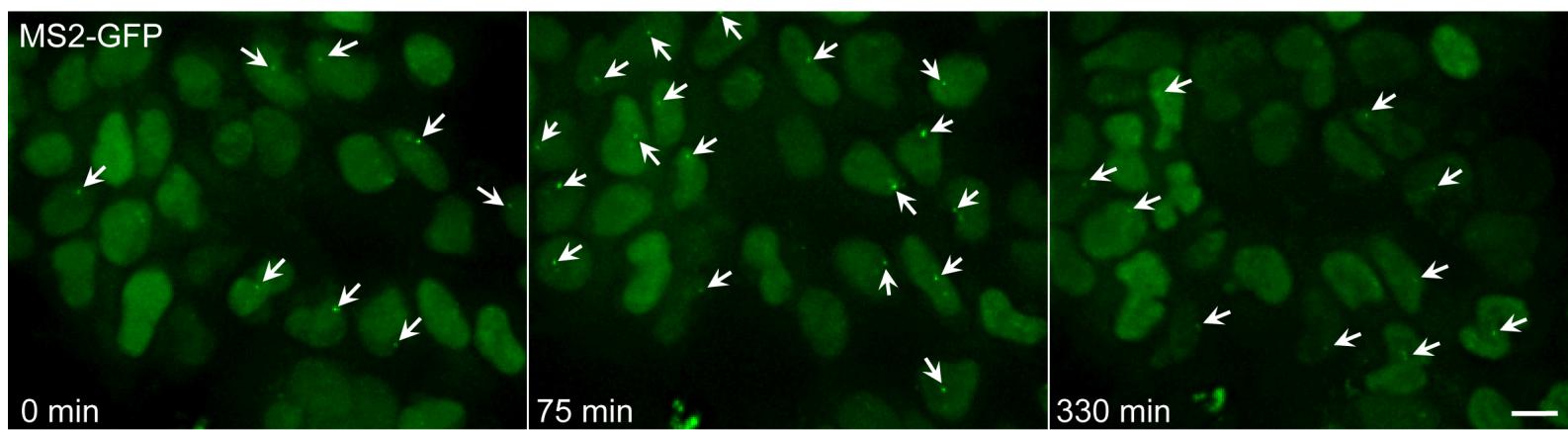
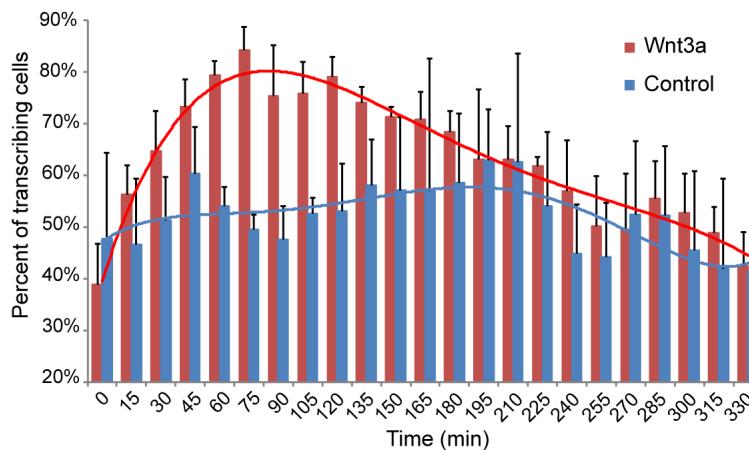
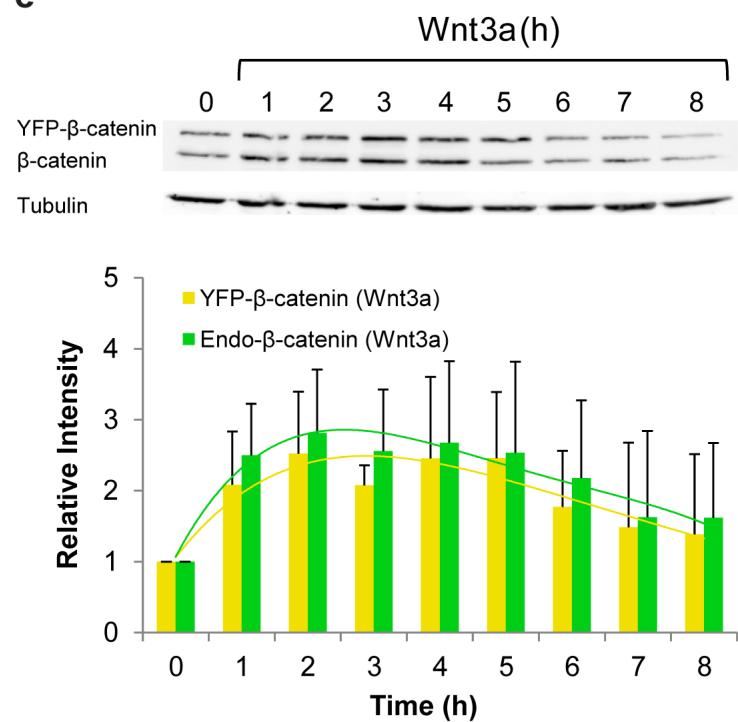
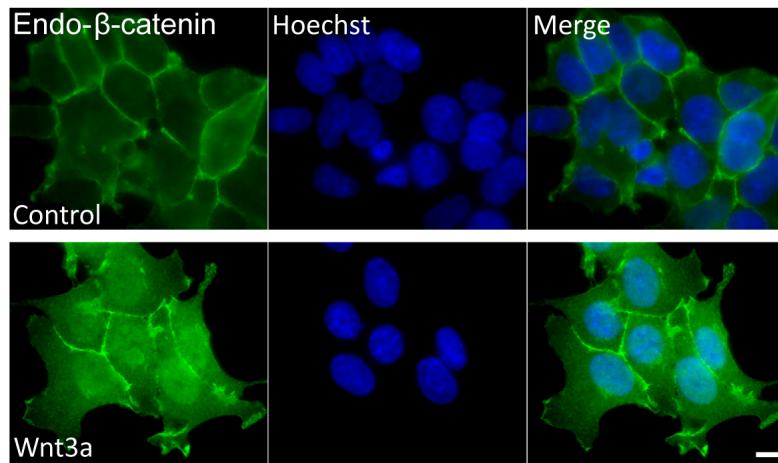
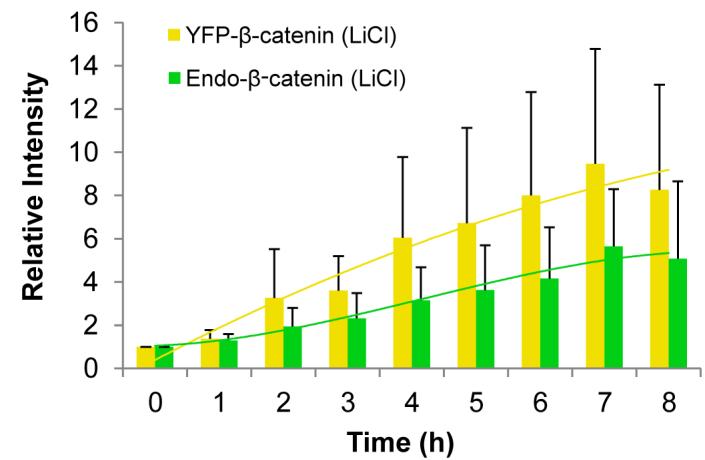
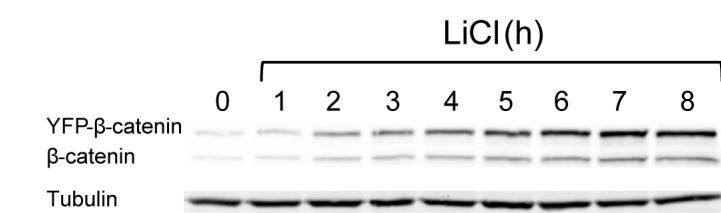
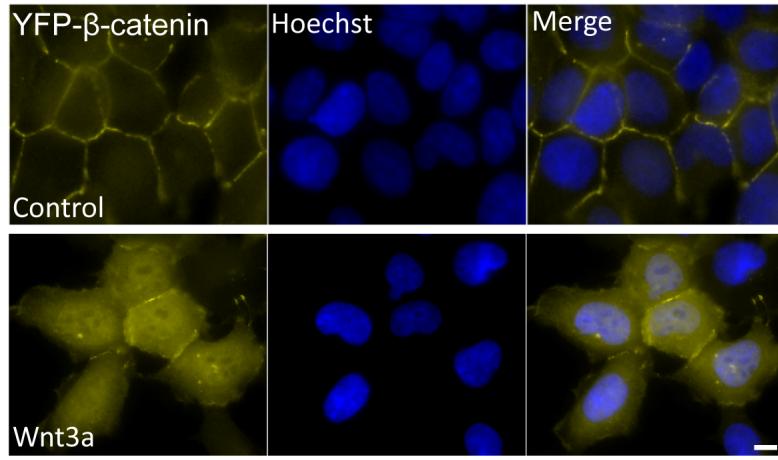
196 **Video 8. YFP-β-catenin dynamics at the cell membrane following Wnt3a activation.** HEK293 CCND1-MS2 cells
197 stably expressing YFP-β-catenin were treated with Wnt3a, and the dynamics of the protein at the membrane
198 were followed over time, and were similar to the nucleus and cytoplasm accumulation. The YFP signal is
199 pseudo-colored using ImageJ 'Green Fire Blue' look-up table to show YFP-β-catenin levels. Cells were imaged
200 every 15 min for 1065 min.

201

202 **Video 9. YFP-β-catenin accumulation at the centrosome following Wnt3a activation.** HEK293 CCND1-MS2
203 cells stably expressing YFP-β-catenin were treated with Wnt3a, and the dynamics of the protein at the
204 centrosome were observed in parallel to the accumulation in the nucleus and cytoplasm. The separation of
205 the centrosome in a cell during division can be seen after the 960 time point. Cells were imaged every 15 min
206 for 1005 min.

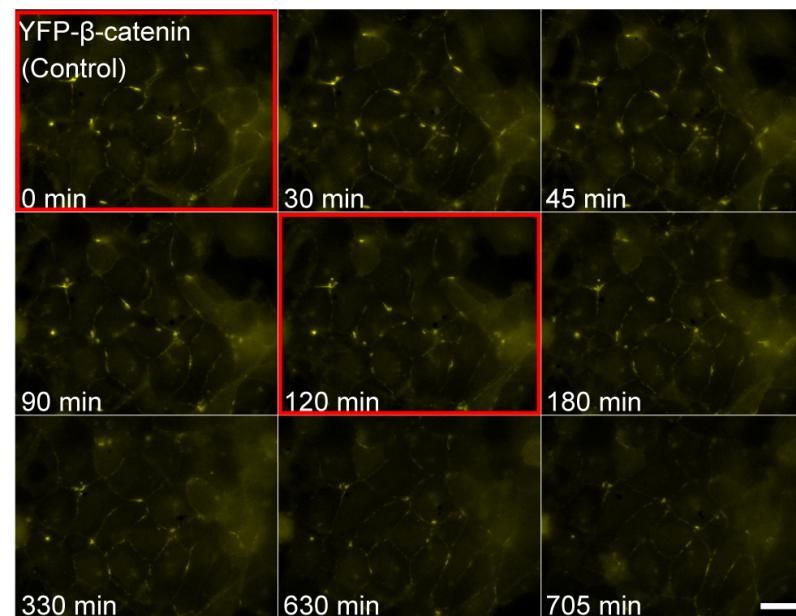
207

208 **Video 10. YFP-β-catenin puncta move from the membrane to the centrosome.** HEK293 CCND1-MS2 cells
209 stably expressing YFP-β-catenin were treated with Wnt3a. At the 300 min time point, a series of YFP-β-catenin
210 puncta can be tracked (track colors) moving from the membrane to the centrosome. An inverted presentation
211 of the movie shows the movie puncta (black dots). Cell was imaged every 15 min for 1005 min.








212

213 **Video 11. YFP-β-catenin puncta move from the membrane to the centrosome.** HEK293 CCND1-MS2 cells
214 stably expressing YFP-β-catenin were treated with Wnt3a and MG132. At the 165 min time point, a series of
215 YFP-β-catenin puncta can be tracked (track colors) moving from the membrane to the centrosome. The YFP

216 signal is pseudo-colored using ImageJ "Green Fire Blue" look-up table to show YFP- β -catenin levels. Cells were
217 imaged every 15 min for 1065 min.


218

219 **Video 12. Prolonged activation of CCND1 after Wnt activation.** HEK293 CCND1-MS2 cells stably expressing
220 MS2-GFP (green) were treated with Wnt3a. CCND1 mRNA transcription could be detected 15 min after Wnt3a
221 (green dot, transcription site) and continued for 4 hrs. Cells were imaged every 15 min for 270 min.

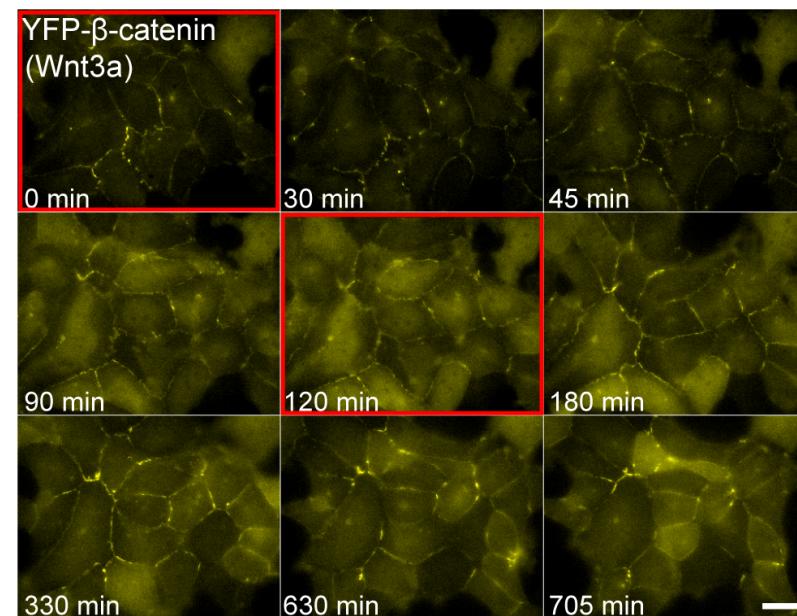
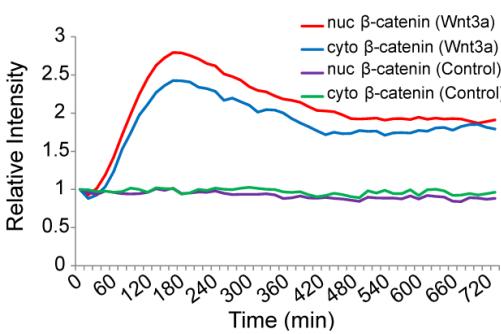
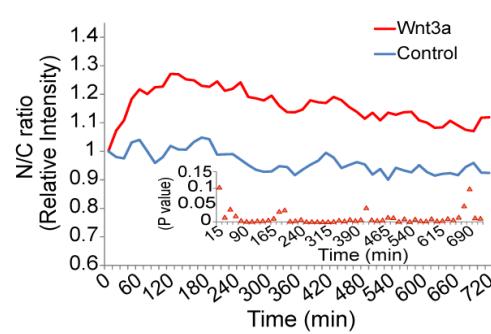
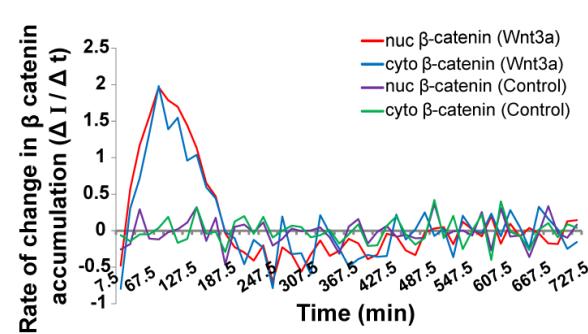

