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Abstract A major feature of embryogenesis is the specification of stem cell systems, but in

contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic

phase of development. Here, we dissect how light and metabolic signals are integrated to

overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is

able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis

and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand,

are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase.

Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR

kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell

activation at the shoot apex.

DOI: 10.7554/eLife.17023.001

Introduction
Light is the sole energy source of plants and therefore one of the most important environmental fac-

tors influencing their development and physiology. Consequently, several of the core developmental

decisions during the lifecycle of a plant from germination to seedling development and flowering

are strongly influenced by light conditions. After germination, higher plants undergo two distinct

developmental programs depending on the availability of light, termed skotomorphogenesis and

photomorphogenesis. Skotomorphogenesis, the dark adaptation program, is characterized by an

etiolated phenotype, including an elongated hypocotyl, closed cotyledons, the formation of an api-

cal hook and etioplast development. Importantly, stem cells at the shoot and root tip remain dor-

mant and thus growth in etiolated seedlings is mainly dependent on cell elongation rather than cell

division. In contrast, photomorphogenesis, the developmental program triggered in light, leads to

seedlings with short hypocotyls, unfolded cotyledons and development of chloroplasts. In the light,

shoot and root meristems are activated, leading to root growth and development of the first leaves

by cell division and expansion (reviewed in Nemhauser and Chory 2002).

Based on evolutionary evidence, photomorphogenesis is the default pathway, since gymno-

sperms for example do not follow a strict skotomorphogenic development in darkness (Wei, 1994).

With the advance of land plants and resulting new environmental challenges, such as growth in

dense canopy and germination in soil, the evolution of the dark-adapted skotomorphogenesis
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program ensued an advantage: It allowed plants to allocate the limited energy sources supplied by

the seed to maximally grow by elongation, in order to reach favorable light conditions that will pro-

vide energy for further growth and development. To faithfully execute these opposing developmen-

tal programs, plants have evolved complex mechanisms to perceive light quality and quantity

through a whole range of photoreceptors that are mainly absorbing in the blue, red and far-red

range of the spectrum. Activation of the blue absorbing CRYPTOCHROMES (crys) and/or the red

and far-red absorbing PHYTOCHROMES (phys) overrides the skotomorphogenic program and plants

undergo photomorphogenesis within minutes after perception of a light stimulus (reviewed in

Chory, 2010). On the molecular level, activated light receptors inhibit the function of the core

repressor of photomorphogenesis, CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), an E3

ubiquitin ligase that targets positive regulators of photomorphogenesis for degradation in darkness

(Yi and Deng, 2005). At the same time, a group of potent transcription factors, the PHYTO-

CHROME INTERACTING FACTORS (PIFs), which promote skotomorphogenesis in darkness, are

degraded upon light perception through the PHYTOCHROMES (Leivar and Quail, 2010). The activi-

ties of these pathways converge on the differential regulation of thousands of genes resulting in a

massive reprogramming of the transcriptome in response to light (Ma et al., 2002;

Tepperman et al., 2004; Peschke and Kretsch, 2011; Pfeiffer et al., 2014).

Light not only activates photoreceptors, it also fuels photosynthesis and therefore leads to the

production of a number of energy rich metabolites including sugars. Plants are able to monitor their

metabolic state with several signaling systems (Lastdrager et al., 2014) and recent studies have

focused on the evolutionary conserved TARGET OF RAPAMYCIN (TOR) kinase complex

(Dobrenel et al., 2016). In other eukaryotes, TOR functions as a central integrator of nutrient,

energy, and stress signaling networks and consistently, TOR regulates cell growth and proliferation,

ribosome biogenesis, protein synthesis, cell wall integrity and autophagy (Dı́az-Troya et al., 2008;

Henriques et al., 2014; Lastdragere et al., 2014; Xiong and Sheen, 2014). While other eukaryotes

possess two TOR complexes, so far only a single complex has been identified in plants. It is com-

prised of TOR, FKBP12, LST8 and RAPTOR (Mahfouz et al., 2006; Moreau et al., 2012) and thus

resembles the mammalian TOR complex 1 (mTORC1). AtTOR is expressed in the embryo and endo-

sperm and in meristematic regions of the adult plant (Menand et al., 2002). While tor null mutants

show premature arrest of embryo development (Menand et al., 2002), knock down of TOR leads to

eLife digest Plants are able to grow and develop throughout their lives thanks to groups of

stem cells at the tips of their shoots and roots, which can constantly divide to produce new cells.

Energy captured from sunlight during a process called photosynthesis is the main source of energy

for most plants. Therefore, the amount and quality of light in the environment has a big influence on

how plants grow and develop. An enzyme called TOR kinase can sense energy levels in animal cells

and regulate many processes including growth and cell division. Plants also have a TOR kinase, but

it is less clear if it plays the same role in plants, and whether it can respond to light.

Plant stem cells only start to divide after the seed germinates. In shoots, a protein called

WUSCHEL is required to maintain stem cells in an active state. Here, Pfeiffer et al. studied how

shoot stem cells are activated in response to environmental signals in a plant known as Arabidopsis.

The experiments show that light is able to activate the production of WUSCHEL independently of

photosynthesis via a signal pathway that depends on TOR kinase. The stem cells do not directly

sense light; instead other cells detect the light and relay the information to the stem cells with the

help of a hormone called cytokinin.

Further experiments show that information about energy levels in cells is relayed via another

signal pathway that also involves the TOR kinase. Therefore, Pfeiffer et al.’s findings suggest that the

activation of TOR by light allows plant cells to anticipate how much energy will be available and

efficiently tune their growth and development to cope with the environmental conditions. Future

challenges are to understand how TOR kinase is regulated by light signals and how this enzyme is

able to act on WUSCHEL to trigger stem cell division.

DOI: 10.7554/eLife.17023.002
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growth reduction and affects the carbohydrate and amino acid metabolism (Caldana et al., 2013).

In contrast, the presence of sugars in general promotes TOR kinase activity (Ren et al., 2012;

Dobrenel et al., 2013; Xiong et al., 2013). So far, the only known direct downstream targets of

AtTOR kinase are S6 kinase 1 (S6K1) (Schepetilnikov et al., 2011, 2013; Xiong et al., 2013), TAP46

(Ahn et al., 2011, 2014) and E2 promoter binding factor a (E2Fa) (Xiong et al., 2013). S6K1 plays

an important role in reinitiating translation (Schepetilnikov et al., 2011) as well as in the regulation

of the cell cycle (Henriques et al., 2010; Shin et al., 2012). Similarly, E2Fa is associated with cell

cycle control through the expression of S-phase genes (Polyn et al., 2015). Though little is known

about how TOR is activated on a molecular level in plants, reports from the past decade suggest

that TOR functions as a central regulator of protein synthesis, cell proliferation and metabolism in

response to metabolic signals.

