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ABSTRACT

Signal propagation from the cell membrane to a promoter can induce gene expression.
To examine signal transmission through sub-cellular compartments and its effect on
transcription levels in individual cells within a population, we used the Wnt/B-catenin
signaling pathway as a model system. Wnt signaling orchestrates a response through
nuclear accumulation of B-catenin in the cell population. However, quantitative live-cell
measurements in individual cells showed variability in nuclear B-catenin accumulation,
which could occur in two waves, followed by slow clearance. Nuclear accumulation
dynamics were initially rapid, cell cycle independent and differed substantially from LiCl
stimulation, presumed to mimic Wnt signaling. pB-catenin levels increased
simultaneously at adherens junctions and the centrosome, and a membrane-
centrosome transport system was revealed. Correlating B-catenin nuclear dynamics to
cyclin D1 transcriptional activation showed that the nuclear accumulation rate of change
of the signaling factor, and not actual protein levels, correlated with the transcriptional

output of the pathway.
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INTRODUCTION

Imaging of gene expression in individual cells using quantitative microscopy has become
a central experimental approach for unraveling the dynamic aspects of mRNA
transcription', and for examining various events of gene expression in real time*®. Cells
govern specific transcriptional responses to various stimuli by use of signaling pathways
and transducing factors that relay the signal to the promoters of induced target
genes'®'!, Studies of transcription factor dynamics in single cells in response to signaling
have revealed dynamic aspects of transcription factor nuclear translocation and

modulation***’

. This study centers on the dynamics of the Wnt/B-catenin signaling
pathway and its control of cyclin D1 gene expression, as a model system for examining

the dissemination of a signal in the cell and the transcriptional response it elicits.

The Wnt/B-catenin canonical signaling pathway is activated by the binding of the Wnt
ligand to plasma membrane receptors, thereby triggering downstream events that
culminate in the accumulation of B-catenin in the cytoplasm and its translocation into

820 The interaction of B-catenin with transcription factors of the TCF/LEF

the nucleus
family in the nucleus modifies gene expression of crucial genes, thus leading to changes
in key cellular pathways, such as proliferation, migration and cell fate*'. Mechanistically,
in the absence of Wnt, cytoplasmic B-catenin protein is constantly degraded? via the

2325 thus preventing B-catenin

“destruction complex” and proteosomal degradation
nuclear targeting. In many pathological cases B-catenin is not degraded but accumulates

in the nucleus and activates genes, some of which are associated with cell proliferation,

such as MYC and cyclin D1**?*" The cyclin D1 protein is a major player in the regulation
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of the cell cycle and its expression is regulated at several levels, including mRNA

transcription® via an elaborate promoter region®'. Cyclin D1 levels were shown to be

induced by the Wnt/B-catenin canonical signaling pathway26’27’32'37.

The Wnt/B-catenin signaling pathway has received much experimental attention due to
its centrality in gene expression patterning, and its involvement in many cancer types38.
While the endpoint of B-catenin protein stabilization by Wnt signaling has been well
studied biochemically, the kinetic aspects of this signaling pathway in living cells, for the
B-catenin protein and the target mRNA, remain under-studied. To address this topic we
used a cell system for the in vivo visualization and analysis of mammalian mRNA

transcriptional kinetics of single alleles®®*

. Whereas, we had previously followed
transcription from a single cyclin D1 (CCND1) gene in living human cells, we now set out

to examine the real-time behavior of B-catenin during active signaling in a population of

living cells, and the effect of signaling on the activity pattern of the target gene.
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RESULTS
System for studying Wnt/B-catenin signaling and gene activation in single living cells

We previously generated a cell system in which a CCND1 gene was integrated as a single
copy allele into human HEK293 cells using Flp-In recombination®. Transcription kinetics
on this gene were visualized and quantified using RNA FISH and live-cell imaging
techniques. RNA tagging was achieved using a series of MS2 sequence repeats41
inserted into the long 3’UTR of CCND1. The MS2 repeats form stem-loop structures in
the transcribed mRNA. By co-expressing a fluorescent coat protein termed MS2-CP-GFP
that binds to the MS2 stem-loops, we obtained fluorescent tagging of the mRNAs
produced from this gene, designated CCND1-MS2***. This CCND1-MS2 allele is under
the regulation of the endogenous cyclin D1 promoter42 and therefore serves as a

candidate gene for activation by Wnt/p-catenin signaling™.

Studying individual living cells, we found that the CCND1-MS2 gene transits between
transcriptionally active and non-active states under steady-state conditions®. At steady
state, only around 40-50% of cells were actively transcribing CCND1-MS2. In order to
verify that the Wnt signaling pathway activates the CCND1-MS2 gene we added Wnt3a
conditioned medium to the cells and imaged the cells over time. Indeed, on the
population level, after 75 min over 80% of cells had shown an actively transcribing

CCND1-MS2 gene (Figure 1a, b, Supplementary file 1a, Video 1).

Since an imaging-based approach for studying signaling dynamics requires that relevant

molecules be fluorescently tagged, we verified using a luciferase assay, that a YFP-
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tagged version of B-catenin'® activates the CCND1 promoter, and observed 2.3 fold
activation after transient transfection of the protein into the HEK293 CCND1-MS2 cells
(Figure 1-figure supplement 1a). We note that HEK293 cells are known to have a low
background of B-catenin activity®*, and are not known to have mutations in proteins
associated with Wnt signaling®. Immunofluorescence with an antibody to the
endogenous B-catenin protein showed normal B-catenin localization at the cell
membrane region (a portion of B-catenin is located in adherens junctions and functions
in cell adhesion®), as well as low cytoplasmic levels under non-induced conditions,
compared to a predominant increase in cytoplasmic and nuclear distribution after the
addition of Wnt3a (Figure 1c). In summary, this cell system enables the measurement of

CCND1 transcription activation kinetics in single cells following Wnt signaling.

To mimic endogenous B-catenin distribution using YFP-B-catenin, we generated a
HEK293 CCND1-MS2 cell clone that stably expressed YFP-B-catenin. Since high
overexpression conditions of YFP-B-catenin typically result in increased subcellular
distribution and high accumulation in the nucleus prior to any signal (Figure 1-figure
supplement 1b), which is in stark contrast to the endogenous B-catenin protein that is
observed mainly at the membrane (Figure 1c), we screened and identified a clone that
stably expressed low levels of YFP-B-catenin. The clone phenotypically resembled
endogenous protein localization and distribution, namely, membrane localization in the
non-induced state, and enhanced nuclear localization following Wnt stimulation (Figure
1d). Characterization of endogenous B-catenin and YFP-B-catenin accumulation levels by

Western blotting showed that YFP-B-catenin expression levels were ~80% of the
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endogenous B-catenin, thus doubling B-catenin levels in the cell, and that the
accumulation dynamics of both proteins were identical (Figure 1e). The time-scale of B-
catenin induction is in agreement with other studies*”*®. The addition of YFP-B-catenin
to the cell clone did not influence the cell cycle or CCND1 expression at steady state as

39,40

guantified by single molecule RNA FISH (Figure 1-figure supplement 1c-h).

Real-time B-catenin dynamics in a cell population in response to Wnt signaling

To understand the intra-cellular dynamics of B-catenin in a cell population under living
cell conditions, cells were imaged for over 12 hours. Rapid nuclear accumulation of B-
catenin was observed in most cells that were stimulated with Wnt3a, compared to no
change in B-catenin levels in control cells that received mock conditioned medium
without Wnt3a (Figure 2a, b, Video 2). Rising levels of B-catenin in the cytoplasm and
the nucleus were detected 15 min after Wnt3a addition, and the accumulation peak was
observed 2-3 hrs later (Figure 2c), during which B-catenin levels increased 3-fold
compared to the initial state. Recombinant Wnt3a (200ng/ml) showed the same
dynamics (data not shown). The rate at which B-catenin levels increased in the nucleus
was faster than in the cytoplasm, leading to a higher nucleus/cytoplasm (N/C) protein

ratio, whereas in the control cells there was no change (Figure 2d).

Analyzing the rate of change in B-catenin levels in the nucleus and cytoplasm over time
(Al/At) showed that the accumulation was comprised of two phases; an initial rapid one,

in which the peak of the change in accumulation was reached 60 min after induction,
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and a second accumulation phase in which cellular B-catenin continued to amass but at
a declining rate up until 180 min (Figure 2e). Subsequently, the rate of change turned
negative, meaning that B-catenin levels were declining, probably due to degradation. In

control cells, the rate of change in B-catenin remained unaltered.

To examine whether the dynamics of nuclear entry of B-catenin were modified during
Whnt activation and how they compared to B-catenin shuttling out of the nucleus, we
used fluorescence recovery after photobleaching (FRAP). Nuclei of cells showing nuclear
B-catenin, either after 2 hrs of Wnt3a activation or transiently overexpressing B-catenin,
were photobleached, and nuclear import of B-catenin was monitored over time (Figure
2-figure supplement 1a top). The dynamics were relatively slow, however, the import
rate under Wnt3a conditions was more rapid than transient overexpression, showing
the advantage of measurements performed at low expression conditions (Figure 2-
figure supplement 1a, b, Supplementary file 1b). The incomplete recovery of YFP-B-
catenin during the FRAP time-course meant that a significant population of B-catenin
molecules had already accumulated and had been retained in the nucleus prior to
photobleaching. Next, we photobleached the cytoplasm and found that the rate of B-
catenin shuttling out from the nucleus was slower than the import rate (Figure 2-figure
supplement 1a bottom, c, Supplementary file 1c). Similarly, fluorescence loss in
photobleaching (FLIP), either in the nucleus or in the cytoplasm, showed that B-catenin
shuttling out of the nucleus was slower than its nuclear entry (Figure 2-figure

supplement 1d, Supplementary file 1d). Altogether, the data suggest that Wnt signaling
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causes a transient shift in the dynamic interplay between B-catenin stabilization and

degradation processes, towards protein stabilization and accumulation.