Figure 1**a****b****e****c****d**

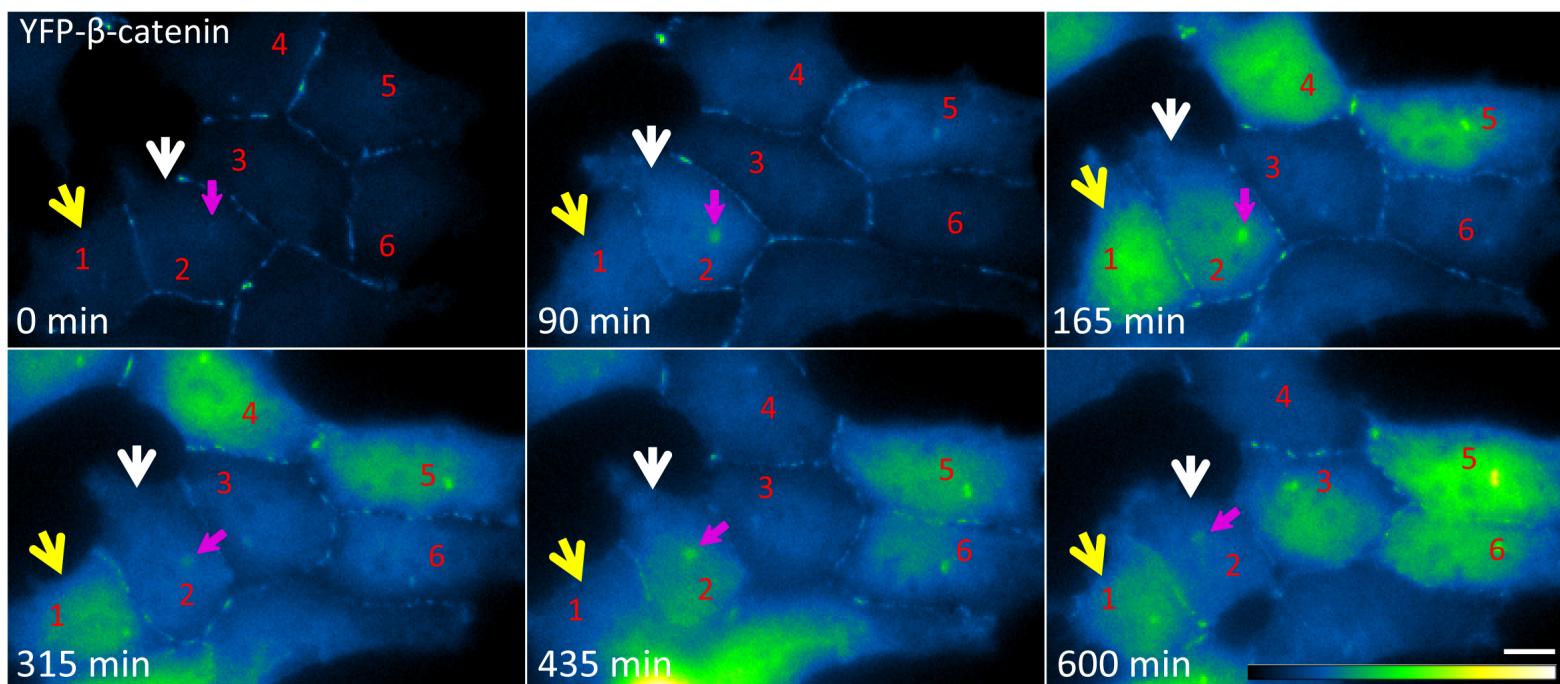
Figure 2


a


b


c

d



e

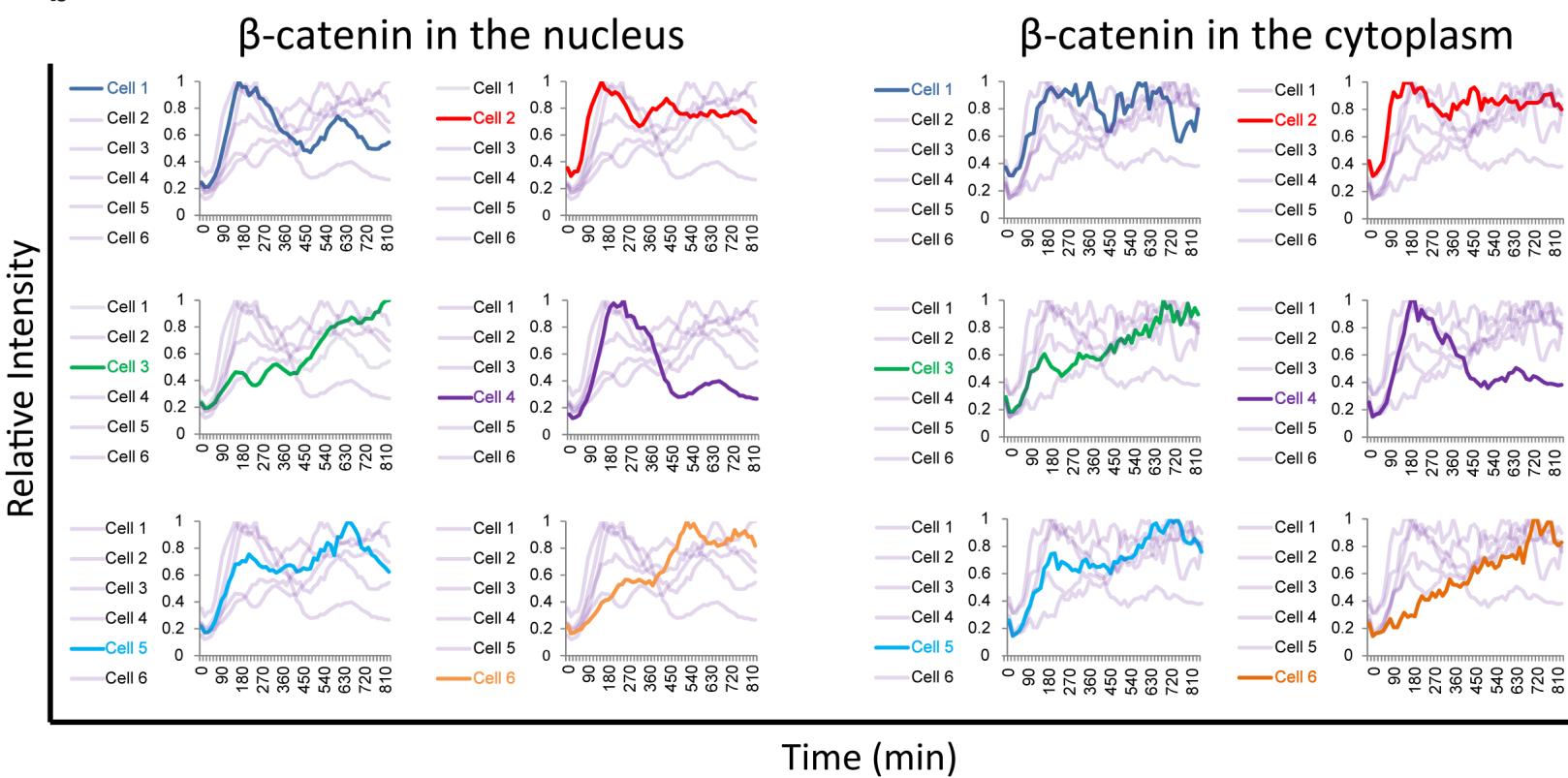
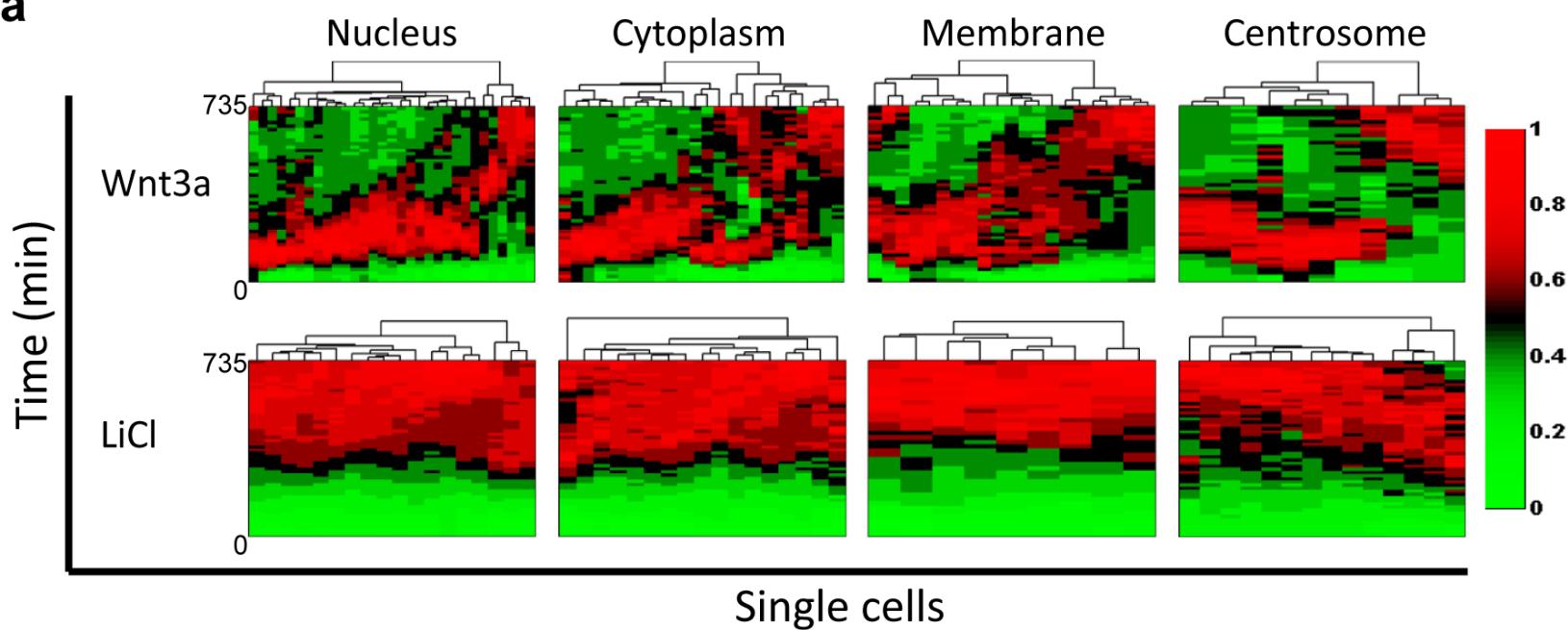
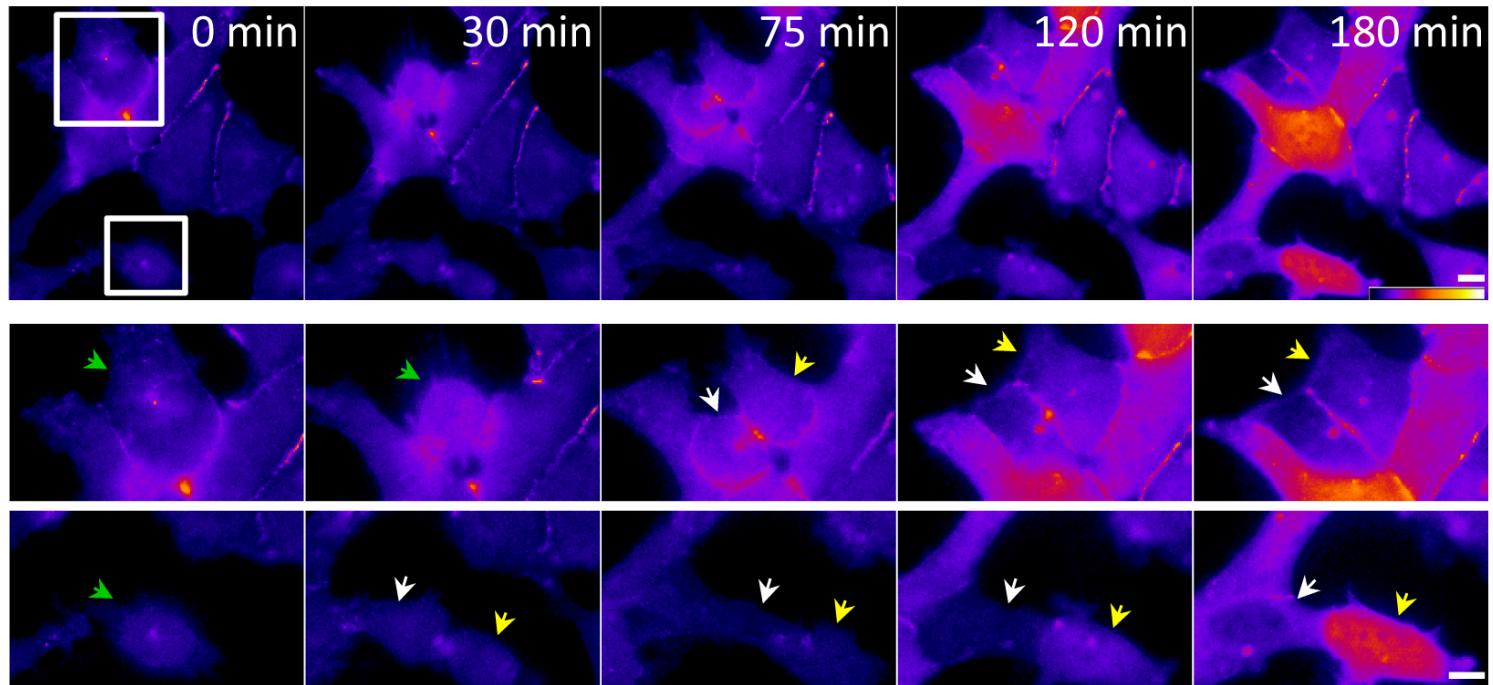