Several photomorphogenic responses, like the inhibition of hypocotyl elongation, unfolding of

the hypocotyl hook and cotyledons, as well as chloroplast development can be triggered by a light

signal alone, as displayed in dark-grown cop1 and pif1/pif3/pif4/pif5 quadruple mutants (pifq)

(Deng and Quail, 1991; Leivar et al., 2009). However, root growth is not induced in cop1 mutants

unless sucrose is supplied with the growth medium. Photosynthetic assimilates dominantly promote

growth in the root where they can synergistically interact with photoreceptor-triggered light signal-

ing (Kircher and Schopfer, 2012). Recently, Xiong et al. showed that this photosynthesis-driven

growth and proliferation in the root is mediated by the TOR kinase (Xiong et al., 2013).

Here, we analyzed the role of light and nutrients for post-germination stem cell activation in the

shoot apical meristem (SAM) of young seedlings. Stem cell control in the SAM of Arabidopsis thali-

ana is based on the activity of the homeodomain transcription factor WUSCHEL (WUS), which is

expressed in the organizing centre and necessary and sufficient to non-cell- autonomously induce

stem cell fate by protein movement. Stem cells in turn express CLAVATA3 (CLV3), a short secreted

peptide, that acts via the CLV / CORYNE receptor system to limit the expression of WUS in the

organizing center (Schoof et al., 2000; Daum et al., 2014). The use of a reporter system based on

the regulatory regions of WUS and CLV3 allowed us to quantitatively trace behavior of stem cells

(pCLV3:mCHERRY-NLS) as well as cells of the underlying organizing center (pWUS:3xVENUS-NLS).

With the help of these tools, we were able to genetically dissect the individual contribution of light

signaling and photosynthesis-driven nutrient sensing on the stem cell system of the SAM. We show

that both pathways ultimately converge at the level of TOR kinase activation, revealing a role for

TOR as a central regulator of stem cell activation in response to environmental cues.

Results

Organogenic development is dependent on light and energy
metabolites
The SAM of Arabidopsis seedlings remains dormant during skotomorphogenesis and therefore,

plants are unable to advance to the organogenic stage in the absence of light. However, since light

acts as signal and energy source alike, we first asked which of the two roles is dominant for SAM

development. While supplementation of sugar to wild-type seedlings grown in the dark is known to

be inefficient to trigger development (Figure 1A), activation of the light pathway alone, either physi-

ologically by low level illumination, or genetically by introduction of the cop1 mutation, was shown

to induce photomorphogenic development of the hypocotyl and cotyledons in darkness (Deng and

Quail, 1991). Despite this stark developmental transition, SAMs of cop1 mutants were unable to

produce organs when grown in the dark. However, the SAM was activated and organogenesis initi-

ated in 100% of the dark-grown cop1 mutants when supplemented with sucrose as external energy

source (Figure 1B, see also McNellis et al., 1994; Nakagawa and Komeda, 2004). Conversely, the

SAM of light-grown wild-type seedlings remained dormant when photosynthesis was compromised

by the carotenoid biosynthesis inhibitor norflurazon. In line with our observation of cop1 mutants,

supplementing the growth medium of these plants with sucrose rescued the dormant phenotype in

approximately every third seedling (Figure 1C). Thus, neither the availability of energy metabolites,

nor light perception alone was sufficient for SAM activation. In contrast, light and energy, likely in

the form of photosynthetic products, seemed to be sensed independently, and both factors need to

act cooperatively to trigger SAM development.
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Figure 1. SAM development depends on light and sugar. (A–C) Five week old plants grown on media with (+) or

without (-) sucrose. (A) Wild-type plants grown in darkness, (B) cop1 mutant plants grown in darkness and (C) wild-

type seedlings grown in light in the presence of 0.5 mM photosynthesis inhibitor norflurazon . (D–I) Maximum

projections of SAMs of four day old seedlings; scale bar 20 mm. (D–F) pCLV3:mCHERRY-NLS (red)

and pWUS:3xVENUS-NLS (green). (G–I) pCLV3:mCHERRY-NLS (red) and pWUS:WUS-linker-GFP (green).

Quantification of pWUS:3xVENUS-NLS (J) and pCLV3:mCHERRY-NLS (K) expression by fluorescence intensity

under different growth conditions (gray = darkness, red = red light (30 mmol*m�2*s�1), solid box = w/o sucrose,

hatched box = 1% sucrose, dag = days after germination).

DOI: 10.7554/eLife.17023.003

The following figure supplement is available for figure 1:

Figure supplement 1. Expression of CLV3 and WUS during seedling development.

DOI: 10.7554/eLife.17023.004
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WUS expression is independently regulated by light and sucrose
Our phenotypic analysis suggested that light and metabolic signals synergize to activate SAM devel-

opment, and thus we asked which of the known components underlying stem cell homeostasis might

be the relevant cellular and molecular targets. By using transcriptional reporters for stem cells

(pCLV3:mCherry-NLS) and niche cells (pWUS:3xVENUS-NLS) we found that stem cell identity was

actively maintained independently of growth conditions and was even observed in the dormant state

mediated by germination in the dark (Figure 1D). In contrast, expression of the reporter for the

stem cell inducing WUS transcription factor was critically dependent on environmental signals and

preceded meristem activity and the initiation of organogenic development (Figure 1E). To test if our

WUS reporter faithfully recapitulated the behavior of the endogenous gene, we used in situ hybrid-

ization and were able to confirm strong light dependent induction of WUS mRNA (Figure 1—figure

supplement 1C and D). Since WUS protein exhibits complex movement and a short lifetime

(Daum et al., 2014), we furthermore analyzed the behavior of WUS-GFP protein in vivo by recording

the GFP signal in our rescue line (pWUS:WUS-linker-GFP in wus mutant background [Daum et al.,

2014]). Again, we observed a strong light- and sucrose-dependency of the WUS-GFP signal in line

with the observed activation of the WUS promoter and accumulation of the endogenous WUS

mRNA under these conditions (Figure 1G–I) confirming that the simple pWUS:3xVenus-NLS reporter

represents a faithful and quantitative readout for WUS activity. Taken together, these findings on

the one hand suggested that CLV3 expression is at least partially independent of WUS and on the

other hand that the environmentally dependent transcriptional activation of WUS is the trigger to

overcome stem cell dormancy.