Individual cells in the population present a variable response of B-catenin dynamics

The averaged population data obtained from living cells presented above (Figure 2) are
in agreement with biochemical data as seen by Western blotting of protein extracts
from large cell populations, showing the accumulation of B-catenin beginning from

around 30 min after Wnt and peaking at 3 hrs**°

. However, the averaged behavior of a
population does not necessarily represent the actual dynamics in individual cells.
Examining the dynamic behavior of B-catenin accumulation in the nucleus and
cytoplasm of individual cells after Wnt3a showed that although an increase in B-catenin
levels was initiated in most cells, the subsequent dynamics were variable (Figure 3a, b,
Video 3). For instance, comparing cells 1,2 and 4 (Figure 3a) showed a major and rapid
wave of B-catenin nuclear accumulation in cell 1 (30-165 min) that subsided and then
mildly rose again (465-585 min); a similar range of events occurred in cell 2 but the two
waves were less intense and the second wave occurred earlier compared to cell 1 (first
wave 30-150 min, second wave 330-435 min); in contrast, cell 4 showed a longer
accumulation period (30-240 min). Cells 3 and 6 showed slow nuclear accumulation,
peaking late only after 825 min and 525 min, respectively, from Wnt3a stimulation. This

analysis showed that the dynamic behavior of B-catenin in the cytoplasm and the

nucleus was highly similar within the same cell, but that the time-frames of
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accumulation could be quite different between individual cells, some showing 2 cycles
of nuclear accumulation. In these cases, the first cycle of accumulation lasted 360 min

on average and the second cycle 180 min on average.

The similar dynamics of decline in B-catenin levels in the nucleus and the cytoplasm
suggests that B-catenin is not simply shuttling in and out of the nucleus, but rather
reflects an enhanced activity of the degradation arm controlling B-catenin levels. To test
this, we added lithium chloride (LiCl, 20 mM), a glycogen synthase kinase-3B (GSK3B)

inhibitor that mimics Wnt signaling®®>"

. Indeed, LiCl caused B-catenin nuclear and
cytoplasmic accumulation, but the dynamics were completely different than Wnt3a
(Figure 3-figure supplement 1a, b, and Video 4). B-catenin accumulation occurred
synchronously and continuously throughout 10-11 hrs in all cells, and only then did the
accumulation cease. The increasing accumulation rate of change (Al/At) in the nucleus
and cytoplasm continued for 10 hrs, compared to 3 hrs, in response to Wnt3a (Figure 3-
figure supplement 1c, d). The levels of B-catenin were 4-fold higher in LiCl treated cells
compared to Wnt3a. Since LiCl prevents B-catenin degradation, we hypothesized that
Whnt3a treatment together with the proteasome inhibitor MG132, which stabilizes B-
catenin, but not through GSK3B phosphorylation, should have a similar effect on B-
catenin dynamics. Indeed, accumulation dynamics under Wnt3a+MG132 were similar to
LiCl treatment (Figure 3-figure supplement le). Treatment with MG132 without Wnt3a
showed the same dynamics (data not shown). When the curve describing the dynamics

of B-catenin in response to Wnt3a (Figure 2c) was fitted with a two-phase exponential

fit that describes production and degradation (Figure 2-figure supplement 1e), we found
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linear accumulation in the first phase, showing that degradation was very low, as
expected?’. B-catenin production rates did not change significantly during the
accumulation and clearance phases, whereas, the degradation rate became
predominant during the clearance phase. B-catenin degradation had a characteristic
time of 2.75 hours. These data exemplify the difference between a signaling molecule
and a chemical that target the same signaling pathway. While drug action is less
influenced by endogenous molecules, a signaling molecule will relay a transient signaling
effect, depending on the level of other signaling molecules that are present in the cell at

the time of induction.

Since the maximum levels of B-catenin accumulation differed between cells in the
population (Figure 3-figure supplement 2a-e), and we could identify intense and
prolonged accumulation in some Wnt3a-treated cells, we examined whether there was
a correlation between the time to reach the maximum level and the peak of the
response. However, a low correlation score (0.28) was observed for the Wnt3a-treated
cells, and a more prominent correlation score (0.53) in LiCl-treated cells (Figure 3-figure
supplement 2f, g). The latter was expected due to the continuous accumulation over
time. But for Wnt3a treatment, this meant that a longer Wnt3a signaling response did
not necessarily result in higher levels of B-catenin accumulation. Moreover, calculating
the integral of the fluorescence signal that accumulated over the whole observation
period in a cell population (from Figure 3), showed that the total accumulation in most
cells was similar (Figure 3-figure supplement 2h), and that differences between single

cells were pronounced mainly at earlier time points of the response.
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The response of cells to Wnt3a is not cell cycle dependent

Cluster analysis of the dynamic behavior of B-catenin in individual living cells, shows the
dramatic difference between Wnt signaling activation by Wnt3a compared to LiCl
(Figure 4a; membrane and centrosome will be discussed below). ~80% of the cells
showed similar dynamics (e.g. Figure 2c) and ~20% portrayed different behavior
patterns (e.g. Figure 3). In order to determine whether the variabilities in B-catenin
dynamics in the cell population in response to Wnt3a, may be due to the cell cycle
stage, we examined time-lapse movies in which cells had undergone mitosis, and in
which daughter cells could be identified. For example, in the population of cells seen
accumulating B-catenin in response to Wnt3a in Figure 4b (Video 5), there were two
dividing cells at the beginning of the movie, both with low B-catenin levels prior to
mitosis. In the daughter cells originating from the top dividing cell there was low -
catenin accumulation, whereas in the bottom dividing cell, one daughter cell responded
rapidly and accumulated very high levels of B-catenin, while the other daughter cell
responded later and accumulated to low levels (Figure 4 b-e). In summary, we could not

detect a pattern of B-catenin accumulation in daughter cells.

To examine the cell cycle and Wnt response more closely in a large population of living
cells we used the Fucci system (Video 6 and Video 7), which uses two fluorescent cell
cycle markers to identify cell cycle phasessz. We introduced the Fucci molecules into the

CCND1-MS2 cells containing YFP-B-catenin. Cells did not show any special pattern of
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YFP-B-catenin accumulation (Figure 4-figure supplement 1a), and cells passing through
mitosis also exhibited different accumulation levels in the mother cell and between
daughter cells (Figure 4-figure supplement 1b). In summary, we did not identify a cell

cycle dependent pattern of YFP-B-catenin levels in response to Wnt.

Wnt signaling induces B-catenin accumulation at the cell membrane and the

centrosome

B-catenin is normally present in adherens junctions proximal to the cell membrane, and
is bound to E-cadherin in the membrane and to a-catenin, which mediates the

4 .
2354 Not much is

connection between the adherens junction and the actin cytoskeleton
known about the subcellular localization of this B-catenin population in response to
Wnt. Before treatment, B-catenin was observed as a string of punctate sub-regions
distributed along the cell outline only at cell-cell contacts (Figure 3a, Video 3). Since we
could detect changes in the intensity of the puncta after Wnt, we followed the intensity
of B-catenin at the membrane during Wnt activation and found an increase with similar
dynamics to the cytoplasmic and nuclear sub-populations (Figure 5a, Video 8). There
was no obvious reduction in the membrane levels even after many hours (Figure 5b).
However, the relative increase at the membrane was lower than the nucleus and the

cytoplasm, and the rate of B-catenin accumulation (Al/At) at the membrane was less

rapid than the nuclear accumulation rates (Figure 5b, c). LiCl caused longer B-catenin
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accumulation times and significantly higher accumulation at the membrane (Figure 5c,

d).

To examine if Wnt signaling changed the dynamics of B-catenin at the membrane we
performed FRAP experiments on this region and found that the recovery dynamics were
slow and indicative of slow exchange of B-catenin molecules at the membrane. Yet,
similar recovery in unactivated, Wnt3a-treated and LiCl-treated cells was observed,
meaning that there was no change in the dynamics of protein exchange but rather an
increase in the number of B-catenin molecules in the membrane-bound fraction (Figure

5-figure supplement 1, Supplementary file 1e, f).

In many of the Wnt-induced cells that were followed in the live-cell movies we noticed
the appearance of B-catenin in a single prominent dot (Figure 3a, Video 3). B-catenin
can localize at the centrosome during interphase and mitosis, and functions in centriolar

cohesion®>™’

. Since the B-catenin dot was in proximity to the nucleus, and since the
centrosome is juxtaposed to the nucleus, we examined if centrosomal accumulation of
B-catenin was occurring. Indeed, movies of dividing cells demonstrated that each
daughter cell received one B-catenin-labeled body after division, reminiscent of
centrosome behavior (Figure 6a, Video 5 and Video 9). Immunofluorescence of
pericentrin (a centrosome marker), together with either endogenous B-catenin or YFP-

B-catenin, showed accumulation of B-catenin at the centrosome following activation

(Figure 6b).
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The accumulation dynamics of B-catenin at the centrosome occurred in parallel to the
accumulation seen in the nucleus, cytoplasm and adherens junctions. However,
centrosomal levels were significantly high, 5-fold higher compared to the initial state
(Figure 6c). The rates of change were the highest and most rapid of all measured cell
compartments (Figure 6d). LiCl also led to B-catenin localization at the centrosome, but
here too with very different dynamics from Wnt3a (Figure 6d; Figure 3-figure
supplement 1f). To obtain a more general outlook of the changes in B-catenin levels in
all 4 compartments, we performed a correlation analysis (Figure 6c¢, €). As was seen in
individual cells, the highest correlation in accumulation dynamics following Wnt3a, was
observed between the cytoplasm and the nucleus, whereas the lowest correlation was

between the centrosome and the membrane.