Figure 3

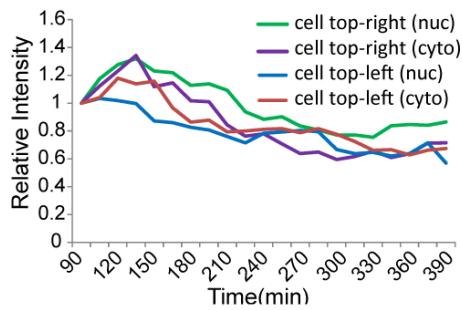
a



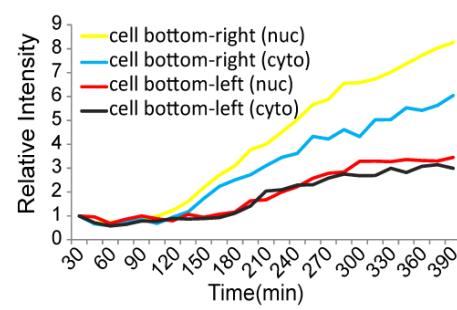
b

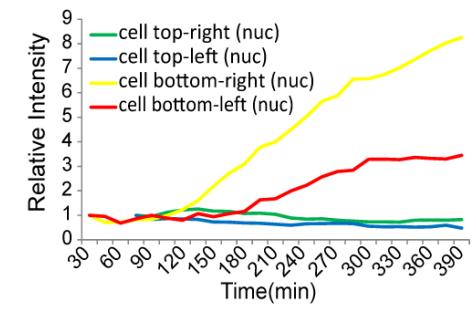

Figure 4

a

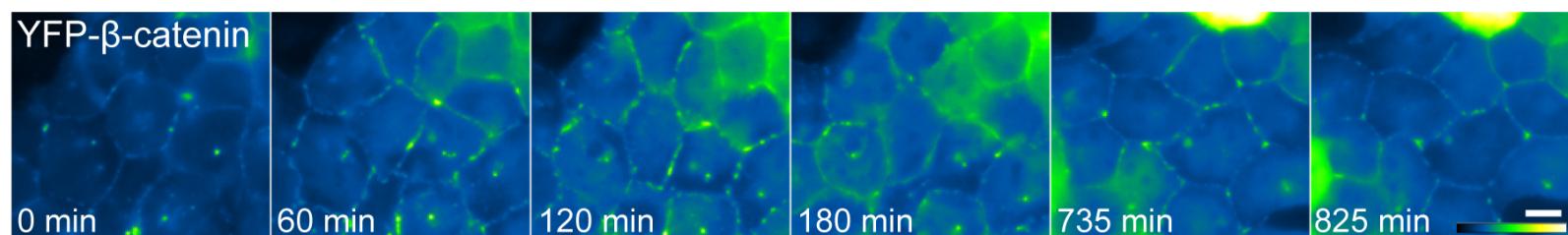


Single cells


b


c

d



e

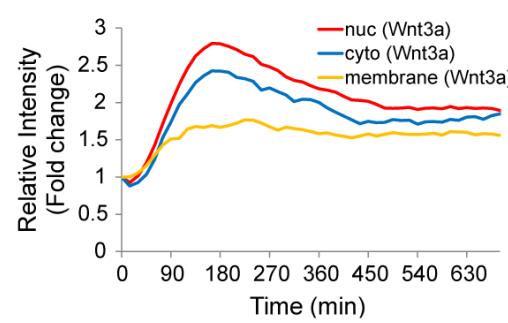
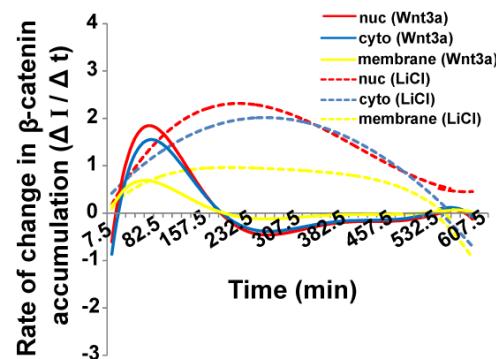
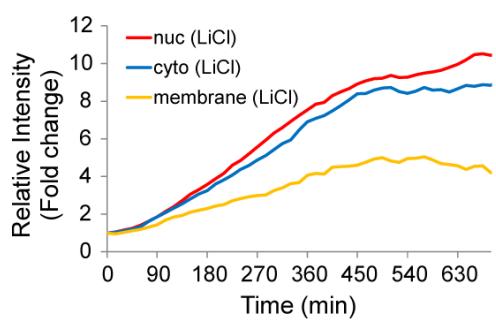
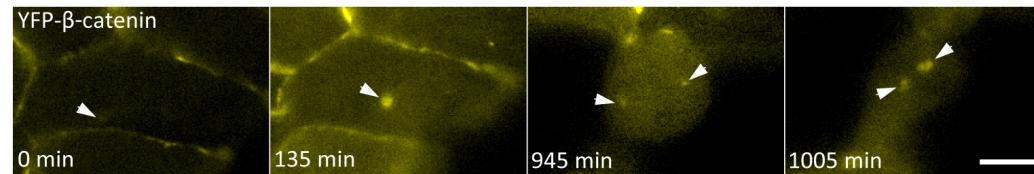


Figure 5


a


b

c



d

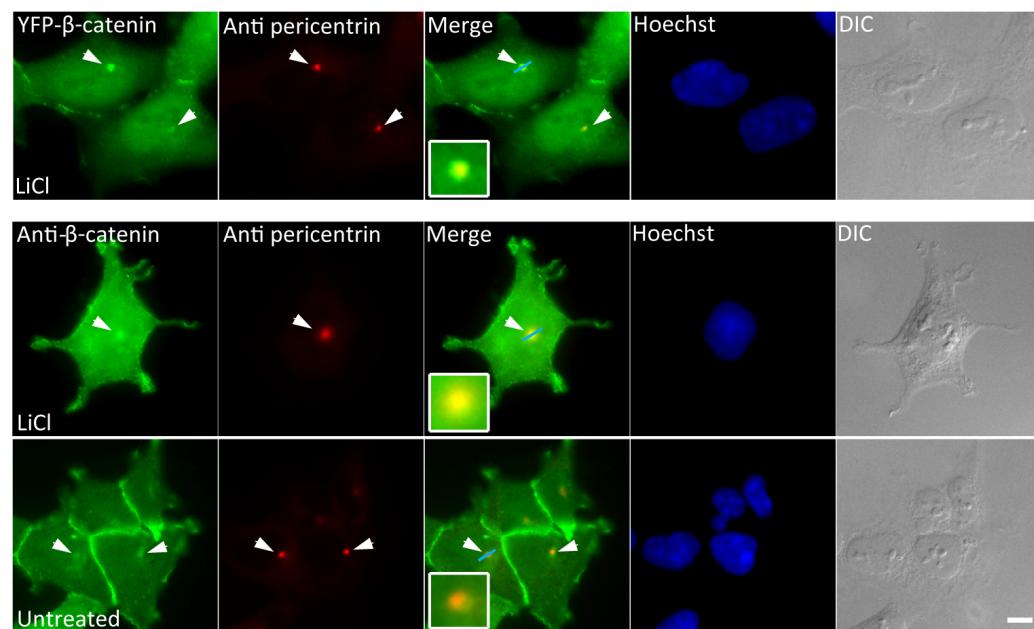
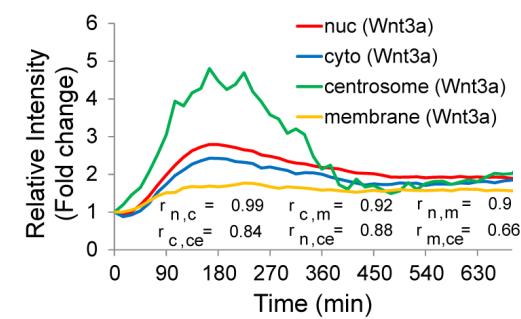
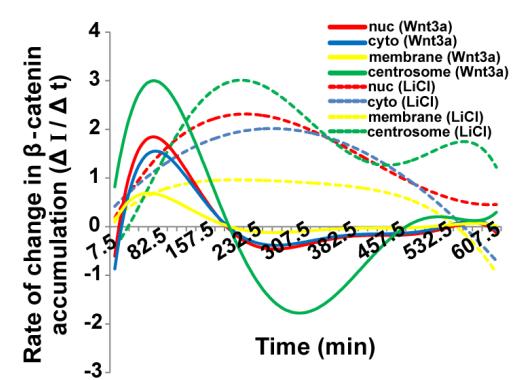
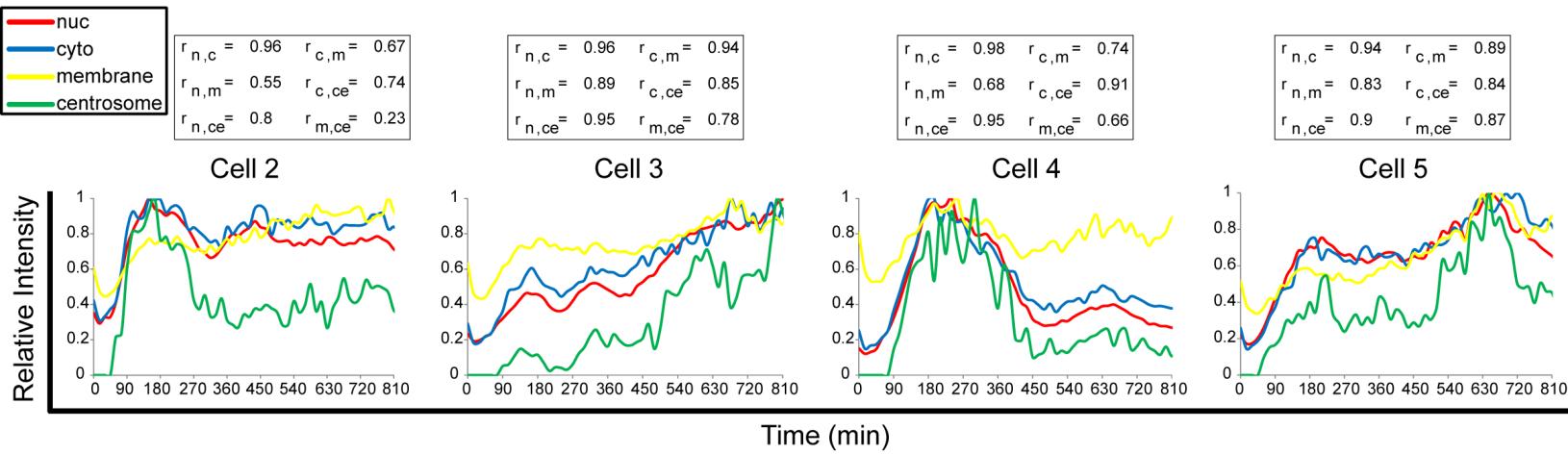
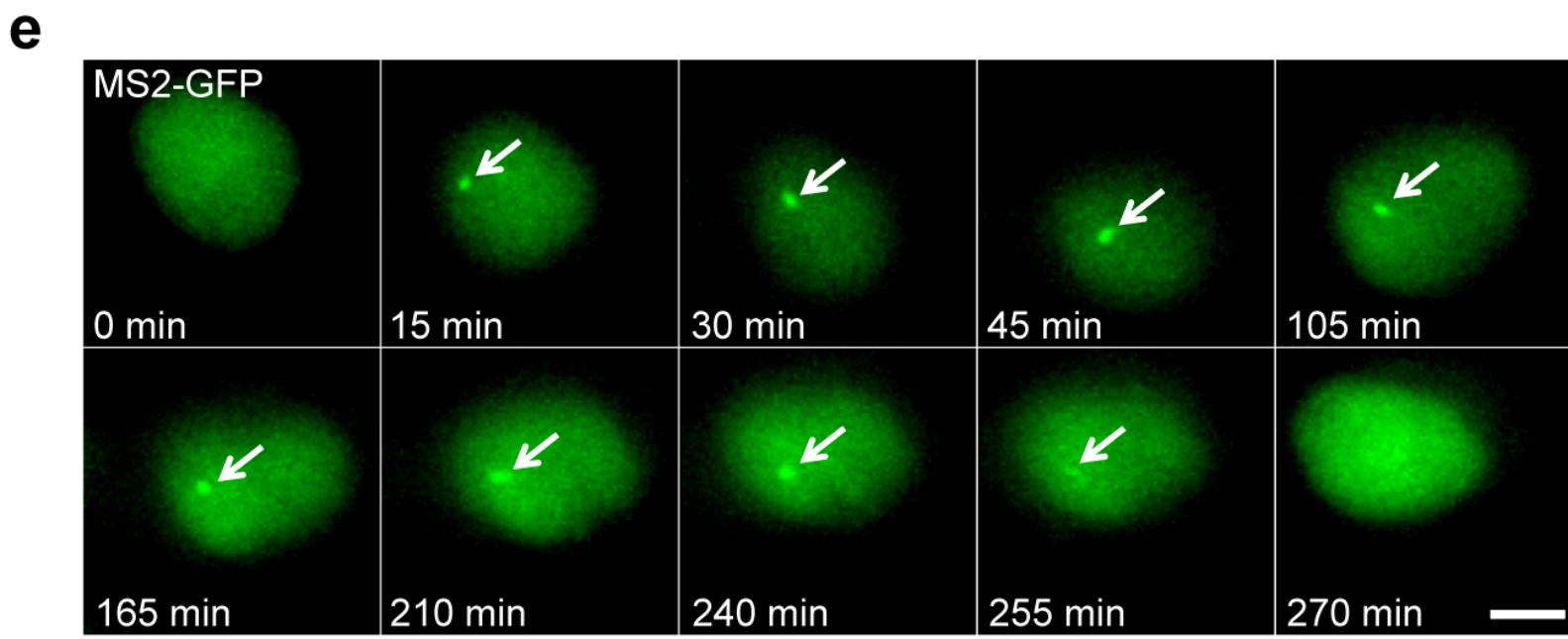
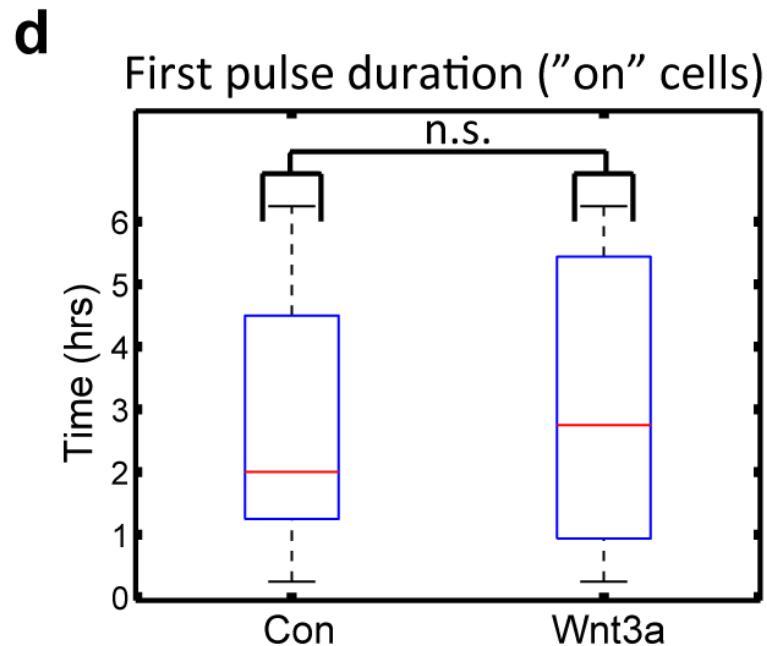
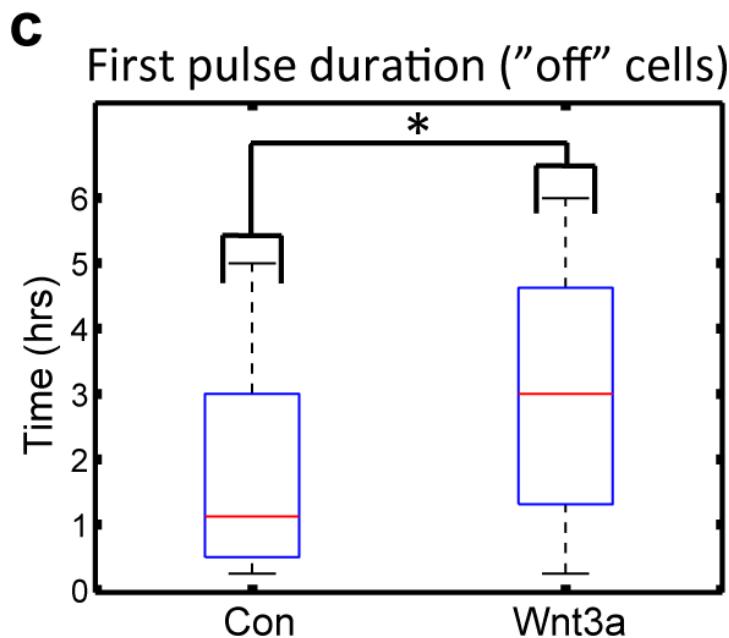
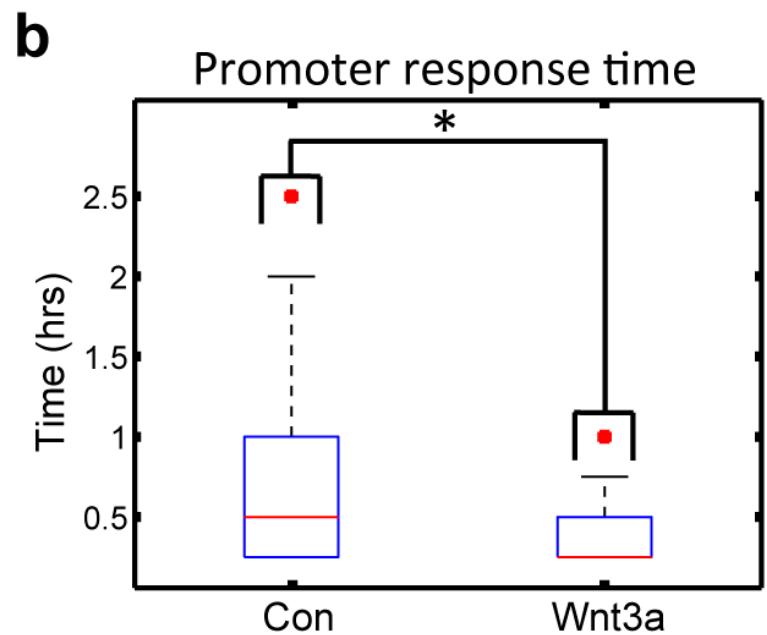
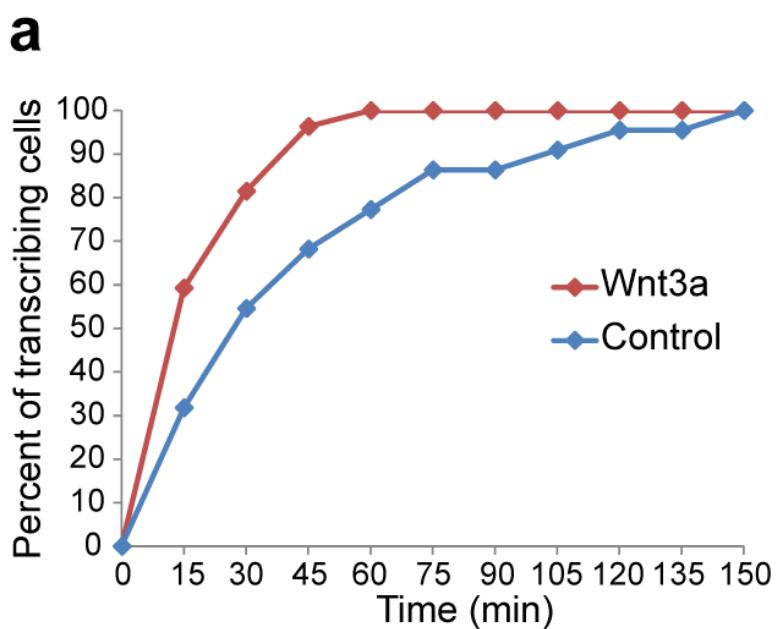