Using seedlings carrying both reporters grown under wave-length specific LED illumination and

image quantification we found that the WUS reporter (pWUS:3xVENUS-NLS) was below detection

level in dark-grown seedlings. In contrast, GFP signals were readily detectable in light-grown plants

from three days after germination onwards with the signal steadily increasing over time (Figure 1J).

Interestingly, WUS expression was also induced in the absence of light, when plants were grown on

sucrose-supplemented medium (Figure 1F,J) and when sucrose was supplied to light-grown seed-

lings, the effect of light and sucrose on WUS expression was additive (Figure 1J). Light and sucrose

also had a similar effect on the regulation of CLV3 expression (Figure 1D–I, K), however, since the

CLV3 reporter was already detectable in dark-grown seedlings, the induction of expression by light

and sucrose was less pronounced and mainly due to an enlargement of the CLV3 domain rather than

an increase of signal intensity in individual cells (Figure 1—figure supplement 1A and B). In sum,

development of the SAM required both, light signal transduction and the availability of photosyn-

thetic products, whereas WUS expression was induced also by each signal individually. Thus, tracing

WUS expression in the SAM of young seedlings represented a sensitive model to decipher the con-

tribution of upstream signals to stem cell activation in a developmentally and physiologically relevant

setting.

Mechanisms of light dependent stem cell activation
Since the expression of the transcriptional WUS reporter showed an early and dynamic response to

environmental stimuli that mimicked both endogenous WUS mRNA, as well as WUS-GFP protein,

we used the intensity of the reporter signal in four day-old seedlings as an easily quantifiable proxy

for stem cell activation. First, we wanted to elucidate the molecular players involved in stem cell acti-

vation by light. To this end, we irradiated seedlings with monochromatic light of low intensities (30

mmol*m�2*s�1) to analyze the effect of light signaling with minimal influence of photosynthesis-

derived metabolites. Even at low intensities, blue, as well as red light were sufficient to robustly

induce WUS expression (Figure 2A). In line with the well-documented biochemistry of the photore-

ceptors, red-light-induced WUS activation was specifically reduced in the phyB mutant background,

while blue-light-induced reporter activity was impaired in the cry1/cry2 double mutant background

(Figure 2A). We thus concluded that light perceived through phyB as well as the crys influences the

developmental fate of the SAM.

We also tested WUS expression under far-red light, which is sensed by phyA and found that

reporter activity was only weakly induced by far-red light. Interestingly, phyA mutants showed similar

WUS promoter activity under far-red light and in darkness (Figure 2—figure supplement 1A). How-

ever, when we supplemented the growth media with 1% sucrose we observed a clear induction of
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WUS expression in response to far-red light, which was dependent on a functional copy of PHYA.

Still, phyA mutants displayed a basal level of WUS promoter activity already in darkness even when

grown on plates containing sucrose, suggesting a complex and so far unknown regulatory role for

phyA under these conditions.

The fact that plants grown in far-red light are photosynthetically inactive and required an exoge-

nous energy source for WUS activation, while plants under blue and red light did not, raised the

question whether minimal levels of photosynthetically derived sugars might contribute to WUS

expression in blue and red light, despite the low fluence. Therefore, we tested whether the availabil-

ity of photosynthetic products is a prerequisite for light-induced WUS expression by chemical inter-

ference. However, the inhibition of photosynthesis by either norflurazon or lincomycin, did not affect

WUS promoter activity in red or in blue light (Figure 2A). In the presence of lincomycin, WUS

expression was even slightly increased under both light conditions. To avoid potential side effects of

the pharmacological treatments we also tested the effect of CO2 withdrawal on seedling develop-

ment and WUS expression. Preventing photosynthetic assimilation in a CO2-deficient atmosphere

inhibited development of seedlings even when grown in light. This phenotype could be rescued in

one third of the plants by adding 1% sucrose to the media, similar to what we observed using nor-

flurazon treatment (compare Figure 1C and Figure 2—figure supplement 1C). Importantly, WUS

induction by red light was unaffected by CO2 reduction in the atmosphere (Figure 2—figure supple-

ment 1B). Thus, photosynthetically derived metabolites produced in a low light environment were

not required for activation of stem cells, confirming that light signaling alone was sufficient for WUS

expression.

We next asked how the light signal perceived by PHYTOCHROMES and CRYPTOCHROMES is

relayed to the nucleus by testing the contribution of known downstream signaling components, such

as COP1 and HY5. The E3-ubiquitin ligase COP1, which targets HY5 but also other factors for degra-

dation in darkness, showed robust inhibitory effects on WUS expression. Cop1-4 mutants displayed

Figure 2. Light induced WUS expression depends on photoreceptors and is repressed by COP1. Quantification of

pWUS:3xVENUS-NLS expression by fluorescence intensity was measured in four day old wild-type (WT) or

mutant seedlings (WT) or mutant background under different growth conditions (gray = darkness, red = red light

(30 mmol*m�2*s�1), blue = blue light (30 mmol*m�2*s�1), solid box = w/o sucrose, hatched box = 1% sucrose). (A)

0.5 mM lincomycin and 5 mM norflurazon, respectively were applied to the growth media of wild-type seedlings.

(B) Impact of cop1�4 mutation on WUS expression.

DOI: 10.7554/eLife.17023.005

The following figure supplement is available for figure 2:

Figure supplement 1. Light regulation of WUS expression.

DOI: 10.7554/eLife.17023.006
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photomorphogenic development in darkness, which was accompanied by WUS expression

(Figure 2B). Furthermore, the repressive function of COP1 was prominent under all conditions

tested and cop1-4 seedlings displayed strongly elevated WUS promoter activity compared to wild-

type when grown in dark with or without sugar, and also under low light conditions (Figure 2B). To

confirm that these effects were not caused by second site mutations present in the cop1-4 back-

ground or specific to the allele tested, we used qRT-PCR to assay WUS expression in seedlings carry-

ing other cop1 loss-of-function alleles. However, since this approach lacked the spatial resolution

provided by microscopic quantification of the WUS reporter, it proofed to be much less sensitive.

Still, we were able to detect accumulation of endogenous WUS mRNA in response to light in 7d old

wild-type seedlings, as well as in cop1-4 mutants in the dark (Figure 2—figure supplement 1D).

Importantly, all three cop1 mutant alleles tested showed robust elevation of WUS mRNA levels

when grown in the dark (Figure 2—figure supplement 1E), demonstrating that loss of COP1 func-

tion leads to activation of WUS.