Interestingly, in some cells we observed B-catenin puncta detaching from the
membrane and traveling in the cell (Video 10 and Video 11). When these structures
were tracked during movement in the cell, they usually ended up at the centrosome
(Figure 6-figure supplement 1). This phenomenon was frequently seen in cells treated
with Wnt3a, LiCl and MG132, and less frequently in unactivated cells. We did not
observe a correlation with the timing of Wnt addition, and perhaps detection was easier
after Wnt due to the increase of B-catenin at the membrane following stimulation.
Tracking of the detached B-catenin puncta showed that they reached the centrosome
between 30 to 90 min after detachment. To examine whether the residence times of -
catenin molecules at the centrosome resembled the membrane region, we performed

FRAP analysis, which showed very rapid recovery kinetics at the centrosome, in
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comparison to all other cell regions (Figure 6-figure supplement 2). This implied that B-
catenin duration at the centrosome is short-lived, with a half-time of fluorescence
recovery (ti2) of 1.9 sec, similar to other centrosomal components58. Altogether, this
suggests that the molecular interactions of B-catenin at the membrane in adherens
junctions are significantly more stable than at the centrosome, where the exchange of

B-catenin molecules is highly rapid.

Whnt signaling modulates the transcriptional output of the cyclin D1 gene

We next examined the influence of Wnt signaling dynamics on CCND1 gene activity. As
shown (Figure 1a), a significant increase in the percentage of cells actively transcribing
CCND1-MS2 could be seen starting 15 min post-activation, and peaking after 75-90 min.
Cells returned to steady state activity levels after 6 hrs. We examined several
parameters of the transcriptional response. First, we measured the time for an active
CCND1-MS2 transcribing gene to appear in the population. In the control unstimulated
population (mock conditioned medium), after 120 min most cells had activated the gene
once, whereas in Wnt3a-induced cells, gene activation in the population was reached
more quickly, already after 60 min. The response time for CCND1 activation following
Wnt3a was also short, ranging at 15 min (Figure 7a-b). This meant that Wnt signaling

increased the probability of CCND1 to initiate transcription.

We next examined whether the periods of gene activity were altered after Wnt

activation. When CCND1 was at first non-active and began to transcribe after Wnt3a,
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there was prolonged transcriptional activation for a time-frame of 180 min, compared
to a shorter activity period of 65 min in unactivated cells (Figure 7c, e, Video 12). This
meant that Wnt signaling increased the time-frame of CCND1 promoter activity.
Surprisingly, if the gene was detected in an already active state, and Wnt3a was then
added, there was no difference in the activity period compared to that in unactivated
cells. Under both conditions, activation persisted for an average of 130 min (Figure 7d),
meaning that if the promoter was already activated then there was no Wnt-induced

change in this time-frame.

When we examined the levels of CCND1-MS2 activity after Wnt activation in living cells
(Figure 8-figure supplement la-c), we found that even if the gene was active before
Wnt3a addition, the intensity of MS2-GFP fluorescence on the gene showed higher
levels, indicative of higher expression levels due to signaling, meaning that the promoter
could integrate additional signals (Figure 8-figure supplement 1b). We measured a 1.5-
1.7 increase in the maximum MS2-GFP intensity levels, and observed that the maximum
intensity distribution for Wnt3a-treated cells shifted such that many more cells
displayed higher levels of gene activity (Figure 8a, b, and Figure 8-Figure supplement
1d). The time required to reach the maximum point of activity did not seem to change
when examining the whole population (Figure 8-Figure supplement le). However, this
time was actually shortened from 170 min to 120 min in cells where the gene was
initially inactive, and the distribution of cells shifted to shorter times to reach maximum
levels of transcription (Figure 8c). This time did not change in cells where the gene was

initially active (Figure 8d). When gene activity and gene inactivity patterns were further
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examined, not only was an expected increase in the duration of gene activity found, but
also a reduction in the rest duration. This means that Wnt activation not only increases
the duration time for gene activity, but also reduces periods of inactivity by increasing

the frequency of promoter firing events (Figure 7-figure supplement 1).

These measurements suggested that Wnt3a signaling increases promoter firing events
so that more CCND1 mRNAs are transcribed. To further examine this on the single
mRNA level, we performed quantitative RNA FISH on CCND1-MS2 mRNA molecules in
parallel to measuring B-catenin nuclear levels within the same single cell (fixed cells).
We counted the number of cellular and nascent CCND1-MS2 mRNAs in Wnt3a-treated
cells (Figure 8e) and compared this value to the accumulation levels of nuclear B-catenin
in the different cells. Cells that had accumulated B-catenin had significantly higher
numbers of cellular CCND1-MS2 mRNAs (3-fold; Figure 8e, f) and nascent CCND1-MS2
mRNAs (3.8-fold; Figure 8e, g, j), which correlated well with the transcription
measurements in living cells (Figure 8-figure supplement 1c). Correlating between
cellular and nascent CCND1-MS2 mRNA numbers and B-catenin levels showed two sub-
populations of high- and low-expressing CCND1-MS2 cells, in correlation with nuclear -
catenin accumulation, respectively (Figure 8h, i). Regarding gene activation, altogether
we find that Wnt signaling leads to increased promoter firing frequency, increased gene
activity duration time, reduced gene rest time, and significantly higher numbers of

MRNAs in the cell.
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DISCUSSION

Signaling factors that translocate into the nucleus following signal transduction do so via
different modes of shuttling. For instance, some factors display continuous nucleo-

10,12,14,59

cytoplasmic oscillations (p53, mdm2, NF-kB, ERK) , While some show a rapid and
limited pulse of nuclear build-up (NFAT)®, or a prolonged presence in the nucleus
(MAL)®°. These dynamics have been characterized using microscopy studies performed
in single cells. Biochemical examination of these dynamics can give a true sense of the
time-scales of the accumulation as seen by studying protein levels in Western blots*’*2.
However, such approaches cannot provide an accurate temporal dynamic profile of the
response as it unfolds within the cell, since they represent an average picture of the
behavior of the whole cell population from which the proteins were extracted®’. By
characterizing B-catenin accumulation dynamics in several subcellular compartments

within individual living cells, we could examine how varying responses in individual cells

translate into a well-timed response of the cell population.

Using a cell system we previously generated to follow CCND1 transcription in real-time

on the single gene level®

, we now measured B-catenin sub-cellular dynamics, as well as
characterized the transcriptional response of CCND1 to Wnt. Even though Wnt/B-
catenin signaling has been highly studied, the basic propagation dynamics of this signal
in single living cells have not been characterized. This is due to the lack of an
appropriate system that would allow analysis of the behavior of a fluorescent B-catenin

protein that resembles the endogenous protein®. Previous studies using transiently

overexpressed [B-catenin and photobleaching methods were important in establishing
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1920 ‘However, the subcellular distribution

the characteristics of its intra-cellular mobility
of transiently overexpressed fluorescent B-catenin is different than the endogenous
protein, since the overexpressed protein is found throughout the whole cell including
the nucleus (even without a signal), membrane staining is lacking, and cytoskeletal

d'®?*%_ Even the use of nanobodies targeting endogenous B-

organization is disrupte
catenin in living cells did not mimic the membrane localization of non-induced cells®.
Hence, using our cell system in which YFP-B-catenin was stably expressed at relatively
low levels (80% over the endogenous protein) and was distributed similarly to the

endogenous protein, we were able to follow the subcellular dynamics of B-catenin in

real-time.

Upon Wnt activation, B-catenin levels in the cell population portrayed a relatively rapid
increase in the cells. The general time-scale of hours of B-catenin accumulation

concurred with Western blotting experiments‘”'48

, and altogether portrayed an
orchestrated response of the cell population to the Wnt signal. However, examination of
the accumulation profiles in single cells showed response patterns deviating from the
average behavior in at least 20% of the population; accumulation rates and levels
varied, and in some cells additional but less intense waves of B-catenin nuclear
accumulation were observed. We suggest that the balance between accumulation and
degradation affects the outcome in B-catenin build-up in each cell. The Kirschner group

has shown?’ that Wnt does not completely abolish the activity of the destruction

complex. We therefore suggest that if the total levels of accumulation are similar in
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most cells (e.g. integral analysis), then the level of inhibition of the destruction complex

is expected to vary in each cell and to determine the response.

However, the fact that CCND1 transcriptional activation occurs within the same time
frame as the main initial phase of B-catenin nuclear accumulation means that in most
cells in the population, the CCND1 gene will become activated shortly after Wnt
activation. Possibly, later phases of B-catenin nuclear accumulation could have an
influence on prolonging CCND1 activity (steady state activity levels return after 6 hrs).
Indeed, measurements of CCND1 activity in living cells following Wnt activation showed
a positive change in several parameters relating to gene activation; not only did the
frequency of CCND1 activation in the cell population rise and the time to activate CCND1
shorten, but the levels of CCND1 transcriptional output increased, the timeframe of
gene activity became substantially longer, and gene resting periods were shortened.
Overall, this means that Wnt signaling increases the number of CCND1 mRNAs
generated, by increasing the frequency of RNA polymerase Il recruitment to the
promoter and by lengthening the time of promoter responsiveness. Interestingly, even
when an already active CCND1 gene received the Wnt signal, the levels of gene activity

increased.