Figure 6


a


b


c






d

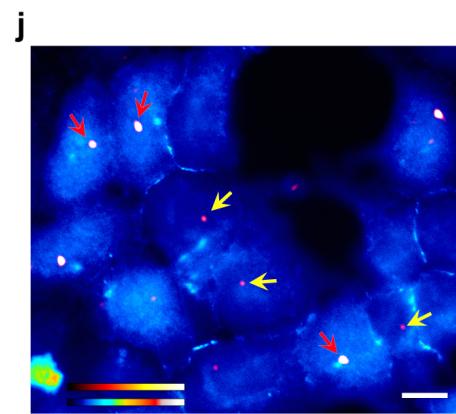
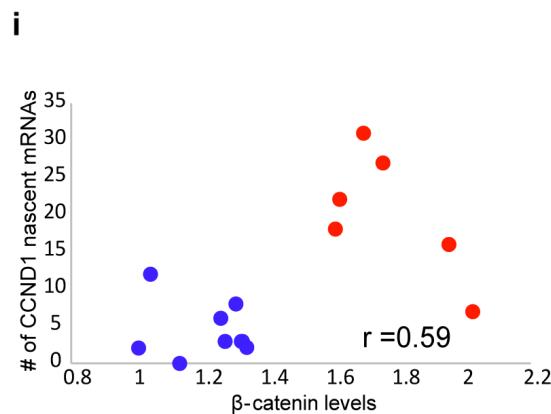
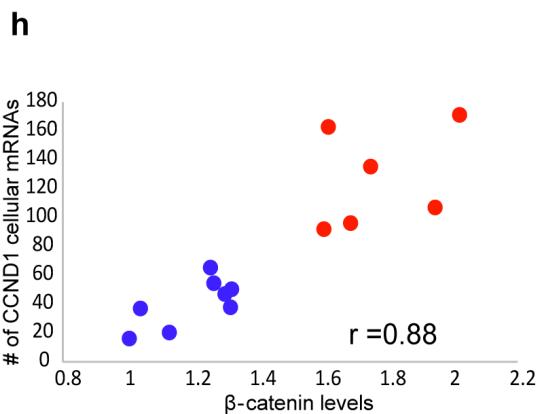
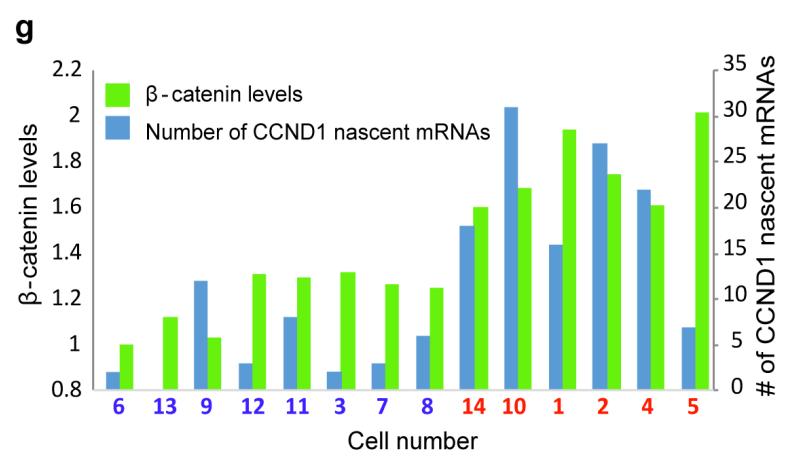
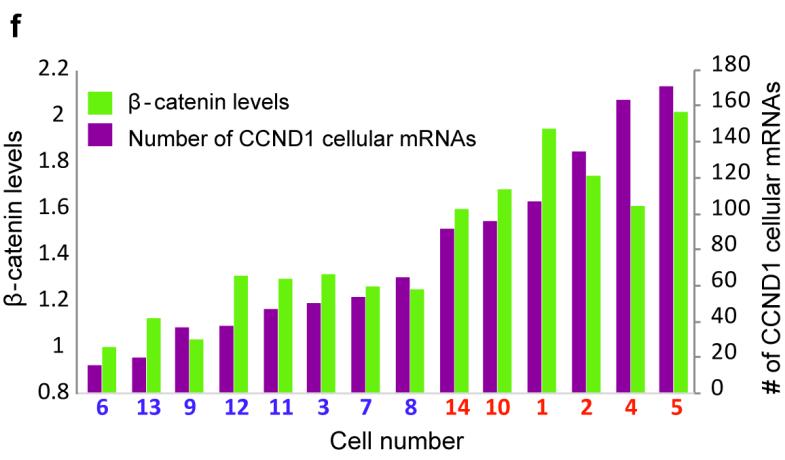
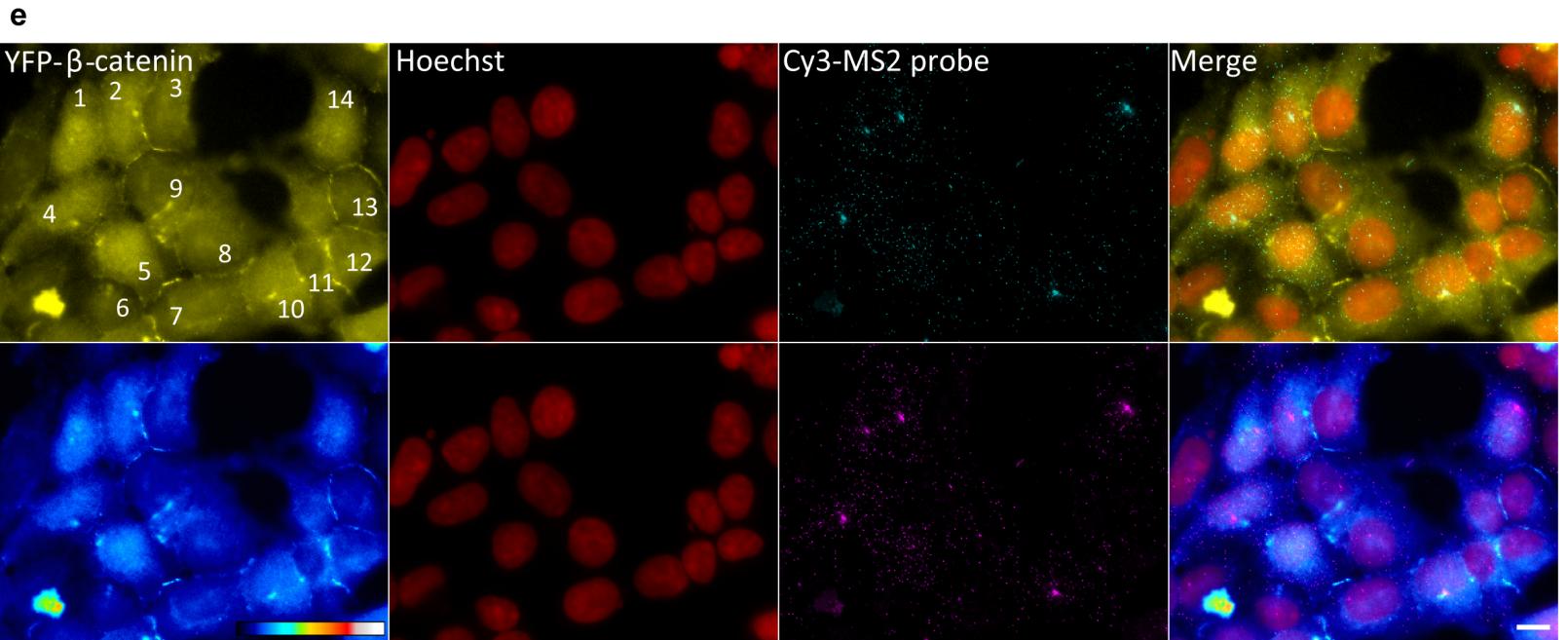
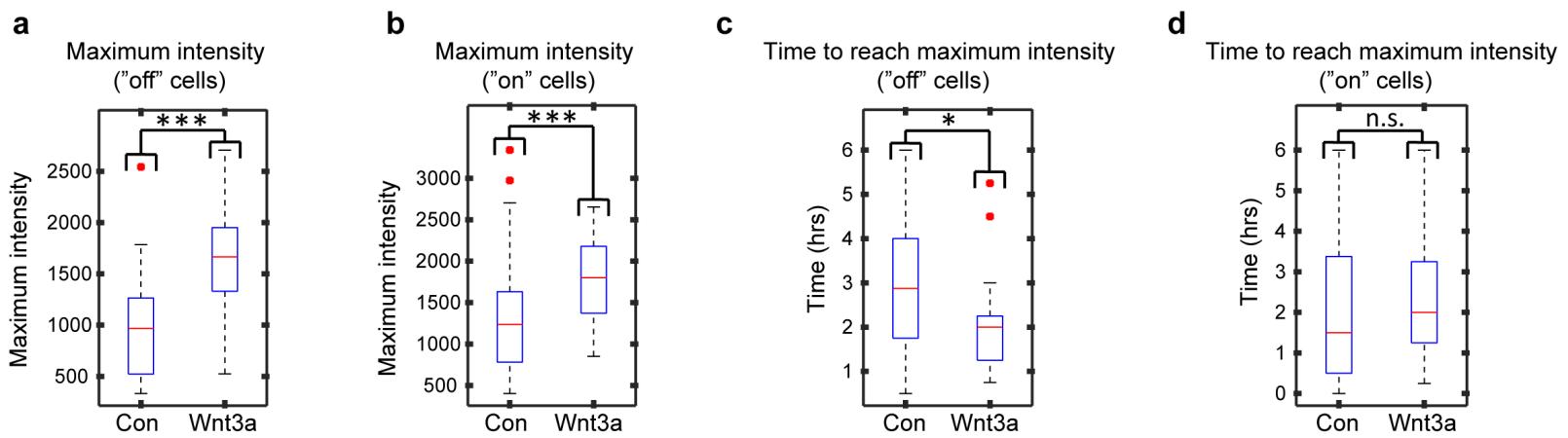