One of the main functions of COP1 is to target the transcription factor HY5, a positive master

regulator of photomorphogenesis, for degradation. Thus, we analyzed the role of HY5 working

under the hypothesis that in contrast to cop1 mutants, which had shown elevated WUS reporter

expression, hy5 mutants should suffer from a much reduced meristem activity due to the absence of

an important photomorphogenesis stimulating activity. However, hy5 mutants were unaffected in

activation of WUS expression (Figure 2—figure supplement 1F), suggesting that SAM stem cell

activation is dependent on another COP1-targeted transcriptional transducer, such as HY5 HOMO-

LOG (HYH), or a so far unknown regulator.

Since the SAM is shielded from the environment especially in etiolated seedlings, where it is bur-

ied between the closed cotyledons and protected by the apical hook of the hypocotyl, it seemed

questionable that the meristem itself is the site of light perception. We therefore tested the compe-

tence of different tissues to perceive light signals and translate them into a stem cell activating out-

put. To this end, we expressed a constitutive active form of phyB (Su and Lagarias, 2007) under

different tissue specific promoters (Figure 2—figure supplement 1C,D). Expression of phyB Y276H

under an ubiquitous promoter (pUBI10) caused strong cop1-like phenotypes and a substantial activa-

tion of the WUS promoter in the SAM showing that transgenic activation of light signaling is suffi-

cient to trigger stem cell activation in darkness (Figure 2—figure supplement 1G,H,J). In line with

our hypothesis that light is likely perceived by cells outside the SAM, vascular specific expression of

phyB Y276H by the pSUC2, or mesophyll specific expression by pCAB3 promoters (Ranjan et al.,

2011) initiated constitutive photomorphogenic phenotypes and WUS expression in dark-grown

seedlings. Similar results were also obtained for the epidermal pML1 promoter, in lines showing

high expression levels of phyB Y276H (Figure 2—figure supplement 1G–J). These results suggested

that the stimulus downstream of light perception can be transmitted between tissues by a mobile

signal and raised the question whether the SAM itself even has the ability to respond to light. To

explore this, we expressed phyB Y276H specifically in the SAM under the promoter of At3g59270

(Yadav et al., 2009), but in contrast to expression outside of the SAM, we observed fully etiolated

seedlings without detectable WUS expression when these plants were grown in the dark. Even when

we drove PHYB Y276H expression in cells surrounding the organizing center by the promoter of

At1g26680 (Yadav et al., 2009), we only observed a minor reduction in hypocotyl elongation in

darkness compared to wild-type and marginal WUS expression (Figure 2—figure supplement 1G,

H,J). We therefore concluded that light is perceived by cells outside of the SAM, likely in the cotyle-

dons or the hypocotyl and that this stimulus is transmitted to the SAM by a so far unidentified

mobile signal. Amazingly, the SAM does not possess the competence to perceive and/or translate

the light stimulus into stem cell activation, but rather is limited to responding to the signals that are

transmitted from distant plant organs.

Mechanisms of hormonal stem cell activation
Since we had shown that light is perceived at a distance from the SAM, which also for energy rich

metabolites is not a source, but a sink tissue, we next asked how the information for both environ-

mental inputs is relayed to the stem cell system. Obvious candidates for inter-regional signaling

components are plant hormones and there are a number of studies demonstrating their importance

in regulating the shoot stem cell niche, especially for cytokinin (CK) and auxin (reviewed in

Murray et al., 2012). A previous study had analyzed the environmental influence on organ initiation
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at the SAM using transfer of light grown tomato plants to darkness as a model and found that light

is required for CK signaling and polarized membrane localization of the auxin export carrier PIN1

(Yoshida et al.,2011). However, these studies could not distinguish whether light was perceived as

informational cue or energy source. We therefore analyzed CK signaling activity using the pTCSn:

GUS cytokinin output sensor (Zürcher et al., 2013) as well as auxin flux directionality using polariza-

tion of pPIN1:PIN1-GFP (Benková et al., 2003) as a proxy (Figure 3A–K). In line with the findings of

Yoshida et al., CK signaling was strongly activated by light when compared to etiolated seedlings

(compare Figure 3H,G). Furthermore, we also found that PIN1 polarly localized to the plasma mem-

brane in a light dependent manner (Figure 3A and B). Interestingly, sucrose treatment of etiolated

seedlings did not affect the localization of PIN1 (Figure 3C) but lead to a mild activation of the TCS

reporter also in the absence of light (Figure 3I), suggesting that there is specificity in the hormonal

response.

To test the light signaling response independently from impeding effects of photosynthesis, we

treated plants grown in light with the photosynthesis inhibitor norflurazon. While PIN1 localization

was still light responsive, no activity of the TCS reporter was detectable under these conditions

(Figure 3D,J). We also observed a reduction of TCS signal when plants were grown in a CO2-defi-

cient environment (Figure 3—figure supplement 1C). Since in both cases TCS reporter activity

could be restored by sucrose supplementation (Figure 3K and Figure 3—figure supplement 1D),

we concluded that CK signaling output is dependent on the availability of energy metabolites. How-

ever, light signaling and photosynthesis together had a much stronger effect on CK output than

nutrient availability alone, suggesting that both signals synergize to stimulate CK signaling at the

SAM. In contrast, PIN1 localization to the plasma membrane was fully dependent on light perception

and could not even be restored by the cop1 mutation (Figure 3E,F).

If CK signaling indeed integrates energy status and light perception, it may be sufficient to acti-

vate SAM development. In line with this idea, the importance of CK in light dependent SAM activa-

tion had already been demonstrated (Chory et al., 1994; Skylar et al., 2010) and Yoshida et al. had

shown that the application of CK to tomato apices can induce organogenesis in the dark

(Yoshida et al.,2011). Consistently, etiolated Arabidopsis seedlings treated with CK produced leaf

Figure 3. Hormonal control of the SAM. (A–F) Confocal images of four day old seedlings expressing pPIN1:PIN1-GFP in WT (A–D) or cop1-4 (E,F)

background under diverse growth conditions. The lower row shows a magnification of the meristem shown in the picture above. (G–K) GUS staining of

four day old plants expressing pTCSn:GUS (light = white light (150 mmol*m�2*s�1), + suc = 1% sucrose, nor = 5 mM norflurazon, scale bar = 20 mm). (L)

Wild-type seedlings after 20 days on plates containing CK (75 mM benzyladenine) supplemented with (+) or without (-) sucrose.

DOI: 10.7554/eLife.17023.007

The following figure supplement is available for figure 3:

Figure supplement 1. pTCSn:GUS activity in four day old seedlings grown under different conditions.