Although we were unable to examine YFP-B-catenin dynamics and CCND1-MS2
transcription activity simultaneously in living cells, by integrating the measurements of
CCND1 transcriptional activity with the measured dynamics of [B-catenin nuclear
accumulation from the separate experiments, we found that the rate of change of

nuclear B-catenin correlated well with transcription induction (Figure 9a), specifically
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during the first rapid phase of nuclear B-catenin accumulation. This fits in well with a
previous study demonstrating that the fold change in B-catenin nuclear levels is the
element affecting target gene activity65, and that the transcriptional machinery is
capable of computing the fold change in P-catenin, thereby determining the
transcriptional responsess. Similar behavior was observed for the ERK signaling
pathwayes. Hence, it is not the absolute number of B-catenin molecules in the nucleus
that correlates with transcription rates, but the rate of change of B-catenin levels over
time, and particularly the rapid change during the first phase of induction that elicits the
transcriptional effect (Figure 9b). The advantage of such a sensing mechanism would be

its ability to buffer out cellular noise and variability in the cell population.

Concurrent B-catenin accumulation the cell membrane and the centrosome were
guantified. B-catenin demarcates the cell outline when there are cell-cell contacts due
to its presence in adherens junctions46. Generally, while the nuclear accumulation of B-
catenin has been the focus of Wnt signaling studies, the membrane region has not been
considered a major target of the response. However, one study has shown localization
of unphosphorylated B-catenin to the membrane upon Wnt activation within 30 min, in
cells lacking E-cadherin, although the function was unclear®’. We found increased B-
catenin levels in the membrane following Wnt activation. The punctate membranal
pattern persisted during activation, suggesting that Wnt increases the recruitment of -
catenin to existing adherens junctions. Indeed, B-catenin dynamics in the membrane
showed a relatively slow exchange both before and after Wnt activation, similar to a

study conducted in LiCl induced cells®®. This implies long residence times of B-catenin in
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the membrane and that potential binding sites for B-catenin molecules at adherens

junctions exist constantly, and only when the protein becomes abundant, do they fill up.

>>378972 The exact function is not clear

Centrosomal localization of B-catenin is known
and it probably plays a role in regulation of cell separation. It has been suggested that
Whnt signaling abolishes the phosphorylation of B-catenin and leads to centrosome
splitting®®. Our study shows for the first time, the highly rapid accumulation rates of B-
catenin at the centrosome in real-time, following Wnt signaling. B-catenin at the
centrosome is highly mobile as seen in our FRAP study and in another®’. Interestingly,
we identified a connection between the membranal and centrosomal B-catenin
fractions. Puncta of membranal B-catenin were detected moving relatively slowly from
the membrane region and ending up at the centrosome, sometimes several in parallel in
the same cell. Since unphosphorylated B-catenin is found in the membrane after Wnt®’,

we can postulate that the B-catenin fraction moving to the centrosome is

unphosporylated, and may be involved in driving cell division.

Notably, our study also provides a temporal view of B-catenin dynamics in single cells
under conditions of LiCl activation. Although LiCl is considered a chemical that mimics
Wnt activation and increases B-catenin levels in the nucleus, it is obvious that the
dynamics, build-up rates and levels of B-catenin in all subcellular compartments were
dramatically exaggerated and unregulated in comparison to Wnt activation. This should
be taken into account when inferring information regarding Wnt signaling and B-catenin

from LiCl treatment.
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The Wnt pathway has been implicated in cell cycle regulation, and levels of

phosporylated B-catenin oscillate and increase towards mitosis’>"*

. Examining cells that
had undergone mitosis after Wnt activation, did not show a pattern of B-catenin levels
in daughter cells, nor did Fucci labeling uncover a cell cycle pattern of B-catenin

accumulation following Wnt. This suggests that Wnt-induced nuclear accumulation is

not cell cycle dependent.

The propagation of a signal from a membrane receptor to the gene promoter can follow
different types of kinetics. Single-cell analysis revealed significant variability in the
dynamics of B-catenin nuclear buildup, but also that most cells did finally accumulate
the same total level of B-catenin over time. This behavior is quite different than the
serum activation pathway that activates B-actin via MAL shuttling”>. B-actin
transcriptional activation begins less than 5 minutes after serum addition, and B-actin
alleles respond in the same manner and same time-frame; i.e. variability of the response
in single cells is low. Hence, some signaling cascades must relay the information rapidly
and tightly since this will lead to the translation of a highly required protein, e.g. B-actin,
to generate a protein that is required for cell motility in response to environmental

sensing’®’’

. Other pathways such as Wnt/B-catenin may also signal to activate gene
expression, but their response emerges much later, probably since the required
biological outcomes, such as cell proliferation, require more regulation points. The

changes in B-catenin levels in response to Wnt, in several subcellular compartments,

indicate that the signaling pathway does not only activate gene expression but is



490 involved in additional processes. Further studies should reveal the exact roles of these

491  subpopulations of B-catenin in response to signal transduction.
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METHODS
Cells and transfections

HEK293 Flp-in CCND1-MS2 cells®® were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% FBS (HyClone Laboratories) and hygromycin selection
(100 pg/ml; Sigma). Stable expression of MS2-GFP was obtained by co-transfection of
the cells with MS2-GFP (10 pg) and puromycin resistance (300 ng) plasmids using
calcium phosphate transfection, and selection with puromycin (1 pg/ml; Invivogen) and
hygromycin (100 pg/ml). Stable expression of YFP-B-catenin®® (10 pg) was performed by
calcium phosphate transfection, and selection with neomycin (500 pg/ml; Sigma) and
hygromycin (100 pg/ml). Cells with very low expression levels were collected by FACS
(FACSAria lll, BD Biosciences). Transient expression of YFP-B-catenin was performed

using PolyJET (SignaGen).

For generation of Wnt3a conditioned medium (CM) and mock CM, L-Wnt-3A and L-
mouse fibroblasts cells were grown in DMEM and 10% FBS, and CM was prepared
according to American Tissue Culture Collection (ATCC) instructions’®. Wnt activation
was performed with either Wnts3a-CM or with recombinant human Wnt3a (200 ng/ml;
R&D Systems). Wnt3a-CM or mock-CM were added 1:1 to the volume of the cells

medium. Cells were also treated with LiCl (20 mM; Sigma) and MG132 (20 uM; Sigma).

The Fucci system (Clontech) was used for cell cycle phase detection. For G1 phase
detection, the pRetroX-G1-Red vector (mCherry-hCdt1) was used, and for S/G2/M phase

the pRetroX-SG2M-Cyan vector (AmCyan-hGeminin). The Fucci system, being a viral-
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based system first required the introduction of the mouse ecotropic retroviral receptor
on the membrane surface of HEK293 CCND1-MS2 cells expressing YFP-B-catenin.
Transient transfection was performed 24 hours prior to infection using Polylet
transfection with the pBABE ecotropic receptor plasmid (Addgene #10687). This step
was performed twice for each infection. After mCherry-hCdtl infection, mCherry
positive cells were collected by FACS and maintained in medium containing puromycin
(1 pg/ml; Invivogen). Cells were then transfected with the pBABE ecotropic receptor
plasmid and 24 hrs post-transfection, the cells infected with AmCyan-hGeminin. Positive
cells were collected by FACS and maintained in medium containing neomycin (500
pug/ml) and puromycin (1 pg/ml). For infections, HEK293T cells were maintained in
DMEM containing 10% FBS and used to package the Fucci retroviruses, which were

collected over a period of three days before infecting the ecotropic HEK293 cells.

Western blotting

SDS-PAGE and Western blotting were performed as previously described’. Primary
antibodies used were mouse anti-B-catenin (BD Transduction Laboratories, cat# 610154)
and rabbit anti-tubulin (Abcam). The secondary antibody was a HRP-conjugated goat
anti-rabbit or anti-mouse IgG (Sigma). Immunoreactive bands were detected by the

Enhanced Chemiluminescence kit (ECL, Pierce). Experiments were performed 3 times.
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Luciferase assay

HEK293 CCND1-MS2 cells were co-transfected with the cyclin D1 promoter -
1745CD1LUC Firefly luciefarse construct® and either YFP-B-catenin or eYFP-C1 (mock),
together with a Renilla luciferase construct using Polylet transfection. 50 ng of each
plasmid were used. A luciferase assay was performed after 24 hrs using the Dual-Glo
Luciferase assay system (Promega). After standardization with Renilla luciferase activity,
a relative luciferase activity was obtained and the mean and standard deviation from
triplicate wells was calculated. Each experiment was performed 3 times. YFP-B-catenin®®

was obtained from Jiirgen Behrens (University of Erlangen-Nurnberg).

Flow cytometry

Cells were harvested and DNA quantification was performed using 5 pg/ml DAPI
solution (Sigma). The BD FACSAria lll cell sorter was used. For quantifying DNA in fixed
cells, we used a 405nm laser for excitation and a 450/40nm bandpass filter for
detection. Data were processed and analyzed using Flowlo software. The average

guantification of 3 repeated experiments is presented (meanzs.d).