e

Figure 7

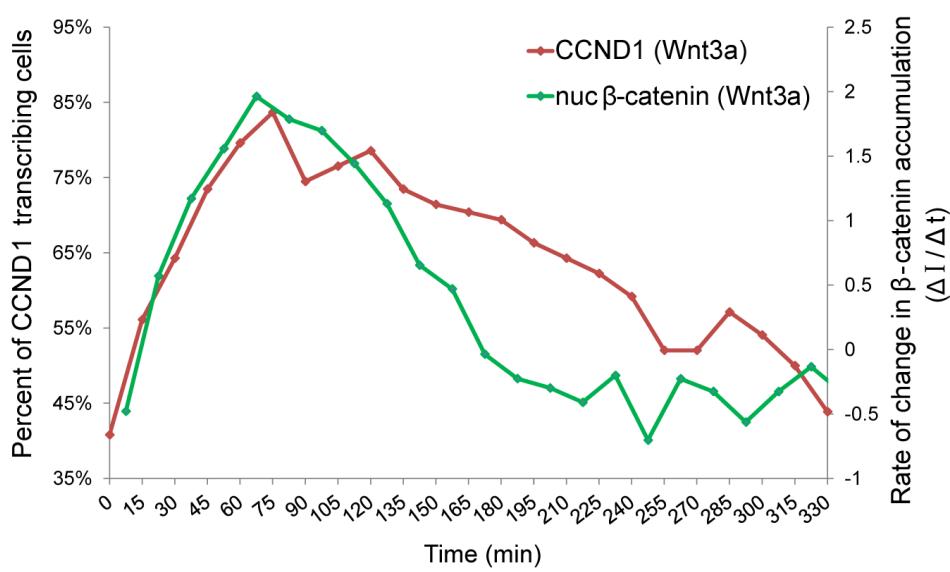


Figure 8

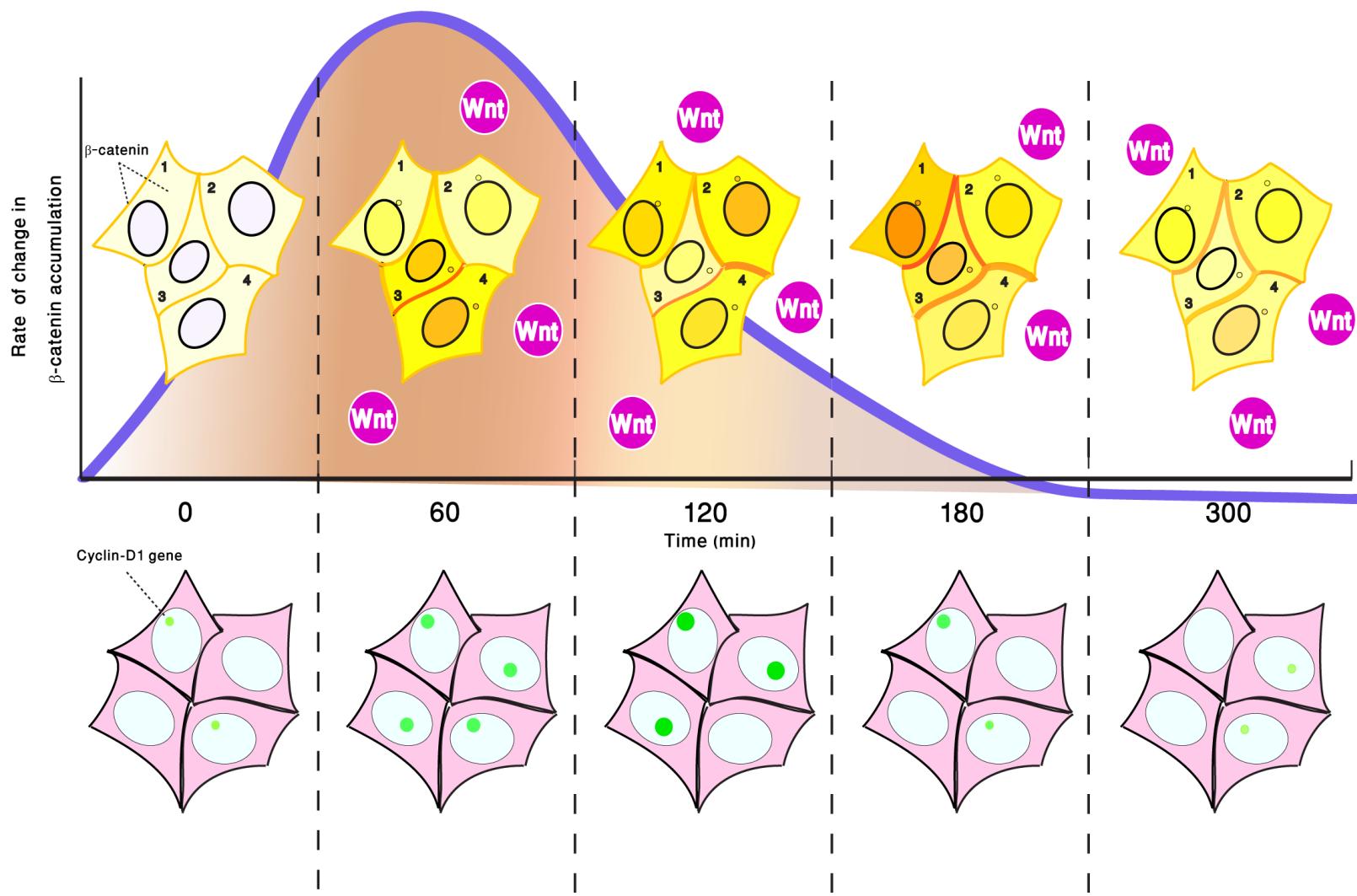
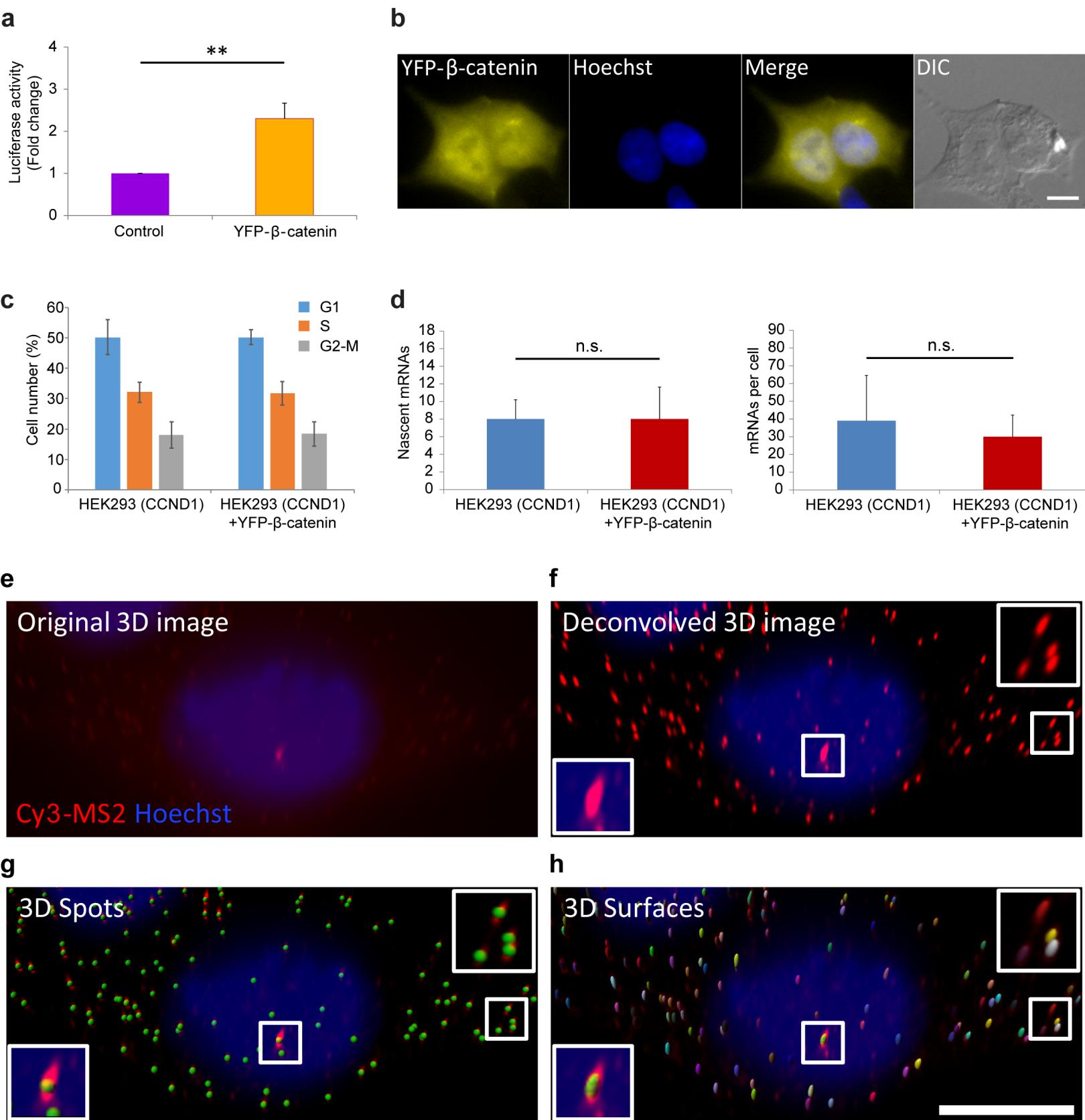


Figure 9


a

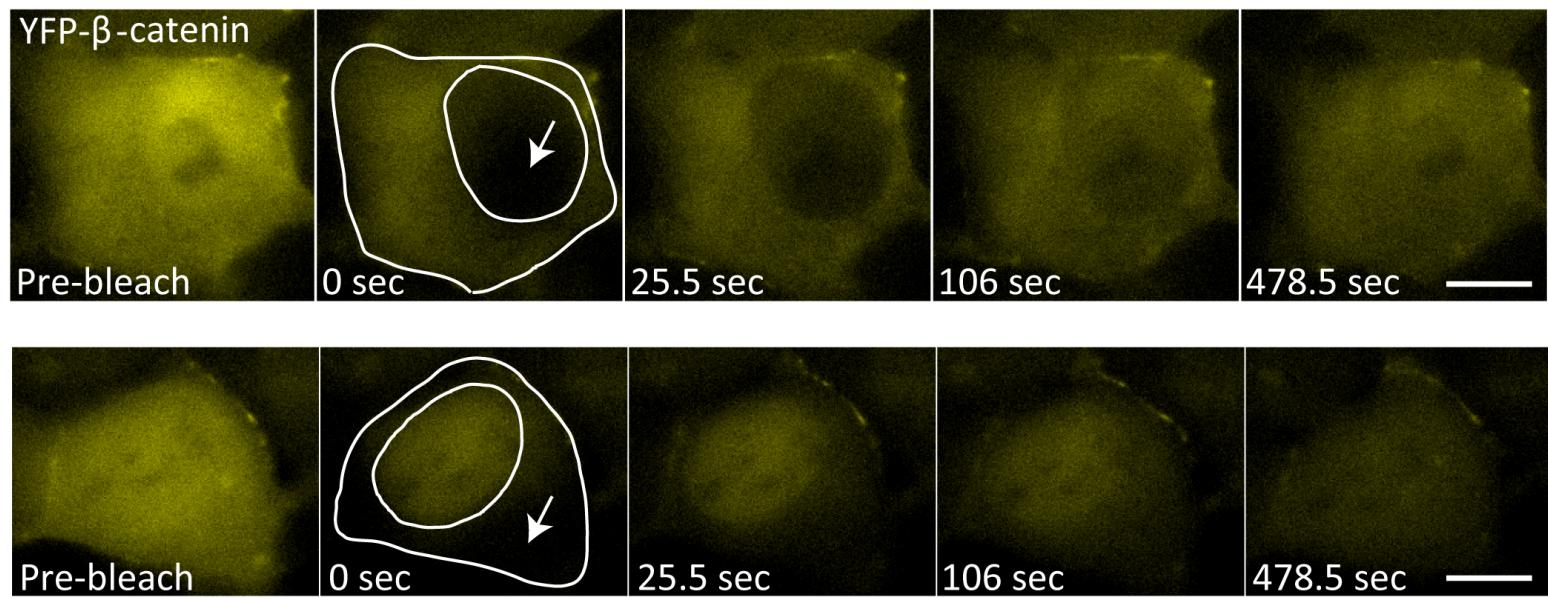
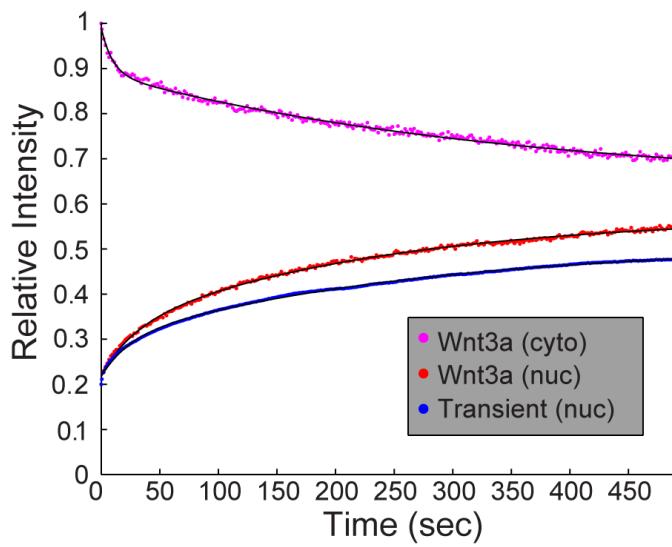
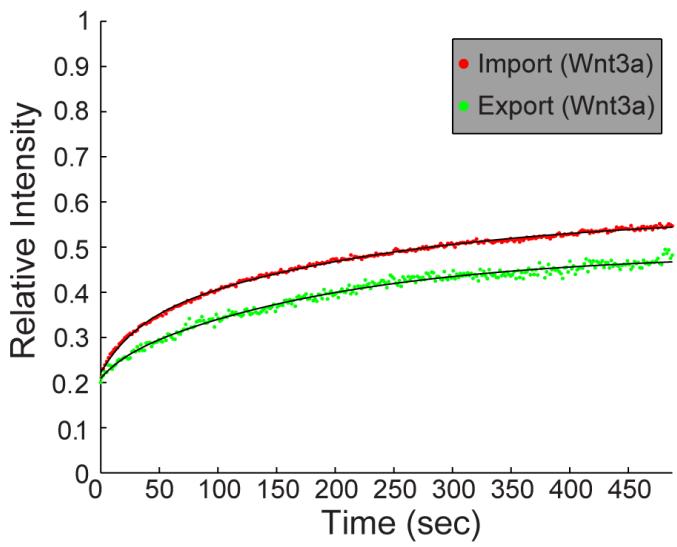
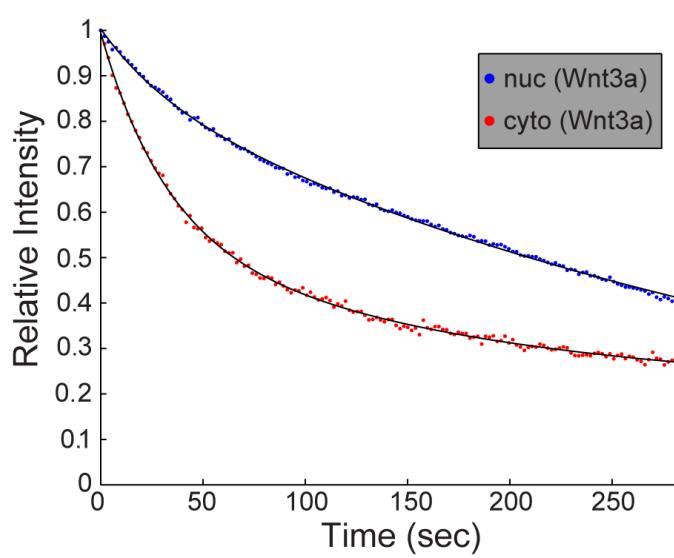
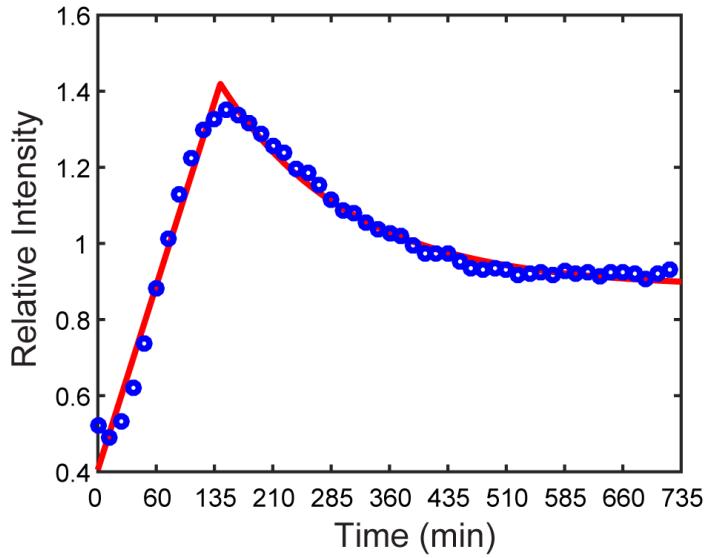