DOI: 10.7554/eLife.17023.008
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like structures even in darkness (Figure 3L and Chory et al. 1994). However, this developmental

transition was strictly dependent on the presence of an external energy source, similar to the behav-

ior of cop1 mutants and in the absence of sucrose, CK treated seedlings failed to develop leaves in

the dark (Figure 3L). Thus, our experiments were consistent with CK being an important component

of, but not the sole signal for environmental stem cell activation.

Since we had found WUS expression to be a much more sensitive readout for SAM activation

than organ development, we made use of our reporter system to dissect the role of CK for overcom-

ing stem cell dormancy. Using hormone treatment assays we found that CK alone was sufficient to

induce low levels of WUS expression even in darkness in line with its known role in SAM regulation

(Gordon et al., 2009; Buechel et al., 2010). Interestingly, we observed the strongest stimulation of

reporter activity in plants on sucrose medium, whereas the light response was largely unaffected by

CK treatment (Figure 4A). These results suggested that application of CK can at least partially

replace the perception of light and thus supported a role for CK as a mobile transducer for light sig-

nals upstream of WUS expression. However, as demonstrated by our results using the TCS reporter,

in the absence of energy metabolites downstream CK signaling cannot be fully activated, resulting in

a lack of organ development. Having established an environment specific role for CK in the initial

steps leading up to stem cell activation, we wondered about the mechanism of regulating endoge-

nous hormone levels. We therefore mined the literature for light responsive genes, expressed in the

meristem and functionally related to CK metabolism, perception, or signaling. Only CYTOKININ OXI-

DASE 5 (CKX5), which codes for one of seven homologous cytokinin dehydrogenases involved in CK

catabolism in Arabidopsis met all criteria (Frebort et al., 2011). CKX5 is a direct transcriptional tar-

get of several PHYTOCHROME INTERACTING FACTORs (PIFs) and is highly expressed in etiolated

seedlings as well as under shade conditions (Hornitschek et al., 2012; Zhang et al., 2013;

Pfeiffer et al., 2014). Similar to cop1 mutants, also pifq mutants form leaves in darkness when sup-

plied with sugars externally, therefore the PIFs are likely to play an important role in suppressing

SAM activation in darkness (Figure 4—figure supplement 1A). CKX6, a close homologue of CKX5,

had already been described to limit primordia growth in response to shade treatment

Figure 4. Role of cytokinin signaling in WUS activation. Quantification of pWUS:3xVENUS-NLS expression in four

day old seedlings. (A) Cytokinin was applied as 75 mM benzyladenine to wild-type (WT). (B) Ckx mutant lines

display enhanced expression of the pWUS:3xVENUS-NLS reporter construct (growth conditions: gray = darkness,

red = red light (30 mmol*m�2*s�1), solid box = w/o sucrose, hatched box = 1% sucrose).

DOI: 10.7554/eLife.17023.009

The following figure supplement is available for figure 4:

Figure supplement 1. Role of PIF and CKX genes for stem cell activation.

DOI: 10.7554/eLife.17023.010
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(Carabelli et al., 2007) and both CKX5 and CKX6 had been shown to be expressed around the

shoot apex (Motyka et al., 2003; Bartrina et al., 2011). When we tested the contribution of CKX5

and CKX6 to SAM activation by crossing the single mutants to our reporter line, we found that loss

of either did not promote WUS activity in the dark as CK treatment. In contrast, the responses to

sucrose and light were robustly enhanced (Figure 4B), revealing that genetically removing etiolation

specific antagonists of CK accumulation is sufficient to replace one of the essential environmental

signals, but not both. Because CKX genes act partially redundantly (Bartrina et al., 2011), we

decided to remove CKX6 in the ckx5 mutant reporter background by CRISPR/Cas9. Of 27 plants

tested in T1, three were homozygous ckx6 mutants, with either insertions or deletions at the 5´end

of the CKX6 locus leading to a shift in the reading frame (Figure 4—figure supplement 1E). Seed-

lings of all three independent ckx5/ckx6 mutant reporter lines were analyzed in the T2 generation

and showed comparable effects on WUS expression (Figure 4B includes data from one representa-

tive ckx5/ckx6 line, AP101.9). In contrast to either single ckx mutant, ckx5/ckx6 double mutants

showed basal WUS reporter activity in darkness, similar to its behavior under CK treatment. Further-

more, we observed a dramatic enhancement of the effect of sucrose on WUS activity and also light

dependent reporter induction was increased two-fold over either single mutant, which was also

detectable by qRT-PCR (Figure 4—figure supplement 1B). Based on these results we concluded

that CKX5 and CKX6 repress activation of the SAM by degradation of the plant hormone CK in dark-

ness. Interestingly, the level of WUS expression in the ckx5/ckx6 double mutant background was

almost comparable to one found in cop1 mutant plants (Figure 2B). However, in striking contrast to

cop1, the ckx5/ckx6 double mutant displayed a fully etiolated phenotype in darkness (Figure 4—fig-

ure supplement 1C and D), demonstrating that stem cell activation was fully uncoupled from photo-

morphogenesis in these plants. Thus, CK can act as an interregional transmitter of light signals

specifically for WUS expression, but not for general regulators of photomorphogenic growth, sug-

gesting that the developmental integration of light and metabolic signals might occur downstream

of CK and locally at the SAM.

Mechanisms of metabolic stem cell activation
In addition to light, seedling development and WUS expression both showed a strong dependency

on sucrose. Since sugars can not only act as energy source, but also as signaling molecules, we first

aimed to disentangle these functions for SAM activation. To this end, plants were grown on plates

supplemented with equimolar amounts (15 mM) of different sugars with diverse energy content for

four days in darkness (Figure 5A). While mannitol, a non-metabolizable sugar, did not affect WUS

activity, WUS expression could be observed in etiolated seedlings in the presence of glucose and

sucrose, with sucrose being approximately twice as effective as glucose. Conversely, palatinose, a

non-metabolizable sugar structurally related to sucrose and able to induce the sugar-dependent bud

burst of roses in vitro (Rabot et al., 2012), was not sufficient to induce WUS (Figure 5A). These find-

ings strongly suggested that in the context of stem cell activation, sugars do not act as signaling

molecules directly, but rather as energy source. In turn, the metabolic status of the plant seemed to

be sensed and translated into appropriate cell behavior by the SAM.