Immunofluorescence

Cells were grown on coverslips coated by Cell-Tak (BD Biosciences), washed with PBS

and fixed for 20 min in 4% PFA. Cells were then permeabilized in 0.5% Triton X-100 for 3
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min. After blocking, cells were immunostained for 1 hr with a primary antibody, and
after subsequent washes the cells were incubated for 1 hr with secondary fluorescent
antibodies. Primary antibodies: mouse anti-B-catenin and rabbit anti-pericentrin
(Abcam, cat# ab4448). Secondary antibodies: Alexa488-labeled goat anti-mouse 1gG and
Alexa594-labeled goat anti-rabbit (Invitrogen). Nuclei were counterstained with Hoechst

33342 (Sigma) and coverslips were mounted in mounting medium.

Fluorescence in situ hybridization

CCND1-MS2 cells were grown on coverslips coated by Cell-Tak (BD Biosciences) and
fixed for 20 min in 4% paraformaldehyde, and overnight with 70% ethanol at 4°C. The
next day cells were washed with 1x PBS and treated for 2.5 min with 0.5% Triton X-100.
Cells were washed with 1x PBS and incubated for 10 min in 40% formamide (4% SSC;
Sigma). Cells were hybridized overnight at 37°C in 40% formamide with a specific
fluorescently-labeled Cy3 DNA probe (~10 ng probe, 50 mer). The next day, cells were
washed twice with 40% formamide for 15 min and then washed for two hours with 1X
PBS. Nuclei were counterstained with Hoechst 33342 and coverslips were mounted in

mounting medium. The probe for the MS2 binding site was:

CTAGGCAATTAGGTACCTTAGGATCTAATGAACCCGGGAATACTGCAGAC.



574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

mRNA quantification

3D stacks (0.2 um steps, 76 or 51 planes) of the total volume of the cells were collected
from fixed CCND1-MS2 cells. The 3D stacks were deconvolved and the specific signals of
MmRNAs were identified (Imaris, Bitplane). mRNA identification was performed in
comparison to deconvolved stacks from cells not containing the MS2 integration, which
therefore served as background levels of nonspecific fluorescence. No mRNAs were
identified in control cells. The sum of intensity for each mRNA particle and active alleles

. . . . . 4
was measured in the same cells using Imaris, as previously described®>*°

. The single
MRNA intensities were pooled and the frequent value was calculated. The sum of
intensity at the transcription site was divided by the frequent value of a single mRNA.
This ratio provided the number of mRNAs associated with the transcription unit from
the point of the MS2-region and onwards. As mRNAs should be associated with a
polymerase, this number should reflect the maximum number of polymerases engaged

with this region. Quantification and counting experiments were applied to experiments

performed on different days.

Fluorescence microscopy, live-cell imaging and data analysis

Wide-field fluorescence images were obtained using the Cell*R system based on an
Olympus 1X81 fully motorized inverted microscope (60X PlanApo objective, 1.42 NA)
fitted with an Orca-AG CCD camera (Hamamatsu) driven by the Cell*R software. Live-cell

imaging was carried out using the Cell*R system with rapid wavelength switching. For
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time-lapse imaging, cells were plated on glass-bottomed tissue culture plates (MatTek,
Ashland, MA) coated by Cell-Tak (BD Biosciences) in medium containing 10% FBS at
37°C. The microscope is equipped with an incubator that includes temperature and CO,
control (Life Imaging Services, Reinach, Switzerland). For long-term imaging, several cell
positions were chosen and recorded by a motorized stage (Scan IM, Marzhauser,
Wetzlar-Steindorf, Germany). In these experiments, HEK293 Flp-in CCND1-MS2
expressing MS2-GFP cells were imaged in 3D (26 planes per time point) every 15 min, at
0.26 pum steps for 6 hrs. HEK293 Flp-in CCND1-MS2 cells expressing YFP-B-catenin were
imaged in 3D (15 planes per time point) at 0.7 um steps, every 15 min, up to 18 hrs. For
presentation of the movies, the 4D image sequences were transformed into a time
sequence using the maximum or sum projection options or manually selecting the in-
focus plane using the Imagel software. Time-lapse data was collected from single cells in
several fields and on several days until reaching an appropriate sample size, and then all
single-cell data were pooled and either averaged and presented as plots, or presented

as single cell data.

Tracking and data analysis

The intensity of the active transcription sites labeled with MS2-GFP fluorescence in
time-lapse movies were corrected for photobleaching using Imagel, and the 3D movies
were transformed to 2D by choosing the in-focus plane in which the intensity of the

transcription site is the highest. Movies were manually tracked and the intensity
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measured for each frame (/s). Background from another location in the nucleus (/n) was
subtracted for each frame, and the final intensity was calculated using: | = Is(t) — In(t)

and then normalized to the initial intensity.

Measuring the intensity of the YFP-B-catenin signal in the subcellular compartments was
performed manually using Imagel), and background was subtracted from all
measurements. When YFP-B-catenin levels were low, DIC images that were acquired in
parallel were used for nucleus detection. For measurements of centrosome intensity,
the intensity of the centrosome in each frame (/c) was multiplied by the area occupied
by the centrosome (Ac): | = Ic(t) *Ac(t). For membrane intensity, a sum projection of the

3D movies was used.

Intensity was normalized either to the initial frame or to the highest intensity measured.
Values of the nucleus/cytoplasm (N/C) ratio of YFP-B-catenin were obtained by division
of the YFP-B-catenin intensity levels measured. Correlation coefficient values were
calculated by comparing the intensity of B-catenin over time between all possible pairs
of sub-cellular compartments, from Wnt activation onset. Values of rate of change
(Al/At) in YFP-B-catenin in the sub-cellular compartments over time were obtained by
measuring the intensity difference (Al) between 2 consecutive time points divided by

the time difference (At) between the 2 time points:

Al | (On+ | (Hn

Zt(t)nJr% tn+1 _tn
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FRAP and FLIP

FRAP and FLIP experiments were performed using a 3D-FRAP system (Photometrics)
built on an Olympus IX81 microscope (636 Plan-Apo, 1.4 NA) equipped with an EM-CCD
(Quant-EM, Roper), 491nm laser, Lambda DG-4 light source (Sutter), XY&Z stages (Prior),
and driven by MetaMorph (Molecular Devices). Experiments were performed at 37°C
with 5% CO, using a live-cell chamber system (Tokai). For each acquisition, YFP-B-
catenin was bleached using the 491 nm laser. Six pre-bleach images were acquired. In
FRAP, post-bleach images were acquired every 0.8 sec for 80 sec in the cytoplasm and
the nucleus, every 1 sec for 2 min in adherens junctions, every 0.4 sec for 40 sec at the
centrosome, and every 1.5 sec for 8 min to measure nuclear import and export rates. In
FLIP, images were acquired every 1.9 sec for 280 sec in the cytoplasm and the nucleus.
The experiments were analyzed using Image) macros previously described ’°. Data from
at least 10 experiments for each cell line were collected and the averaged FRAP and FLIP

measurements were fitted by Matlab with a double exponential model:

I(t) = a; *exp(—1y * t) + ay * exp(—1, *t) + ¢ Where t=0 is the time immediately

after photobleaching.

I(t=
to.s was defined as time where [(t = ty5) = ( 200).
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Modeling B-catenin dynamics

We used a simple model for describing B-catenin concentration (C) dynamics in the

nucleus based on the data presented in the plot from Figure 2c:

_p C
T =PO—a®

Where a is the time dependent degradation rate, and P is the time dependent

production rate. Both rates are allowed to change when t=T:

a;; fort <T
ay; fort>T

a(t) = {

_(Py; fort<T
P(t) = {Pz; fort>T

The solution is:

P P
[C(O) —a—l] * g~ %1xt +a—1; fort<T
C(t) — Pl 1 P
[C(T) — —2] x @@ (=T) 4 —2; fort>T
%% az

Where:

P, P,
cm) = e - 2 vt 22
a a;

We fit the model by minimizing the sum of the squares of the residuals with the

function “fmincon” in MATLAB using the “active-set” algorithm.
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Statistical analysis

Two tailed t-test was performed in the following experiments: Quantitative FISH,
Luciferase assay, N/C ratio of YFP-B-catenin and live cell analysis. A Mann—Whitney test

was performed in FRAP and FLIP experiments (Supplementary file 1).
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Figure legends

Figure 1. Cell system for following B-catenin intra-cellular dynamics and CCND1 transcription in single living
cells. (a) CCND1-MS2 HEK293 cells stably expressing MS2-GFP-CP were treated with Wnt3a and followed for 6
hrs (every 15 min). Several frames from Video 1 are presented. The number of cells exhibiting transcriptionally
active CCND1-MS2 genes (green dot in nucleus, white arrow) was counted over time. Scale bar, 10 um. (b)
Plots showing the percentage of cells in the population with actively transcribing CCND1-MS2 genes in Wnt3a-
treated (red, n=98) and mock treated (blue, n=128) cells. Meants.d from 3 fields imaged on different days -
see Supplementary file 1a for statistics. (c) Immunofluorescence showing that endogenous B-catenin (green) is
prominent at the cell membrane in untreated HEK293 cells (top) and accumulates in the cytoplasm and
nucleus following activation by Wnt3a for 2 hrs (bottom). Hoechst DNA stain is in blue. (d) Similar changes in
subcellular distribution following activation are seen in the YFP-B-catenin low-expressing clone. Bar=10 um. (e)
Western blot time course of endogenous B-catenin and YFP-B-catenin protein accumulation following either
Wnt3a (top) or LiCl (bottom) stimulation. Anti-B-catenin antibody was used for the detection of both B-catenin
proteins. Tubulin was used as a loading control. Time 0 is the time point of activator addition. Blots are
representative of 3 repeated experiments. The average quantification of 3 repeated experiments is presented
in the plots below (meants.d). There is no statistical difference between the endogenous and exogenous

levels of B-catenin in the two plots.