b

Figure 1-figure supplement 1

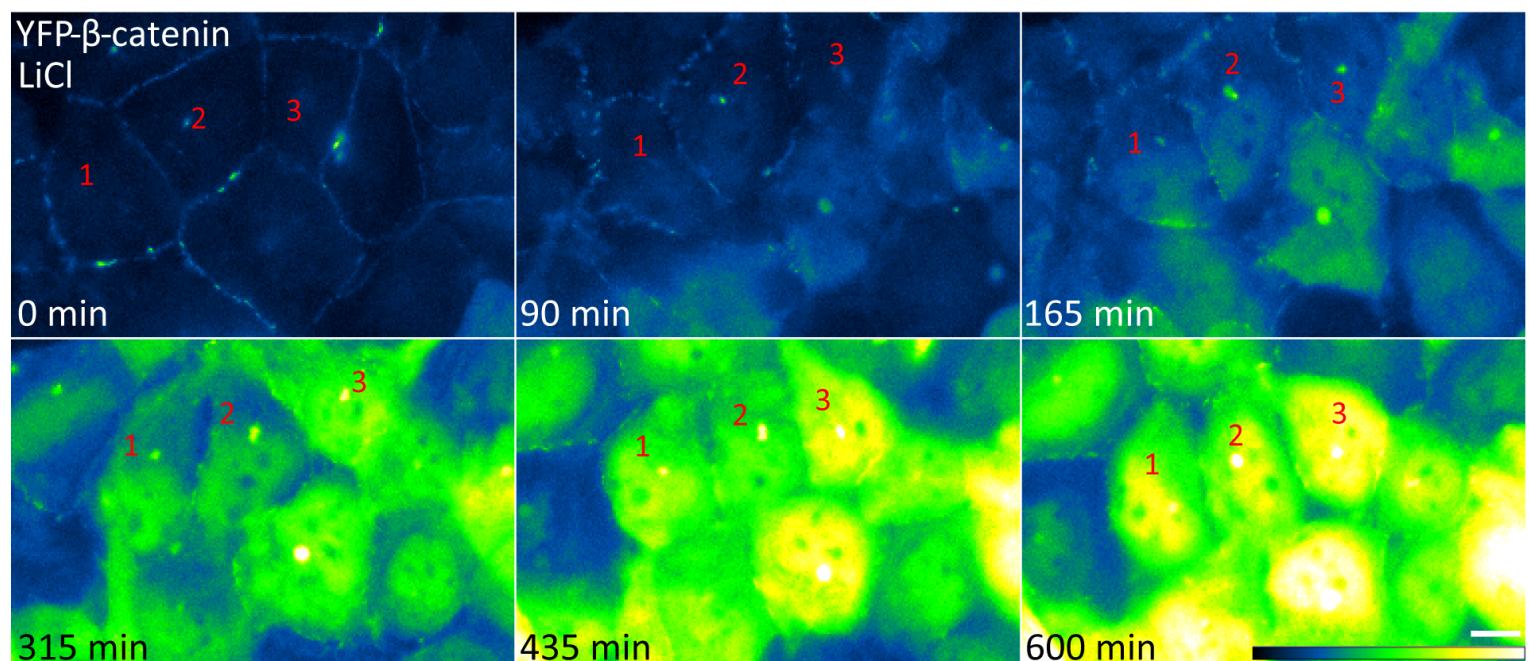


Figure 2-figure supplement 1

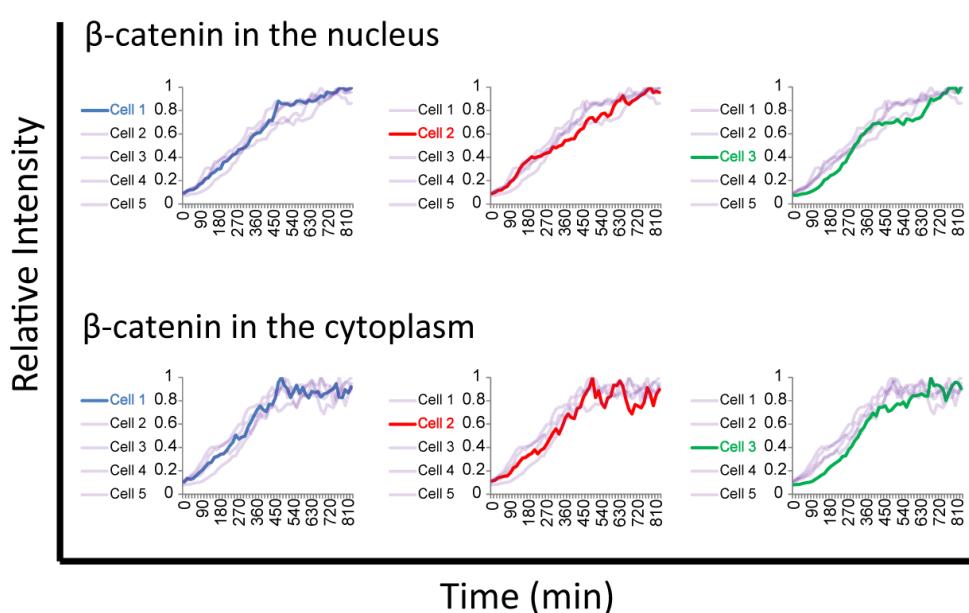
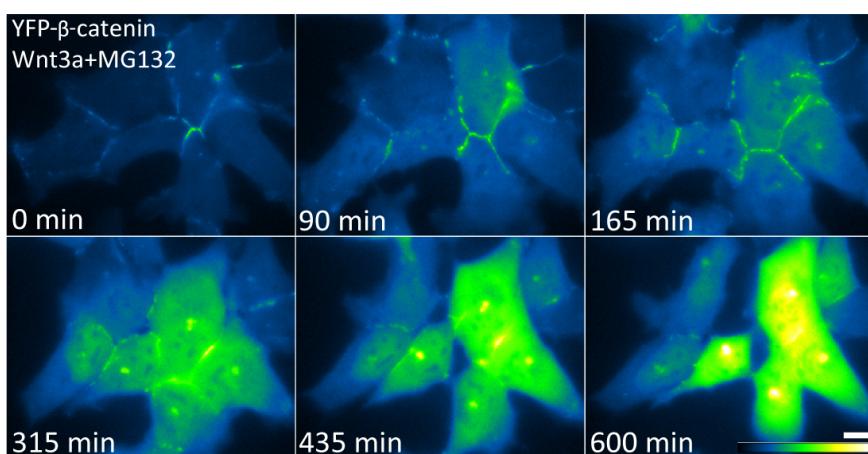
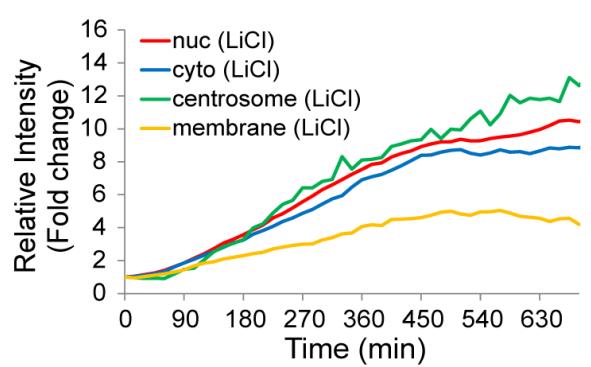
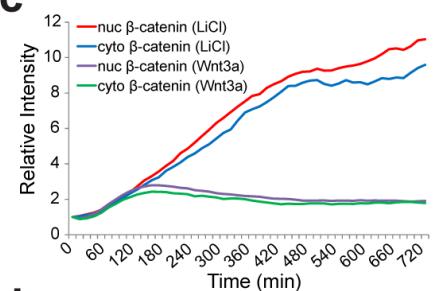
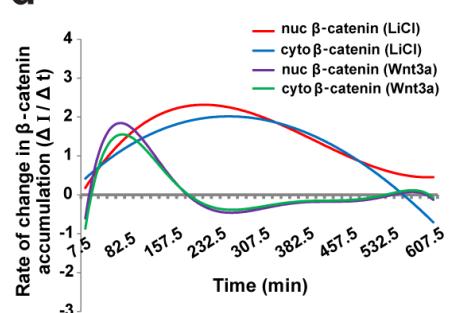

a**b****c****d****e**

Figure 3-figure supplement 1

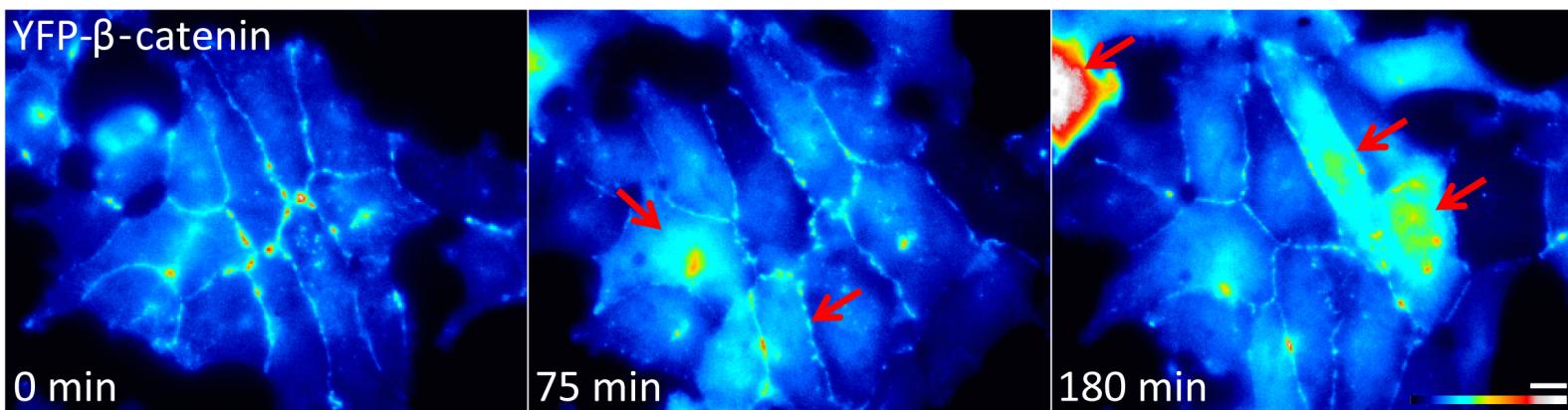

a


b


e


f

c



d

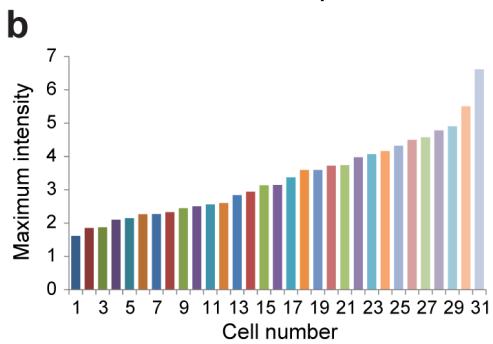
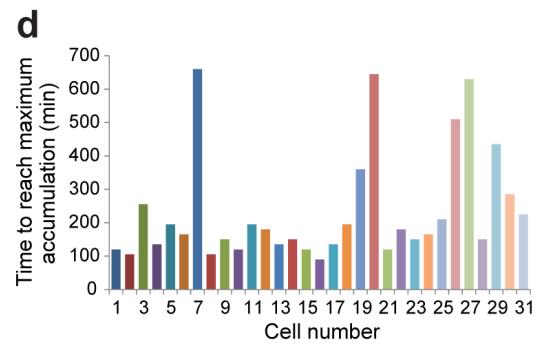
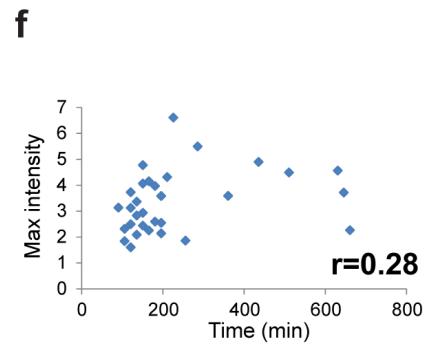
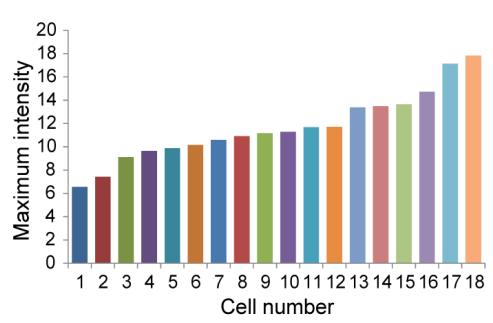
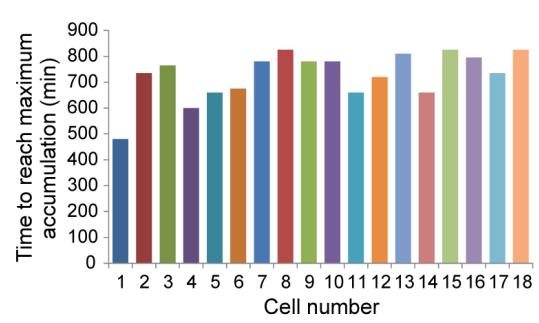


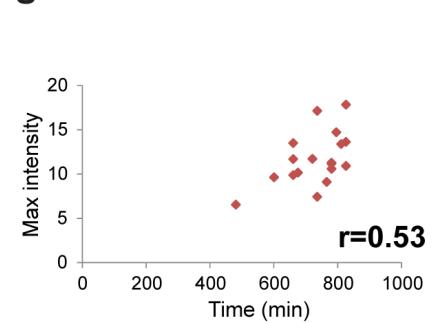
Figure 3-figure supplement 2

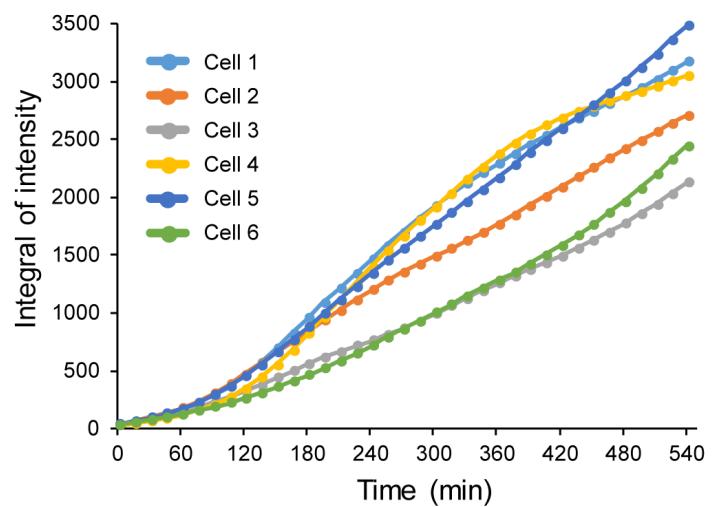
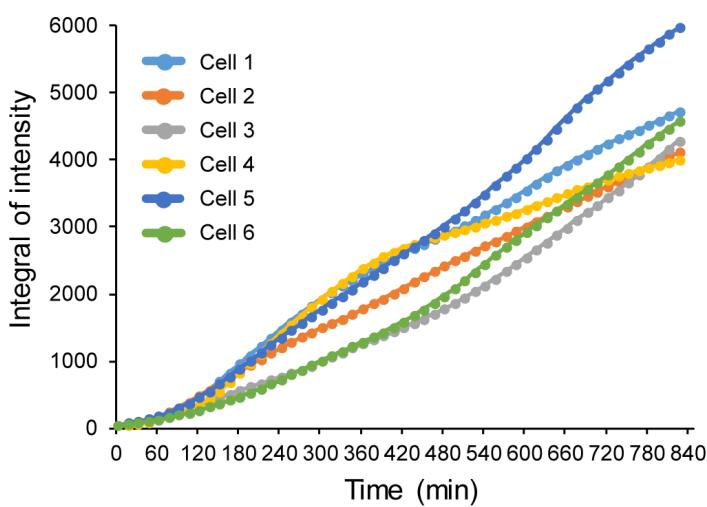