A key sensor of nutrient availability in plants is the TOR (TARGET OF RAPAMYCIN) kinase and

photosynthesis-mediated activation of the root meristem has recently been described to be under

the regulation of TOR (Xiong et al., 2013). Characteristic expression changes that were described in

response to glucose-TOR signaling (Xiong et al., 2013) and E2Fa overexpression

(Vandepoele et al., 2005; López-Juez et al., 2008), namely affecting genes involved in ribosome

biogenesis, protein translation and cell proliferation have also been identified in microarray analyses

of shoot apex tissue derived from young seedlings (López-Juez et al., 2008). These genes were rap-

idly and synchronously induced by photosynthetically active light preceding organ growth, which

lead us to hypothesize that stem cell activation in the SAM might also be under control of the TOR

kinase.

Since mutations in TOR are lethal, we used chemical interference to functionally test its contribu-

tion to SAM activation. To efficiently inhibit TOR activity, we applied the ATP-competitive TOR

kinase inhibitor AZD-8055 (Montané and Menand, 2013) on seedlings grown in liquid culture

(Figure 5B–D). After an initial germination and growth phase of three days in darkness, sugar, light

and inhibitor treatments were applied for another three days followed by microscopic analysis of the

seedlings. In line with our hypothesis that TOR is required for energy sensing in the SAM, AZD-8055
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inhibited glucose-induced WUS expression in a dose dependent manner (Figure 5B). Already 2–5

mM of AZD-8055 resulted in a considerable repression of WUS promoter activity when compared to

mock controls, and almost completely suppressed the positive effect of glucose.

Figure 5. The TOR pathway integrates metabolic and light signals upstream of WUS. (A) Activation of

pWUS:3xVENUS-NLS in four day old dark-grown seedlings grown with 15 mM of diverse sugars (+sug). (B–D)

Activation of pWUS:3xVENUS-NLS in seedlings grown in liquid culture. (B) Effect of AZD-8055 TOR inhibitor on

glucose treatment. (C) Effect of AZD-8055 TOR inhibitor on light treatment. (D) Effect of AZD-8055 TOR inhibitor

on cop1-4 mutant seedlings. (growth conditions: gray = darkness, red = red light (30 mmol*m�2*s�1), solid box =

w/o sugars added, hatched box = with sugar) (E) Quantification of S6K phosphorylation relative to total S6K levels

based on western blots shown in Figure 5—figure supplement 1B. (F–H) Metabolite measurements from four

day old seedlings. Gray bars represent untreated seedlings; hatched bars represent 24 hr treatment with 15 mM

glucose; green bars represent 24 hr light treatment (60 mmol*m�2*s�1 of red and blue light each); yellow bars

represent cop1-4 mutant seedlings. Error bars show standard error of the mean; asterixs indicate significance

tested by unpaired two-tailed oneway ANOVA Student-Newman-Keuls test: *p<0.05, **p<0.01, ***p<0.001; Glyox

= glyoxylate; KG = ketoglutarate. (I) PCA based on metabolite measurements shown in Figure 5F–H and

Figure 5—figure supplement 1D,E.

DOI: 10.7554/eLife.17023.011

The following figure supplement is available for figure 5:

Figure supplement 1. The TOR pathway is activated by light signal transduction.

DOI: 10.7554/eLife.17023.012
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TOR acts as an integrator of light and metabolic signals for stem cell
activation
Since TOR kinase has such a central function in the regulation of growth and development, we won-

dered whether besides the well documented nutrient availability pathway other stimuli, such as light

signaling, might also depend on TOR activity. Using the same experimental setup as described

above for glucose we indeed found that light-induced WUS expression was efficiently inhibited by

AZD-8055 (Figure 5C). This suggested that TOR kinase might play a specific role in light signaling

independent of energy production, since the plants were exposed to a rather low light intensity of

30 mmol*m�2*s�1. To further test this, we analyzed TOR dependency in the absence of photosynthe-

sis and found that light dependent WUS expression was repressed by the TOR inhibitor even under

norflurazon treatment (Figure 5—figure supplement 1A). Consistently, even genetic activation of

the light signaling pathway through the cop1 mutation in the absence of a physiological stimulus

was sensitive to TOR inhibition by AZD-8055 (Figure 5D).

Since we could not exclude that our observations were caused by unspecific side effects of the

AZD-8055 inhibitor, we wanted to monitor TOR activity in response to sugars and light directly.

Working under the hypothesis that TOR activity should correlate with energy and light signals if the

inhibitor results were meaningful, we quantified the phosphorylation level of the direct TOR target

S6K by a phospho-specific antibody (Figure 5E and Figure 5—figure supplement 1B). After transfer

of three-day-old etiolated seedlings to either light (60 mmol*m�2*s�1 of blue and red light each) or

15 mM glucose for 24 hr, we detected a substantial increase in phosphorylation of S6K compared to

seedlings that were kept in darkness (Figure 5E). Surprisingly, light treatment was even more effi-

cient in activating TOR kinase than supplying plants with external glucose. Consistently, cop1-4

mutant seedlings displayed high S6K phosphorylation levels under all conditions, including the dark-

grown control. Also in this case we were able to detect a similar activation of the TOR pathway in

other cop1 alleles (Figure 5—figure supplement 1C), supporting our previous observation that the

TOR pathway is repressed by the negative light signaling component COP1 in darkness. Taken

together, TOR kinase seems to play a central and so far underestimated role not only for metabolic,

but also for light dependent activation of WUS and ultimately stem cells in the SAM.

Environment dependent metabolic reprogramming
After having shown that light and energy status converge to activate stem cells, we wondered about

the underlying metabolic changes in response to these environmental cues. We were most inter-

ested to analyze metabolic re-programming in response to light signaling because we hypothesized

that TOR could be indirectly activated following at least two scenarios: First, since in the wild light

signaling and photosynthesis usually go hand in hand, we were wondering whether signaling alone

would trigger a metabolic shift in expectation of photosynthesis derived energy metabolites. And

second, since COP1 regulates more than 20% of the Arabidopsis genome (Ma et al., 2002), we

speculated that this could also extend to the activity of metabolic enzymes. In both cases the meta-

bolic state of the seedlings, especially with respect to glucose levels, could be affected by light sig-

naling and this in turn could indirectly trigger TOR. We therefore analyzed metabolites in seedlings

that were subjected to the same experimental workflow as for studying TOR activity described

above, namely wild-type and cop1-4 seedlings grown in darkness compared to seedlings treated

with either 15 mM glucose or light for 24 hr before harvest (Figure 5F–H; Figure 5—figure supple-

ment 1D–F; Supplementary file 1). A Principal Component Analysis (PCA) plot clearly identified

light signaling triggered by the cop1 mutation (PC1) and energy availability caused by glucose sup-

plementation (PC2) as the two major components in our sample set, with light treated samples being

influenced by both components. Interestingly, glucose treatment only had a mild effect on seedling

metabolism. We detected slight increases of glucose, fructose and sucrose as well as a clear increase

of mannose levels in glucose treated seedlings, while raffinose levels were reduced (Figure 5F,H).