Figure 2. The dynamics of B-catenin accumulation following Wnt3a activation in cell populations. Frames from
live-cell movies (Video 2) showing YFP-B-catenin dynamics in cells treated with (a) mock conditioned medium
or (b) Wnt3a for 12 hrs. Red bordered frames compare between the 0 min and 120 min time points. Bar=20

um. (c) The relative average intensity of B-catenin measured in the cytoplasm (n=24) and nucleus (n=31) of
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cells treated with Wnt3a for 12 hrs, compared to mock-treated control cells (n=13). (d) Nucleus to cytoplasm
ratio (N/C) of fluorescence intensities over 12 hrs from c. The initial ratio was designated as 1. Inset plot shows
the statistical significance p values (t test) at each time point between the two treatments over the
experiment time course. (e) The rate of change in B-catenin levels (Al/At), during accumulation or degradation,

in the cytoplasm and nucleus over time in cells from c.

Figure 3. Variability of B-catenin accumulation dynamics following Wnt3a activation in individual cells. (a)
Frames from time-lapse Video 3 showing YFP-B-catenin accumulation in a population of cells. The YFP signal is
pseudo-coloured using Imagel ‘Green Fire Blue’ look-up table. White and yellow arrows point to cells in which
B-catenin levels increase and decrease twice during the movie. The pink arrow points to centrosomal
accumulation. Bar=10 um. (b) B-catenin levels in the nucleus (left) and cytoplasm (right) in individual cells (as
numbered in a) are plotted in different colors. The grey background plots show the complete set of plots from

all the cells. Maximum B-catenin intensity in each cell was normalized to 1.

Figure 4. Variability of B-catenin dynamics in the cell population and during the cell cycle. (a) Heat map and
cluster analysis of normalized B-catenin accumulation dynamics in sub-cellular compartments following Wnt3a
(top, n(nucleus)=31, n(cytoplasm)=24, n(membrane)=21, n(centrosome)=11) or LiCl (bottom, n(nucleus)=18,
n(cytoplasm)=17, n(membrane)=9, n(centrosome)=14) treatments. Data were taken from live-cell movies with
each column representing one cell, and rows representing time from Wnt addition. Relative levels of B-catenin
are depicted from low (green) to high (red). Hierarchical cluster analysis depicted above the plots shows
homogenous behavior in LiCl-treated cells and heterogenous behavior in Wnt3a-treated cells. Most cells reach
maximal levels of B-catenin within 2-3 hours. (b) (Top) Frames from time-lapse Video 5 showing YFP-B-catenin

accumulation in a population of cells. The YFP signal is pseudo-colored using the Imagel ‘Fire’ look-up table.
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Boxes denote cells that go through mitosis, and enlargements are shown below. Green arrows point to
mother cells, and yellow and white arrows point to the daughter cells. Bar=10 pum. Plots showing the relative
intensity levels of YFP-B-catenin in the cytoplasm and nucleus of the (c) top and (d) bottom daughter cells of

each cell division. (e) Plot comparing the relative intensity levels in the nuclei of the four daughter cells.

Figure 5. The dynamics of B-catenin accumulation at the membrane following Wnt3a activation. (a) Frames
from time-lapse Video 8 showing YFP-B-catenin accumulation at the cell membrane. The YFP signal is pseudo-
colored using the Imagel ‘Green Fire Blue’ look-up table. Bar=10 um. (b) The relative average intensity of B-
catenin measured in the membrane (n=21), cytoplasm and nucleus (from Figure 2) of Wnt3a-treated cells. (c)
The rate of change in B-catenin levels (Al/At) accumulation or degradation in the membrane, cytoplasm and
nucleus over time in Wnt3a- and LiCl-treated cells. (d) The relative average intensity of B-catenin measured in

the membrane, cytoplasm and nucleus of LiCl-treated cells.

Figure 6. Accumulation of B-catenin at the centrosome after Wnt3a activation. (a) Frames from time-lapse
Video 9 showing YFP-B-catenin accumulation at the centrosome (white arrowheads) and after cell division.
Bar=10 um. (b) The colocalization (white arrowheads) of YFP-B-catenin (top) or endogenous B-catenin
(bottom) with the centrosomal marker pericentrin (red immunofluorescence) in untreated and LiCl-treated
cells. Hoechst DNA stain is in blue, and DIC in grey. Boxes show enlarged centrosomal areas. Bar=10 um. (c)
The relative average intensity of YFP-B-catenin measured in the centrosome (n=11), membrane, cytoplasm
and nucleus (from Figures 2 & 5) of Wnt3a-treated cells. Correlation scores (r) between the nucleus (n),
cytoplasm (c), membrane (m) and centrosome (ce) YFP-B-catenin levels are presented at the bottom. (d) The
rate of change in YFP-B-catenin levels (Al/At) accumulation or degradation in the centrosome, membrane,

cytoplasm and nucleus over time in Wnt3a- and LiCl-treated cells. (e) Plots of YFP-B-catenin levels in the sub-
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cellular compartments of individual cells (from Figure 3). Boxes show the correlation scores (r) between the

nucleus (n), cytoplasm (c), membrane (m) and centrosome (ce).

Figure 7. Measuring the transcriptional response of CCND1-MS2 to Wnt3a activation in living cells. (a) The
percentage of cells in a population of either mock-treated (blue) or Wnt3a-activated cells (red) showing an
active CCND1-MS2 transcribing gene, over time. (b) The promoter response time of CCND1-MS2 activation
from the addition of Wnt3a (n=27) or in mock-treated conditions (n=22). In the boxplots, the median is
indicated by a red line, the box represents the interquartile range, the whiskers represent the maximum and
minimum values, and red dots represent outliers. (P=0.01). (c, d) Periods of gene activity measured in mock-
treated and Wnt3a-treated cells. Population was divided into cases where the gene was either not transcribing
before addition of Wnt3a or mock-treatment (“off”, n(Wnt3a)=27, n(Con)=22, P=0.01) or if the gene was
already active (“on”, n(Wnt3a)=37, n(Con)=52, P=0.77). *P<0.05, n.s. = P>0.05. (e) Frames from Video 12
showing the activation of the CCND1-MS2 gene detected by MS2-GFP mRNA tagging (arrow) following Wnt3a

treatment. Bar= 10 um.

Figure 8. Quantification of CCND1 activity levels following Wnt activation in single fixed and living cells. (a,b)
Boxplots showing the maximal MS2-GFP intensity levels reached on actively transcribing CCND1-MS2 genes
during 6 hrs in Wnt3a-treated and mock-treated (Con) cells, when (a) the gene was either not transcribing
before addition of Wnt3a or mock-treatment (“off”, n(Wnt3a)=27, n(Con)=22, P=0.0001) or (b) if the gene was
already active (“on”, n(Wnt3a)=37, n(Con)=52, P=0.0006). The median is indicated by a red line, the box
represents the interquartile range, the whiskers represent the maximum and minimum values, and red dots
represent outliers. (c, d) Boxplots showing the time required to reach the maximal intensity levels when (c) the

gene was either not transcribing before addition of Wnt3a (“off”, P=0.03) or (d) if the gene was already active
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(“on”, P=0.42). (e) YFP-B-catenin (yellow) together with RNA FISH images obtained with a probe hybridizing to
the MS2 region in the 3'UTR of the CCND1-MS2 mRNA (cyan), showing CCND1 nascent mRNAs on active genes
(large dots) and cellular mRNAs (small dots) in Wnt3a-treated cells (2 hrs), in comparison to YFP-B-catenin
levels. Nuclei are stained with Hoechst (pseudo-colored red). Bottom row is the pseudo-colored YFP signal
using the Imagel ‘Royal’ look-up table. Cells are numbered. Bar=10 um. (f) Quantification of the number of
cellular CCND1-MS2 mRNAs (ordered from low to high) compared to YFP-B-catenin levels. (g) Quantification of
the number of nascent CCND1-MS2 mRNAs compared to YFP-B-catenin levels. (h, i) Correlation analysis
between (h) the number of cellular CCND1-MS2 mRNAs and YFP-B-catenin levels and (i) between the number
of nascent CCND1-MS2 mRNAs and YFP-B-catenin levels. Blue dots — subpopulation with low nuclear YFP-B-
catenin levels and low numbers of cellular/nascent CCND1-MS2 mRNAs. Red dots — subpopulation with high
nuclear YFP-B-catenin levels and high numbers of cellular/nascent CCND1-MS2 mRNAs. Total correlation score
between the number of cellular/nascent CCND1-MS2 mRNAs and YFP-B-catenin levels is 0.88 and 0.59,
respectively. (j) The field from panel e demonstrating higher intensity of active CCND1-MS2 genes in cells with
high nuclear YFP-B-catenin levels (red arrows) compared to cells with low nuclear YFP-B-catenin levels (yellow
arrows). Active genes are pseudo-colored using the ImageJ ‘Red Hot’ look-up table. The fluorescent signal of
the active genes was enhanced using Imagel) 'Spot Enhancing Filter 2D". This enhancement led to reduced
detectability of single mRNAs in this presentation of the image, in order to emphasize the difference in

transcriptional activity between low and high levels of nuclear YFP-B-catenin. Bar=10 um.