a


Maximum intensity of β -catenin in the nucleus per cell

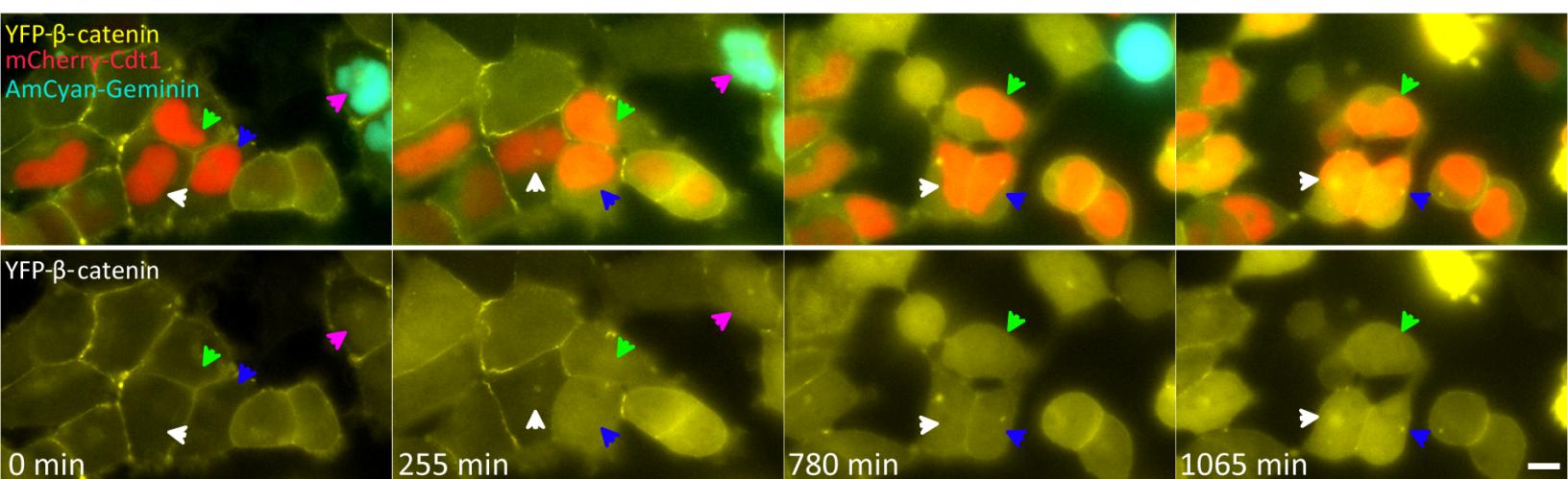

Time to reach maximum intensity of β -catenin in the nucleus per cell


Correlation between maximum intensity to the time


c



e

g



h

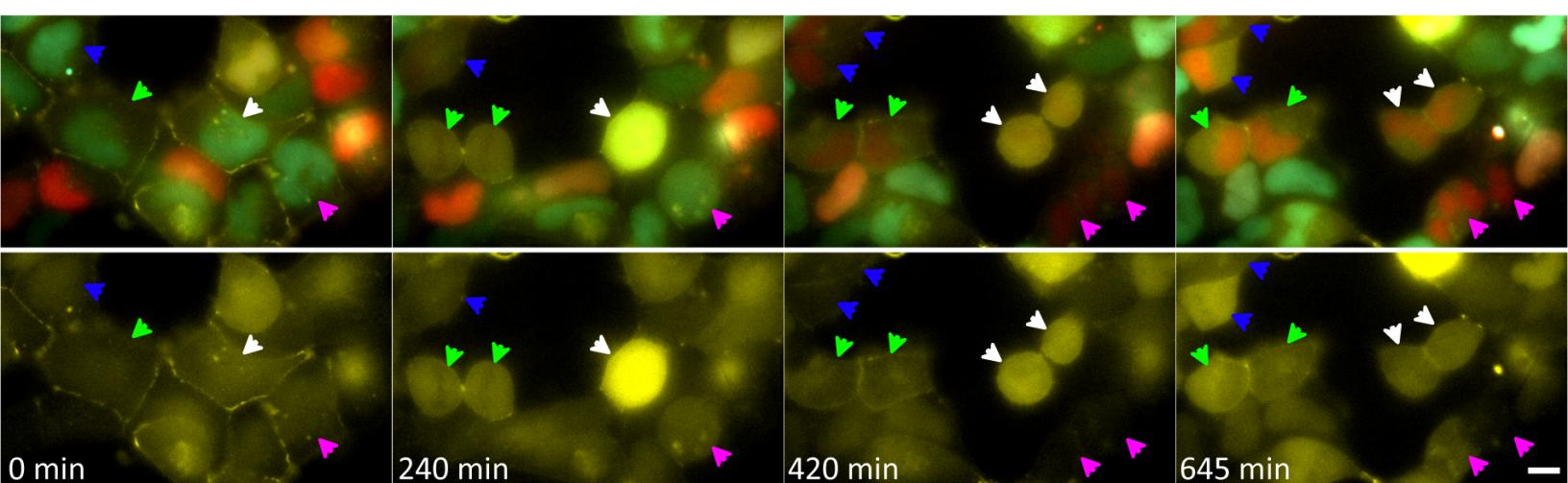
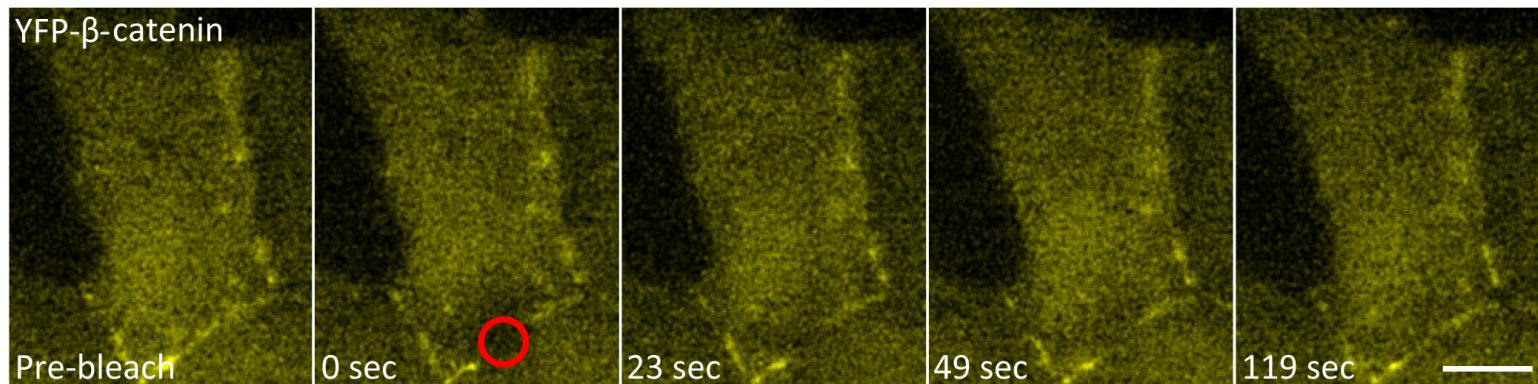


Figure 4-figure supplement 1

a



b

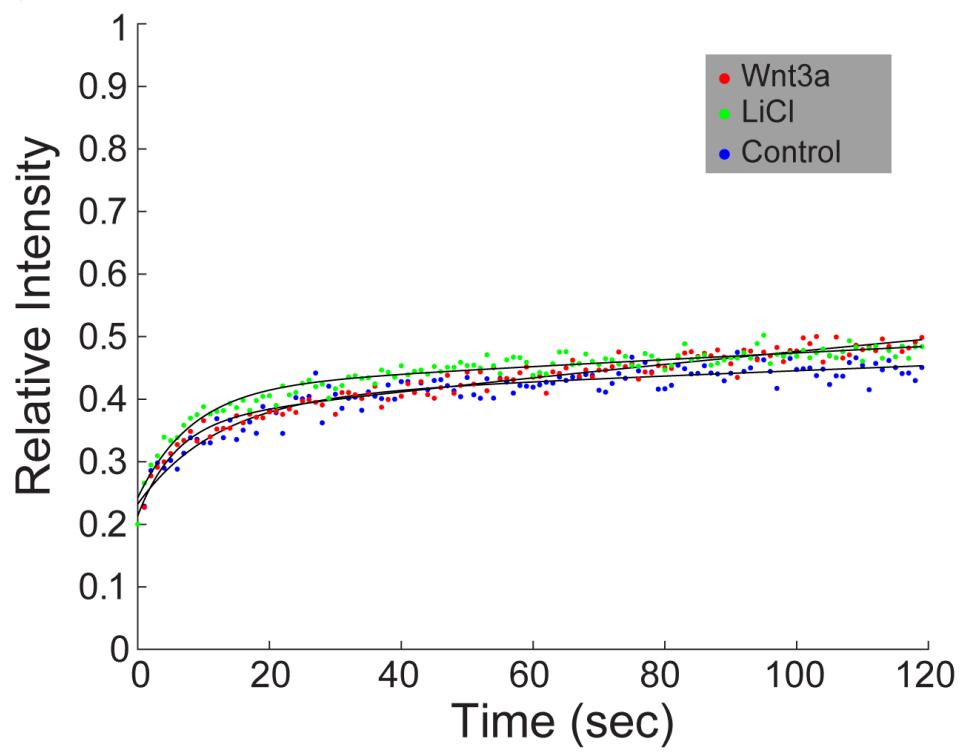
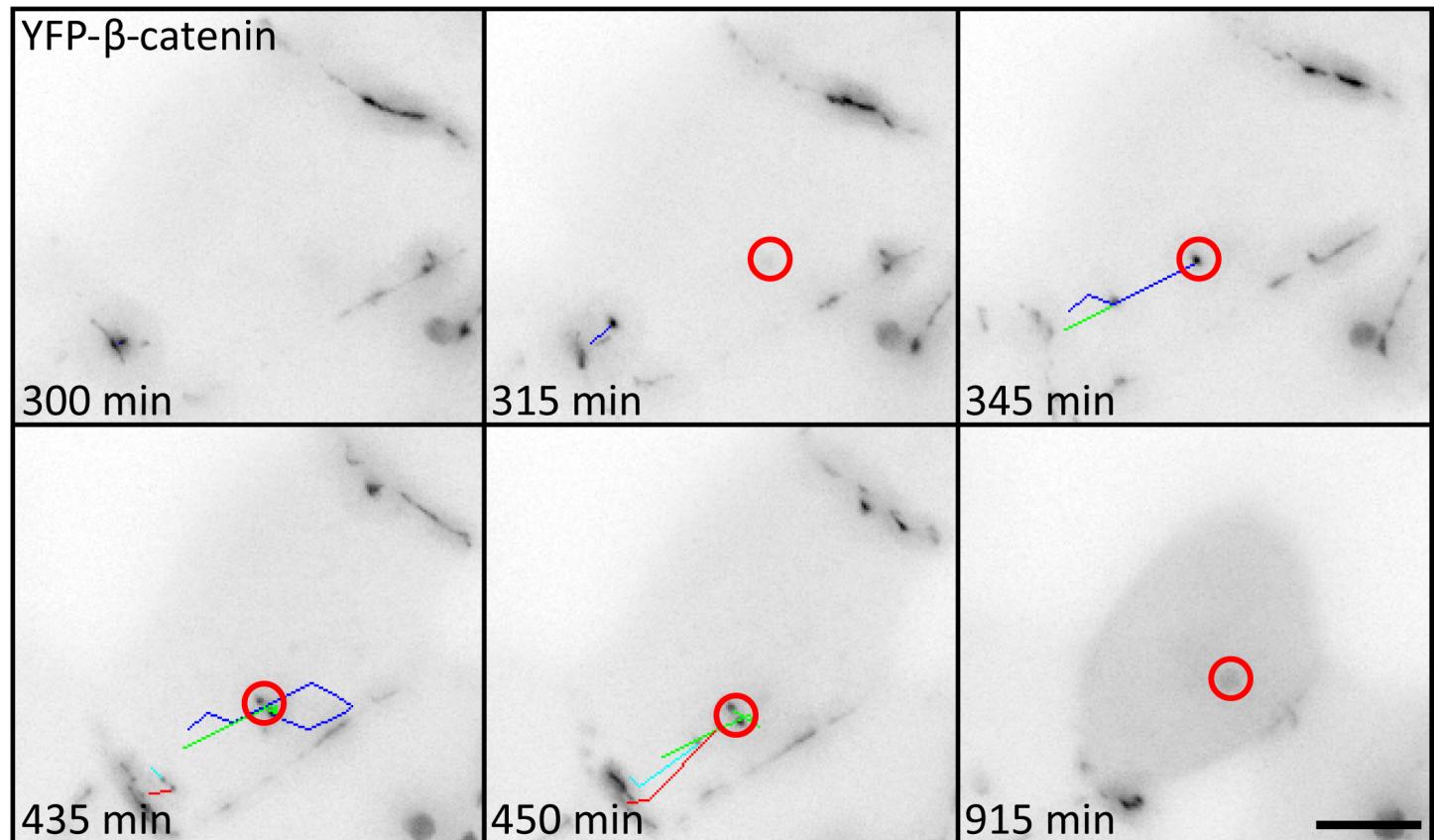


Figure 5-figure supplement 1

a



b

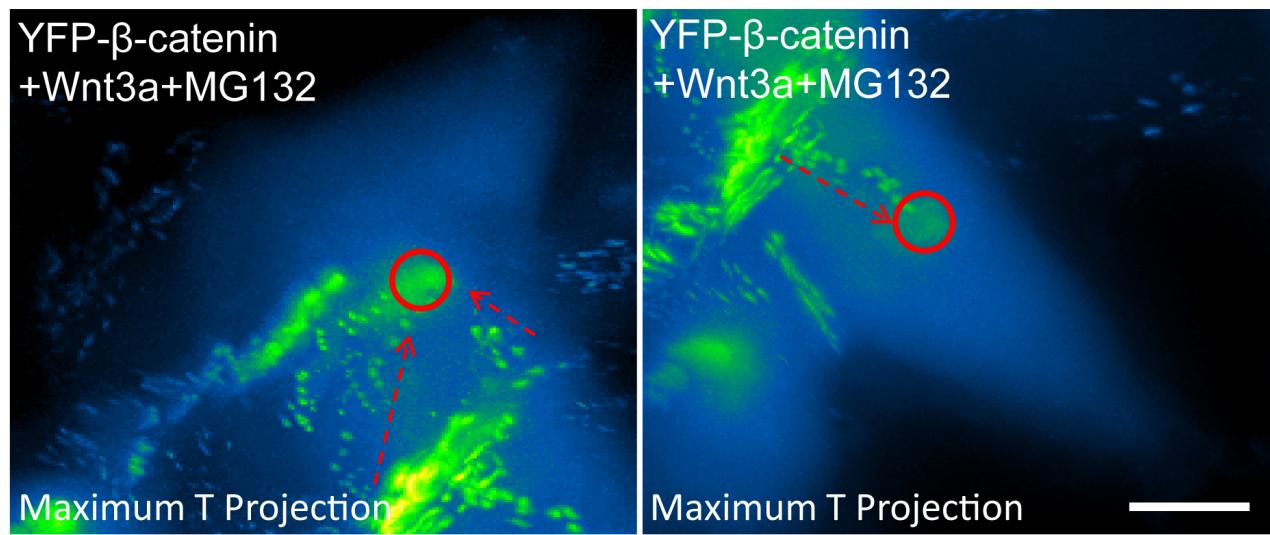
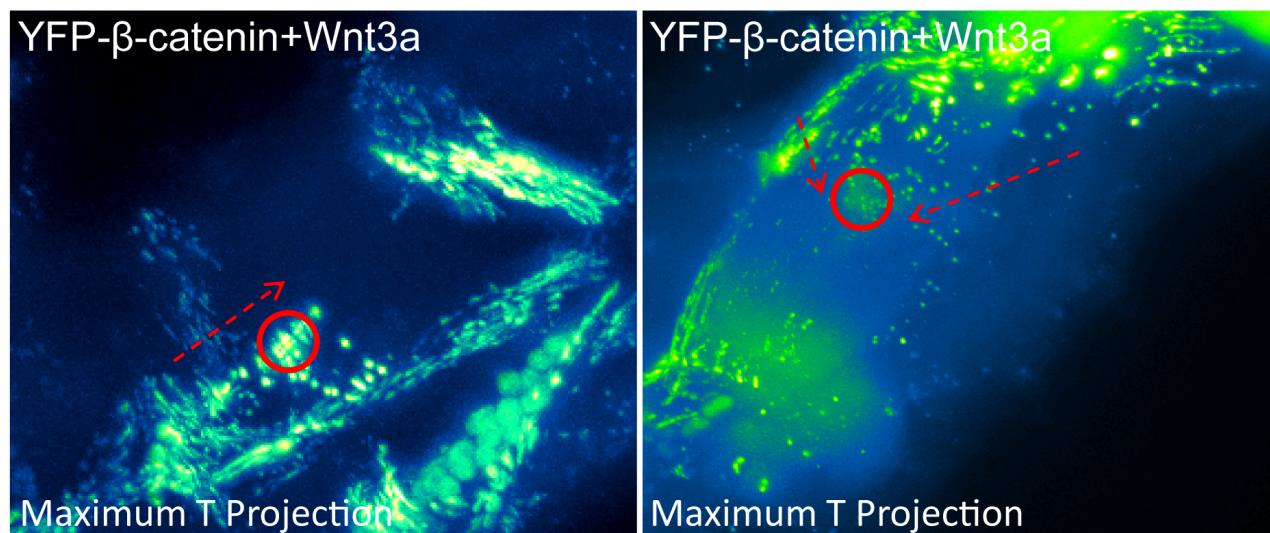
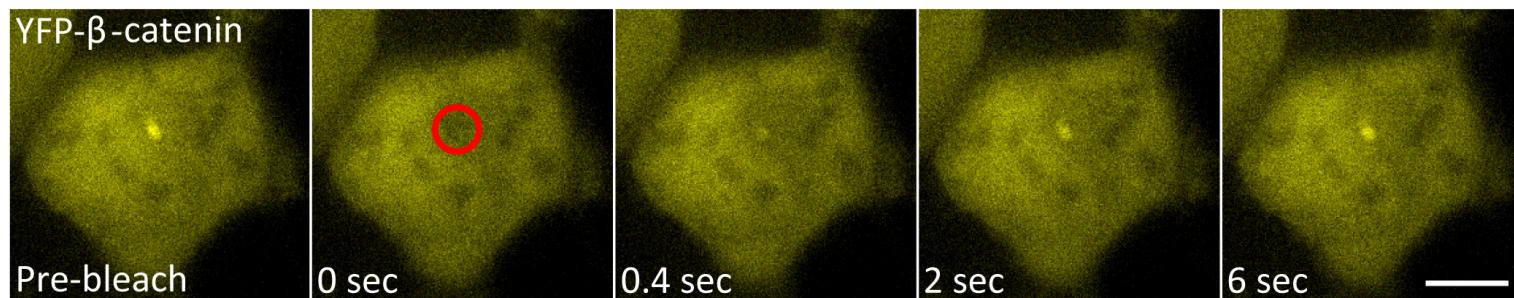