The fact that under these conditions TOR activity is markedly increased and WUS expression is

robustly detectable demonstrates that the energy sensing machinery must be exquisitely sensitive to

small changes in metabolite content, most likely glucose. To our surprise, cop1 and light treated

seedlings showed similar metabolic profiles that were clearly different from the glucose treated sam-

ples. Since cop1 seedlings were grown in darkness, the metabolic re-programming in cop1 and light

treated seedlings is likely caused by light signaling dependent transcriptional regulation of metabolic
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enzymes, rather than simple photosynthesis dependent accumulation of sugars. We detected a clear

reduction of fructose and sucrose levels and a decrease in the cell wall monosaccharides fucose,

arabinose and galactose in both samples (Figure 5H). In addition, ADP and ATP levels were slightly

increased by light and cop1 mutation (Figure 5G). Cop1 seedlings also displayed an accumulation

of glyoxylate, an intermediate of the glyoxylate cycle that allows plants to use lipids as carbon

source (Figure 5H). Another noteworthy exception from the similarity between cop1 and light

treated seedlings was glucose. Importantly, only the light- and glucose-treated samples, but not

cop1 seedlings showed an increase in glucose levels that might be responsible for the observed acti-

vation of TOR kinase. However, since it is not known how the TOR complex is activated in plants, we

cannot exclude that the obvious metabolic re-programming indirectly triggered TOR kinase activity

in cop1 seedlings. Nevertheless, since cop1 seedlings showed an overall reduction of energy rich

metabolites, it seemed unlikely that the nutrient state was exclusively responsible for activation of

the TOR pathway in the cop1 background.

Interestingly, we saw a significant increase in the levels of specific amino acids and their deriva-

tives especially in cop1 (Glu, Gln, His, Arg, ornithin, spermidine and citrulline) that were all previously

described to be reduced in amiR-tor seedlings (Figure 5—figure supplement 1F and

Supplementary file 1). Conversely, time amino acids whose levels were reported to be increased

upon TOR repression (Thr, Tyr, Val, Ile and Leu) were unchanged or reduced in cop1 (Caldana et al.,

2013). The inverse correlation of amino acid levels in cop1 and amiR-tor lines was not apparent in

the other samples, suggesting that the permanent de-regulation of the TOR pathway during either

cop1 or amiR-tor seedling development strongly affected the metabolome while the short term

nature of the glucose or light treatments was insufficient for such a profound change.

Discussion
The life of a plant begins in many cases with skotomorphogenesis, which is characterized by the

elongation of the hypocotyl, formation of an apical hook, unfolded cotyledons and the dormancy of

the SAM. While most characteristics of skotomorphogenesis can be revoked by the perception of

light through the photoreceptors alone, we showed that activation of the SAM in addition requires

the presence of energy metabolites. Thus, for stem cell activation, light not only acts as a signal, but

also needs to fuel the photosynthetic apparatus to produce sugars and despite the dual role of a sin-

gle environmental factor, both inputs are sensed independently. Amazingly, it is not stem cell fate

that is dependent on these signals, but rather the expression of WUS, which defines the niche and at

the same time acts as a mobile stem cell activator. Thus, stem cell fate as defined by CLV3 promoter

activity can exist without WUS in a physiologically and developmentally relevant setting, strongly

suggesting that WUS is not the primary stimulating input for CLV3 expression.

For the sensing, transmission and integration of light and metabolic signals by the stem cell sys-

tem, evolution seems to have co-opted well studied regulators into a novel and so far unsuspected

regulatory network. On the one hand, the roles of the phyB and cry photoreceptors for stem cell

activation are fully in line with text book photomorphogenesis, on the other hand phyA exhibits

novel positive and negative functions in far-red light regulation of WUS expression, which point to a

re-wiring of this core component of light signaling. Similarly, in light signal transduction, the etiola-

tion regulator COP1 plays a prominent part and cop1 mutations can substitute for light in essentially

all experiments, apart from PIN1 membrane localization. In contrast, HY5, another core component

of the photomorphogenesis network, does not seem to have any apparent role in light dependent

stem cell activation. This is even more striking when taking into account the recently discovered role

in shoot-to-root signaling of HY5 (Chen et al., 2016), and our observation that the meristem region

itself does not possess the competence to perceive and process light signals. However, we cannot

exclude that the HY5 homolog HYH with partially overlapping function but higher expression level in

the shoot might mask the effect of hy5 on WUS expression (Holm et al., 2002; Sibout et al., 2006).

Since hy5/hyh mutants showed deficiencies in development of the first leaves future experiments

analyzing such a double mutant in the context of our double reporter are required.

Interregional transmission of the light signal seems to depend on CK and with the cytokinin dehy-

drogenases CKX5 and CKX6, we identified two potent regulators of meristem activity that are highly

responsive to environmental light conditions. Both are direct targets of PIFs and have already been

shown to accumulate in etiolated seedlings (CKX5) and shade conditions (CKX6), respectively
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(Carabelli et al., 2007; Pfeiffer et al., 2014), which ultimately leads to an inactivation of cytokinin

under unfavorable light conditions. Under open sun light PIFs are degraded, thus liberating cytokinin

from CKX mediated degradation, which in turn results in the activation of stem cells. CKX5 is

expressed in the rib zone below the stem cell niche and CKX6 additionally in the vasculature

(Motyka et al., 2003; Bartrina et al., 2011), which might explain the surprisingly high efficiency of

our pSUC2:PHYB Y276H line in activating WUS expression (Figure 2—figure supplement 1G). We

did not specifically activate light signaling in the rib zone below the stem cell niche in our experi-

ments and thus the possibility remains that light perception in the immediate vicinity to the meristem

affects stem cell activity by short range CK signaling.

In parallel to light signals, WUS expression was strongly responsive to energy availability. The

effect of sucrose on cop1 and ckx5/ckx6 double mutants was much stronger than the cumulative

effect of light and sucrose treatments (Figures 2B and 4B). Also the activity of the CK output

reporter pTCSn:GUS strictly depended on sucrose, but could be further stimulated by light, suggest-

ing that CK signaling mainly acts to transmit light signals, but that elevation of CK levels genetically

or by treatment are insufficient to elicit the full developmental response. Based on these results we

suggest that light enhances CK levels by reducing the expression of CKX genes, however we cannot

rule out other explanations, such as stimulation of CK biosynthesis.