Figure 9. Comparing the kinetics of CCND1 transcriptional activation to the dynamics of B-catenin nuclear
accumulation rate of change following Wnt signaling in living cells. (a) Plots of the average transcriptional
activation kinetics of CCND1-MS2 (red) following Wnt3a activation, compared to the plot of rate of change in
B-catenin nuclear accumulation (green). (b) Scheme of the dynamic changes occurring in the studied cell

system following Wnt signaling. Top - from left to right: Levels of B-catenin (yellow) in the nucleus are
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normally low but after addition of Wnt3a to the medium a significant and rapid increase in the nucleus is
observed, peaking after 2-3 hrs. B-catenin levels later decline in the nucleus and cytoplasm due to
degradation. While this is the average behavior in the population (e.g. cells 1 and 2), when examining
individual cells, different dynamics such as multiple pulsations (e.g. cell 3) and rapid initial accumulation (e.g.
cell 4) are observed. B-catenin levels increase simultaneously at the membrane and at the centrosome.
Bottom- B-catenin induces cyclin D1 transcriptional activity (green dot), and modulation of transcriptional
reaction can be observed as the gene reaches higher levels of activity, for longer periods of time. The rate of
change in B-catenin accumulation (blue curve, top), rather than the actual levels of B-catenin in the nucleus,

correlate with the kinetics of transcriptional activation.

Supplementary Figure legends

Figure 1-figure supplement 1. Measuring the effect of YFP-B-catenin expression in HEK293 cells. (a) Luciferase
assay showing the levels of cyclin D1 promoter activation following the transient transfection of YFP-B-catenin
into HEK293 cells. P=0.003. (b) Overexpression of YFP-B-catenin shows that overexpressed protein localization
does not resemble endogenous B-catenin under non-activated conditions, since it is highly present in the
nucleus prior to Wnt activation, and does not appear at the membrane. Bar= 10 um. (c) Cell cycle analysis of
HEK293 CCND1-MS2 cells with and without YFP-B-catenin. (d) Quantification of CCND1-MS2 nascent mRNAs
(left) (P=0.8) and cellular mRNAs (right) (P=0.16) levels by RNA FISH in HEK293 CCND1-MS2 cell clones with or
without YFP-B-catenin (n=18, n=26 respectively). **P<0.01, n.s. = P>0.05. (e-h) Example of single molecule
mMRNA FISH quantification procedure with a probe that hybridizes to the MS2 region in the 3’'UTR of the
CCND1-MS2 mRNA. (e) Raw 3D image (76 planes in z stack) showing the active transcription site (red) and

single mMRNA molecules. Hoechst DNA stain is in blue. (f) Deconvolved 3D image. Boxes show the transcription
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site (bottom) and single cellular mRNAs (top). (g) Identification of “spots” of single mMRNAs and transcription
site (green dots) by Imaris. (h) Generation of a 3D shell for each spot to be taken for intensity measurements.
Bar= 10 um. Then the sum of intensity at the transcription site was divided by the frequent intensity value of a
single mRNA. This ratio provided the number of mRNAs associated with the transcription unit, as explained in

the Methods section.

Figure 2-figure supplement 1. FRAP and FLIP measurements of YFP-B-catenin import and export dynamics. (a)
Frames showing one pre-bleach frame, the bleach of the YFP-B-catenin in the nucleus (top) or cytoplasm
(bottom) of a Wnt3a-treated cell (2 hrs, arrows point to bleached region), and frames following the recovery
of signal over time (frame every 1.5 sec for 8 min). Bar=10 um. (b) Averaged data plot of FRAP recovery import
curves from Wnt3a-treated cells (n=27, red curve), and transiently overexpressing YFP-B-catenin cells (n=33,
blue curve). Pink curve shows the decline in YFP-B-catenin in the cytoplasm of Wnt3-treated cells concurrent
with nuclear import (red curve). (c) Averaged data plot of FRAP recovery export curves (green) from Wnt3a-
treated cells (n=14), compared to the import curve (red). (d) FLIP curves for Wnt3a-treated cells
photobleached continuously in the nucleus to show import rates from the cytoplasm (n=15, red curve)
compared with cells photobleached continuously in the cytoplasm to show export rates from the nucleus
(n=16, blue curve). Statistics can be found in Supplementary File 1. (e) Data from Figure 2c (blue dots) of

nuclear YFP-B-catenin accumulation were fit with a two-phase exponential (red curve).

Figure 3-figure supplement 1. B-catenin accumulation dynamics in response to LiCl activation in individual
cells. (a) Frames from time-lapse Video 4 showing YFP-B-catenin accumulation in a population of cells. The YFP
signal is pseudo-colored using the Imagel ‘Green Fire Blue’ look-up table. Bar=10 um. (b) B-catenin levels in

the nucleus (top) and cytoplasm (bottom) of individual cells (as numbered in a) are plotted in different colors.
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The grey background plots show the complete set of plots from all the cells. The maximum intensity of B-
catenin in each cell was normalized to 1. (c) The relative average intensity of B-catenin measured in the
cytoplasm (n=17) and nucleus (n=18) of individual cells treated with LiCl for 12 hrs, compared to Wnt3a-
treated cells (from Figure 2). (d) The rate of change in B-catenin levels (Al/At) accumulation or degradation in
the cytoplasm and nucleus over time in cells from c. (e) Frames from a time-lapse movie showing YFP-B-
catenin accumulation in a population of Wnt3a+MG132-treated cells. The YFP signal is pseudo-colored using
the Imagel) ‘Green Fire Blue’ look-up table. Bar=10 um. (f) The relative average intensity of B-catenin

measured in the centrosome, membrane, cytoplasm and nucleus of LiCl-treated cells.

Figure 3-figure supplement 2. The relationship between YFP-B-catenin levels of accumulation and time of
Wnt3a activation. (@) Frames from a time-lapse movie showing YFP-B-catenin accumulation in a population of
cells in the field. The YFP signal is pseudo-colored using the Imagel ‘Royal’ look-up table. Red arrows point to
cells with very high B-catenin levels. Bar=10 um. Plots showing the relative maximal levels of B-catenin
measured in nuclei of (b) Wnt3a-treated (n=31) or (c) LiCl-treated cells (n=18). Order of cells is according to
increasing relative intensities. Plots showing the time from the addition of the activator until reaching the
maximal levels of B-catenin in the same set of (d) Wnt3a-treated or (e) LiCl-treated cells. (f,g) The respective
correlation plots and scores for a Pearson correlation analysis between the maximum intensity in each cell and
the time to reach the highest accumulation. (h) The integral of the fluorescence values in the 6 cells (from
figure 3) showing the total accumulation levels over time during the whole observation period (left). The right-

hand plot shows the differences between accumulation in the cells at earlier times.

Figure 4-figure supplement 1. YFP-B-catenin dynamics during the cell cycle in Wnt3a induced cells. HEK293

CCND1-MS2 YFP-B-catenin cells were stably infected with the Fucci system (mCherry-Cdtl and AmCyanl-
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Geminin). Cdt1 levels peak during G1 (red cells), and as cells transition into S, Cdt1 levels decline and Geminin
levels rise (cyan cells), remaining high from G2 onwards. (a) Frames from Video 6. Before Wnt3a treatment
(time 0 min), B-catenin levels are low in the cytoplasm and nucleus of all cells marked by arrowheads (cells in
G1 or G2). At time 255 min after Wnt3a, the cells marked with blue, green and pink arrowheads show an
increase in the B-catenin levels in response to Wnt signaling. The cell marked with a white arrowhead has not
responded yet. At time 780 min, the cell marked with a pink arrowhead has gone through mitosis and the
three cells marked by blue, green and white arrowheads have similar B-catenin levels. At time 1065 min, cells
marked by white and blue arrowheads are increasing further, while the cell marked with the green arrowhead
is not changing. (b) Frames from Video 7. Before Wnt3a treatment (time 0 min), all the cells marked with
arrowheads (green, blue, white and pink) are in G2. At time 240 min after Wnt3a, the cell marked by a green
arrowhead has gone through mitosis and the daughter cells have similar B-catenin levels. At time 420 min, all
four cells have gone through mitosis. B-catenin levels in each of the two daughter cells in all four cases are
similar to each other. At time 705 min, the daughter cells marked by blue, green and pink arrowheads are
different from each other. The cells marked with white arrowheads have similar levels. Bottom rows are the

same frames without Fucci labels. Bar=10 pum.

Figure 5-figure supplement 1. FRAP measurements of YFP-B-catenin dynamics at adherens junctions. (a)
Frames showing one pre-bleach frame, the bleach of the YFP-B-catenin in the membrane region of a Wnt3a-
treated cell, and frames following the recovery of signal over time. Circle denotes the bleached region. Bar=10
um. (b) Averaged data plot of FRAP recovery curves from mock-treated (control, n=21), Wnt3a-treated (n=32)

and LiCl-treated cells (n=18). Statistics can be found in Supplementary file 1e, f.
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Figure 6-figure supplement 1. Detachment of membranal YFP-B-catenin puncta and movement towards the
centrosome. (a) Frames from Video 10 showing the tracks of several YFP-B-catenin membranal puncta
(colored tracks) moving from the membrane region towards the centrosome area (red circle). Time is minutes
after addition of Wnt3a. YFP signal is shown in negative greyscale colors. Bar=10 um. (b) Maximum time
projections of movements of membranal YFP-B-catenin puncta (arrows) towards the centrosome region
(circles) in four different cells. The YFP signal is pseudo-colored using the Imagel ‘Green Fire Blue’ look-up

table. Top row are Wnt3a-treated cells. Bottom row are Wnt3a + MG132-treated cells. Bar=10 pum.