Figure 6-figure supplement 1

a



b

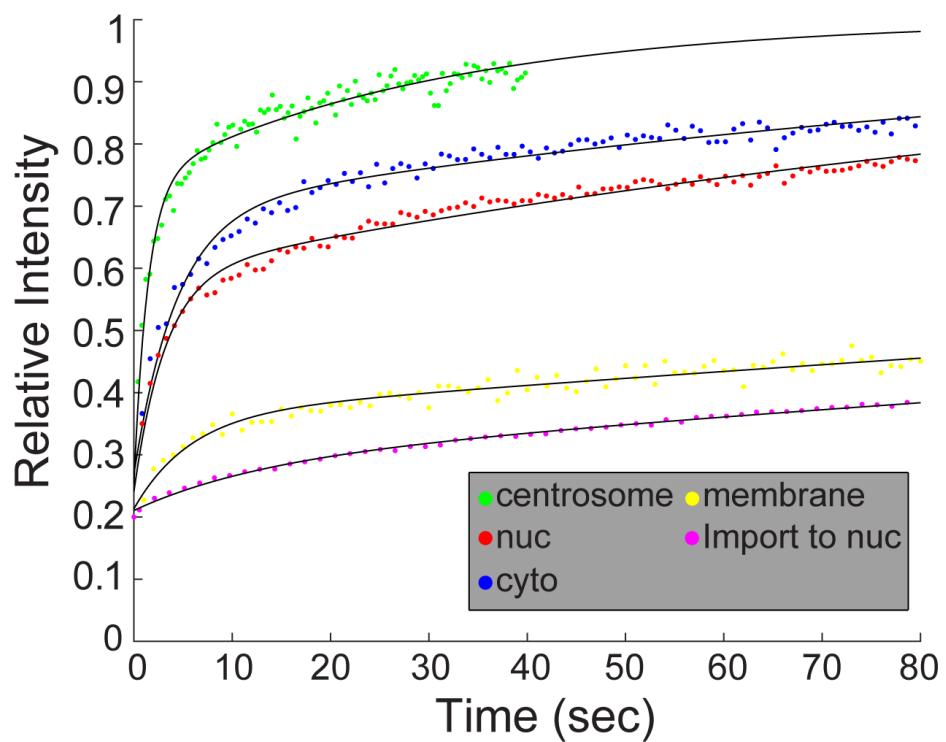
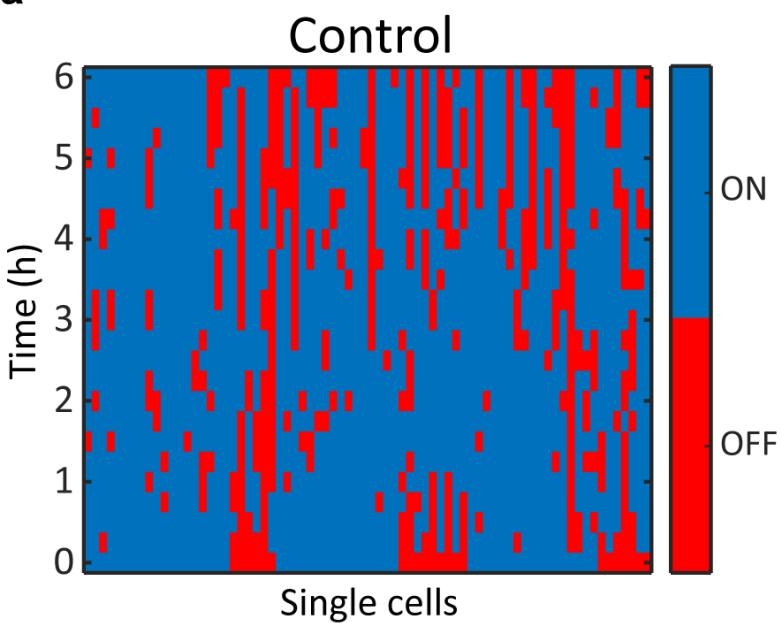


Figure 6-figure supplement 2

a



b

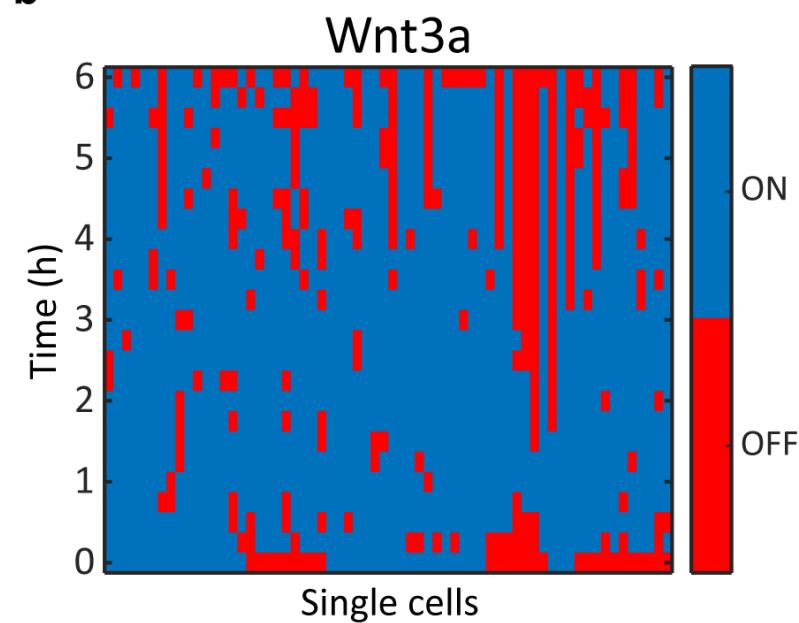
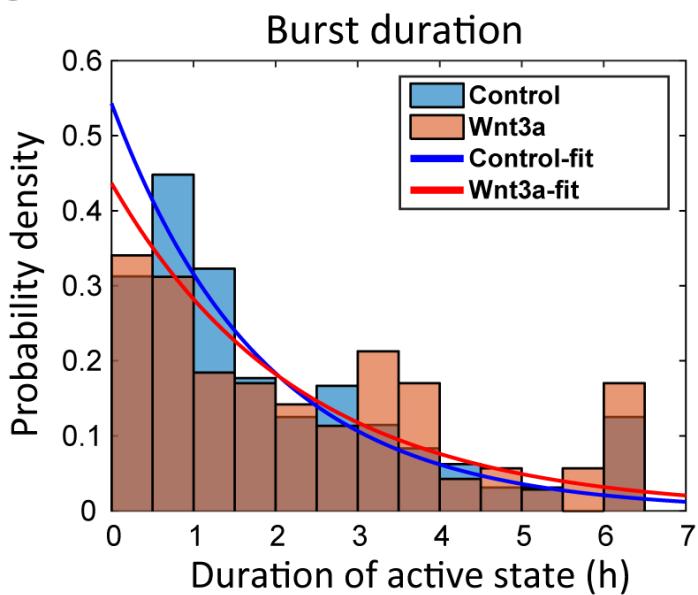
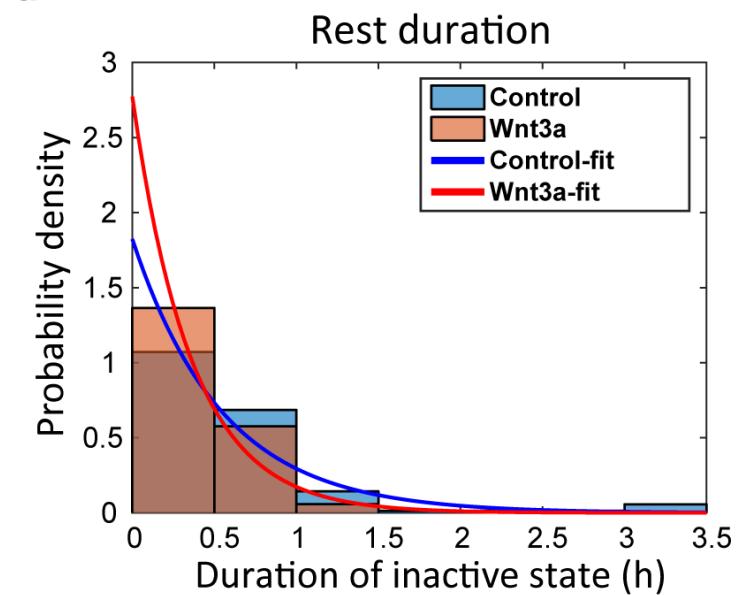
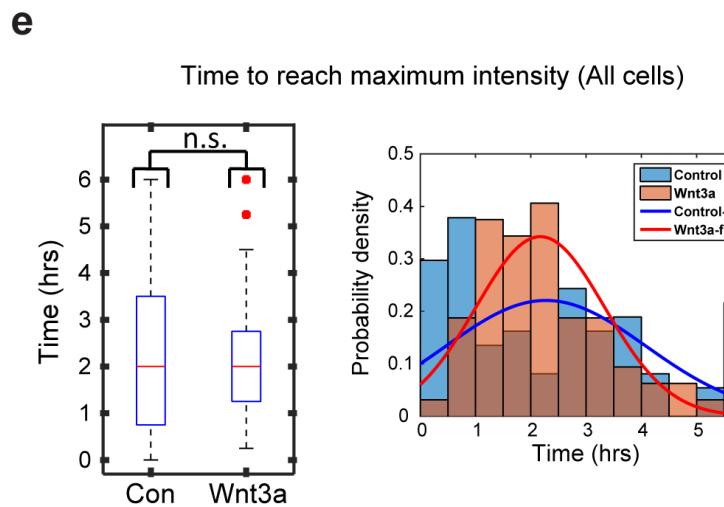
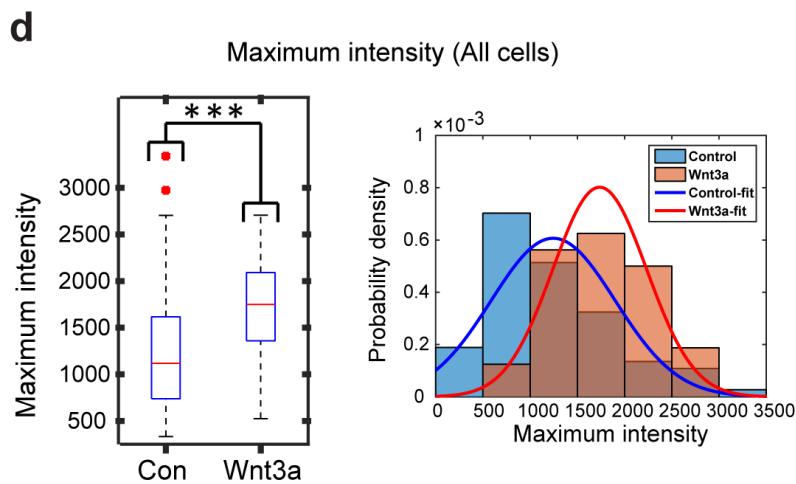
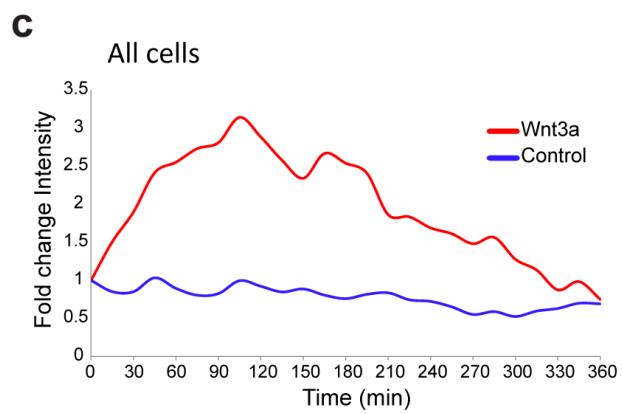
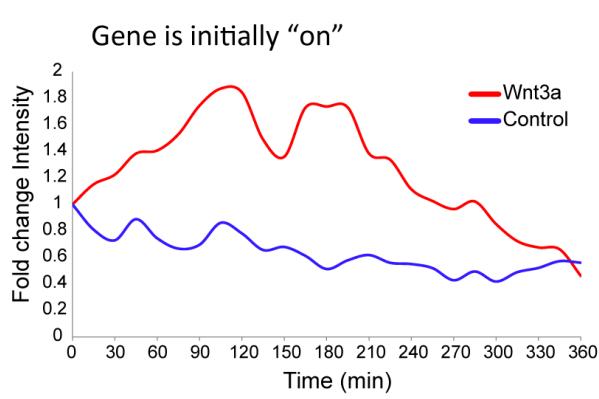
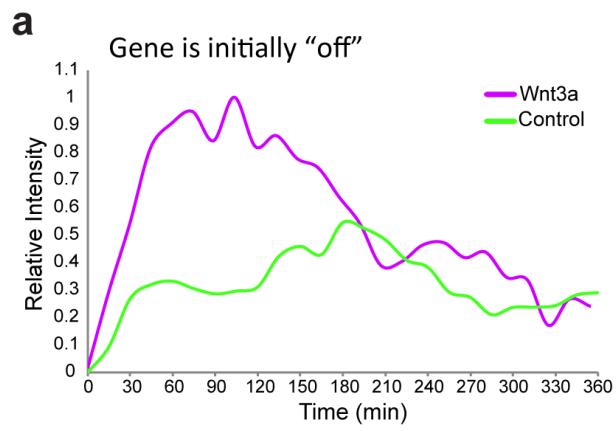


Figure 7-figure supplement 1


a


b






c

d

Figure 8-figure supplement 1