Figure 6-figure supplement 2. Summary of FRAP measurements of YFP-B-catenin dynamics in subcellular
compartments in response to Wnt3a treatment. (a) Frames showing one pre-bleach frame, the bleach of the
YFP-B-catenin in the centrosome of a Wnt3a-treated cell, and frames following the recovery of signal over
time. Circle denotes the bleached region. Bar=10 um. (b) Averaged data plot of FRAP recovery curves in the
cytoplasm (n=24), nucleus (n=25), membrane (n=32) and centrosome (n=13). Membrane recovery from Figure

5-figure supplement 1 and import rate to nucleus from Figure 2-figure supplement 1 are also plotted.

Figure 7-figure supplement 1. Wnt signaling causes shorter rest duration in addition to an increase in the gene
burst duration. Plots of single cells demonstrate the active (blue) and inactive (red) state of CCND1-MS2
transcribing gene along 6 hrs in (a) mock-treated cells (Control, n=74) and (b) Wnt3a-treated cells (n=64). Data
were taken from live-cell movies with each column representing one cell along 6 hrs. Histograms showing the
distribution of (c) active and (d) inactive state durations in Wnt3a-treated and mock-treated (Control) cells

(P=0.02, P=0.0004 respectively). The curves are a fit to exponential distribution®.
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Figure 8-figure supplement 1. Transcription site intensity levels in living cells following Wnt3a activation. Plots
showing the MS2-GFP average intensity levels measured on active CCND1-MS2 transcription sites during 6 hrs
in Wnt3a-treated and in mock-treated cells, when (a) the gene was either not transcribing before addition of
Wnt3a or mock-treatment (“off”, n(Wnt3a)=27, n(Con)=22) (y axis is “relative intensity” going from an “off”
state to an “on” state”) or (b) if the gene was already active to begin with (“on”, n(Wnt3a)=37, n(Con)=52) (y
axis is the fold change compared to the beginning of the movie). Results were normalized to the intensity at
time 0. (c) Combined data from a and b. (d) Boxplot (left) showing the MS2-GFP maximal intensity levels
reached on active CCND1-MS2 transcription sites during 6 hrs in Wnt3a-treated and in mock-treated cells. In
the boxplots, the median is indicated by a red line, the box represents the interquartile range, the whiskers
represent the maximum and minimum values, and red dots represent outliers. The histograms (right) show
the distribution of maximal intensity levels in these cells (combined data from Figure. 8a and Figure 8b
(P=2.13e-06)). The histograms show normalized data such that the area of each bar is relative to the number
of observations (i.e. graph height is the probability density of the bar value, and graph area is equal to
the probability of obtaining the bar value). The sum area of all bars is 1. The data was fitted with a Gaussian
curve. (e) Boxplot (left) showing the time required to reach the maximal intensity in Wnt3a-treated and in
mock-treated cells. The histograms showing the distribution of this time in these cells (combined data from

Figure 8c and Figure 8d, P=0.69). ***P<0.001, n.s. = P>0.05.
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Supplemental File 1

Statistical analysis performed in this study. (a) The statistical significance p values (t test) at each time point for
the percentage of cells showing an active CCND1-MS2 gene (refers to Figure 1b) between control and Wnt3a-
treated cells. (b-f) Mann-Whitney test for comparison between two independent FRAP/FLIP experiments. A
statistical comparison between all datasets of two individual FRAP/FLIP experiments are depicted in each plot
and are illustrated as a single red circle which marks the p-value (y axis) for all intensity values measured for
each time point (x axis). The top and bottom dotted lines indicate where p-value equals 0.05. (b) Statistically
significant difference between the FRAP dynamics of YFP-B-catenin in the nucleus under Wnt3a treatment
versus overexpression of YFP-B-catenin that enters the nucleus without signal, and (c) between the FRAP and
(d) FLIP import and export dynamics (refers to Figure 2-figure supplement 1). (e) No statistically significant
difference between YFP-B-catenin at the cell membrane between mock-treated and Wnt3a-treated cells
(refers to Figure 5-figure supplement 1). (f) No statistically significant difference between YFP-B-catenin at the

cell membrane between mock-treated and LiCl-treated cells (refers to Figure 5-figure supplement 1).
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Supplemental Movies

Video 1. Transcriptional activation of CCND1 in response to Wnt3a. HEK293 CCND1-MS2 cells stably
expressing MS2-GFP (green) were treated with Wnt3a. The transcribed CCND1 mRNA on the active gene is
seen as a bright green dot. The fluorescent signal on the active genes was enhanced using Imagel 'Spot
Enhancing Filter 2D' in order to clearly present the active sites in the movie. Cells were imaged every 15 min

for 3 hrs.

Video 2. YFP-B-catenin dynamics at steady state and after Wnt3a activation. HEK293 CCND1-MS2 cells stably
expressing YFP-B-catenin were treated with Wnt3a (top) and showed nuclear and cytoplasmic accumulation of
YFP-B-catenin, followed by slow egress. No change in YFP-B-catenin levels was seen in mock-treated cells
(bottom). Right — The YFP signal is pseudo-colored using Imagel ‘Royal’ look-up table to show YFP-B-catenin

levels. Cells were imaged every 15 min for 510 min.

Video 3. YFP-B-catenin dynamics in individual cells. HEK293 CCND1-MS2 cells stably expressing YFP-B-catenin
were treated with Wnt3a, and the dynamics of the protein were observed in individual cells. The YFP signal is
pseudo-colored using Imagel “Green Fire Blue’ look-up table to show YFP-B-catenin levels. Cells were imaged

every 15 min for 825 min.

Video 4. YFP-B-catenin dynamics in response to LiCl. HEK293 CCND1-MS2 cells stably expressing YFP-B-

catenin were treated with LiCl and increased accumulation of the protein was observed. The YFP signal is
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pseudo-colored using ImageJ “Green Fire Blue’ look-up table to show YFP-B-catenin levels. Cells were imaged

every 15 min for 825 min.

Video 5. YFP-B-catenin dynamics following Wnt3a activation during cell division. HEK293 CCND1-MS2 cells
stably expressing YFP-B-catenin were treated with Wnt3a, and the dynamics of the protein in the nucleus
were followed over time. Two cells that undergo mitosis were observed in the field. The levels of the protein
in the daughter cells formed from the upper cell were low (also note the appearance and division of the
centrosome detected via YFP-B-catenin). In comparison, in the bottom mitotic cell, one daughter cell
accumulated high YFP-B-catenin levels very rapidly, while the other responded slowly and had very low levels.
The YFP signal is pseudo-colored using Imagel) ‘Fire’ look-up table to show YFP-B-catenin levels. Cells were

imaged every 15 min for 225 min.

Video 6. YFP-B-catenin dynamics following Wnt3a activation during the cell cycle. HEK293 CCND1-MS2 cells
stably expressing YFP-B-catenin (yellow) and the Fucci markers for G1 (red) and G2 (cyan), were treated with

Wnt3a, and the dynamics of the protein were followed over time.

Video 7. YFP-B-catenin dynamics following Wnt3a activation during cell division. HEK293 CCND1-MS2 cells
stably expressing YFP-B-catenin (yellow) and the Fucci markers for G1 (red) and G2 (cyan), were treated with

Whnt3a, and the dynamics of the protein were followed over time in four cells that undergo mitosis.
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Video 8. YFP-B-catenin dynamics at the cell membrane following Wnt3a activation. HEK293 CCND1-MS2 cells
stably expressing YFP-B-catenin were treated with Wnt3a, and the dynamics of the protein at the membrane
were followed over time, and were similar to the nucleus and cytoplasm accumulation. The YFP signal is
pseudo-colored using Imagel “Green Fire Blue’ look-up table to show YFP-B-catenin levels. Cells were imaged

every 15 min for 1065 min.

Video 9. YFP-B-catenin accumulation at the centrosome following Wnt3a activation. HEK293 CCND1-MS2
cells stably expressing YFP-B-catenin were treated with Wnt3a, and the dynamics of the protein at the
centrosome were observed in parallel to the accumulation in the nucleus and cytoplasm. The separation of
the centrosome in a cell during division can be seen after the 960 time point. Cells were imaged every 15 min

for 1005 min.

Video 10. YFP-B-catenin puncta move from the membrane to the centrosome. HEK293 CCND1-MS2 cells
stably expressing YFP-B-catenin were treated with Wnt3a. At the 300 min time point, a series of YFP-B-catenin
puncta can be tracked (track colors) moving from the membrane to the centrosome. An inverted presentation

of the movie shows the movie puncta (black dots). Cell was imaged every 15 min for 1005 min.

Video 11. YFP-B-catenin puncta move from the membrane to the centrosome. HEK293 CCND1-MS2 cells
stably expressing YFP-B-catenin were treated with Wnt3a and MG132. At the 165 min time point, a series of

YFP-B-catenin puncta can be tracked (track colors) moving from the membrane to the centrosome. The YFP
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signal is pseudo-colored using Imagel “Green Fire Blue’ look-up table to show YFP-B-catenin levels. Cells were

imaged every 15 min for 1065 min.

Video 12. Prolonged activation of CCND1 after Wnt activation. HEK293 CCND1-MS2 cells stably expressing
MS2-GFP (green) were treated with Wnt3a. CCND1 mRNA transcription could be detected 15 min after Wnt3a

(green dot, transcription site) and continued for 4 hrs. Cells were imaged every 15 min for 270 min.
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 1-figure supplement 1
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Figure 3-figure supplement 1
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Figure 3-figure supplement 2
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Figure 4-figure supplement 1
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Figure 5-figure supplement 1
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Figure 6-figure supplement 1
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Figure 6-figure supplement 2
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Figure 7-figure supplement 1
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Figure 8-figure supplement 1
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