Interestingly, the WUS paralog WOX9/STIMPY (STIP) also plays an important role in light, sugar

and CK crosstalk at the shoot apex. Meristems of weaker stip mutants arrest at seedling stage but

can be rescued by addition of sucrose to the medium (Wu et al., 2005). STIP was further shown to

integrate CK signals at the meristem and STIP over-expression can partially overcome the deficits of

CK perception mutants (Skylar et al., 2010). In contrast to WUS, however, sugar acts downstream

of STIMPY, and it would be interesting to investigate whether the same is true for light signals.

Our experiments suggested that light and metabolic signals converge downstream of CK and

locally at the SAM and consistently, we identified the TOR kinase to be an integrator of both signal-

ing pathways. Earlier reports had shown that glucose-TOR signaling regulates photosynthesis-driven

activation of the root meristem (Xiong et al., 2013) and we demonstrated here that also shoot stem

cell activation by metabolizable sugars is dependent on TOR kinase. Intriguingly, TOR activity was

not only required for the response to energy availability, but also for WUS stimulation by light. This

activity was independent of photosynthesis, because the TOR pathway was also activated under nor-

flurazon treatment, in the absence of CO2 or the suppression of COP1 function. The direct regula-

tion of TOR kinase by light signaling elegantly explains the recently discovered impact of

phytochromes on the metabolic state of the plant (Yang et al., 2016), but also represents another

striking example of a so far undiscovered re-wiring of a core regulatory component within the stem

cell network. Consistently, upstream regulators of TOR kinase described in other organisms are not

well conserved in plants (Dobrenel et al., 2016) and thus evolution seems to have found alternative

mechanisms to activate the TOR pathway in a highly context dependent manner. Coupling light and

energy sensing via TOR could help plants to prepare for the dramatic developmental transition from

skotomorphogenesis to photomorphogenesis, which involves transcriptional re-programming of

almost a quarter of the genome (López-Juez et al., 2008). Light dependent activation of TOR kinase

could allow etiolated seedlings to build up the photosynthetic apparatus, initiate ribosome biogene-

sis and prime stem cells via the expression of WUS to efficiently shift gear towards organogenic

growth and development, once energy becomes available.

Material and methods

Cloning
Double reporter
The pCLV3:mCHERRY (pMD149) construct was obtained by LR reactions of the pDONR221-

mCHERRY-NLS plasmid (pFK143) with pFK317, a pGreen-IIS (Hellens et al., 2000; Mathieu et al.,

2007) based binary vector with CLV3 1.4 kb promoter and 1.2 kb terminator sequences and kanamy-

cin resistance cassette. The pWUS:3xVENUS-NLS construct (pTS81) was generated accordingly,

using a pGREEN-IIS based binary vector with a 4.4 kb genomic WUS promoter upstream of the ATG

and 2.8 kb WUS terminator downstream of the stop codon (pFK398) and a Basta resistance cassette.

In both constructs the N7 NLS (Daum et al., 2014) was used.
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To produce ckx6 mutants by CRISPR-Cas9 the two gRNAs GCATGGTTCTTTTCCTGAGG and

GAAGCTGCAGGTCTACAGTG targeting the CKX6 locus were inserted in the plasmid pHEE401E as

described by the authors (Wang et al., 2015) to generate pAP101.

All other constructs are based on the GreenGate cloning system (Lampropoulos et al., 2013).

Details about the cloning of the modules and assembled plasmids for plant transformation can be

found in Supplementary file 2.

Plant material
All used plant lines were in the Col-0 background. Arabidopsis Col-0 was transformed by floral dip

(Clough and Bent, 1998) using the A. tumefaciens strain ASE (pSOUP+) carrying the pGREEN-IIS

and GreenGate based plasmids. The Agrobacteria strain GV3101 was used for the transformation of

plants with the plasmid pAP101.

To select for the presence of the corresponding resistance markers, plants were grown on plates

supplemented with 5 mM D-Ala, 20 mg/ml Hygromycin B or 50 mg/ml Kanamycin or grown on soil

and sprayed with the herbicides Inspire (Syngenta Agro AG, Dielsdorf, Switzerland) (7.6 ml/l)

(Rausenberger et al., 2011) or Basta (0.02%) 1 week after germination.

The plasmids pMD149 and pTS81 were used to generate the reporter lines pCLV3:mCHERRY-

NLS and pWUS:3xVENUS-NLS, respectively. The double reporter line is comprised of a cross of both

lines. The WUS-GFP rescue line (pWUS:WUS-linker-GFP in wus mutant background [Daum et al.,

2014]) was also crossed to the pCLV3:mCHERRY-NLS line. Both crossed lines were homozygous for

all loci.

The mutant cop1-4 (McNellis et al., 1994) was crossed to pPIN1:PIN1-GFP (Benková et al.,

2003) and the double reporter line was crossed to the mutants cop1-4 (McNellis et al., 1994),

phyA-211 (Reed et al., 1994), phyB-9 (Reed et al., 1993), cry1-304/cry2-1 (Mockler et al., 2003),

hy5 (SALK_096651C), ckx5-1 (SALK_064309) and ckx6-2 (SALK_070071) (Bartrina et al., 2011). All of

these crossed lines used in the manuscript were homozygous mutants and screened to be also

homozygous for carrying the pWUS:3xVENUS-NLS construct. Additional cop1 alleles, cop1-6

(McNellis et al., 1994) and cop1-19 (Favory et al., 2009), were used for qRT-PCR and the TOR

activity assay.

A homozygous double reporter/ckx5 line was transformed with the CRISPR/CAS9 plasmid

pAP101 to create a ckx5/ckx6 double mutant in the double reporter background. Genomic DNA of

T1 plants was PCR-amplified using the oligos A05465 (ATCAAAAACCCTTTTCCATCCT) and A05466

(AGCCAACTTAAAGGCTATGCAG) and the PCR product was digested with Eco81I to screen for

homozygous ckx6 mutants at the locus of the first gRNA. The genomic region of T1 plants that pro-

duced undigested PCR fragments was amplified with the oligos A05465 and A05468 (ACTTGAGGG

TCTCATGCAAAAT), and sequenced after subcloning the PCR product into pGEM-T Easy (Promega,

Madison, WI)) to confirm the mutation of the CKX6 locus. T2 plants of homozygous T1 mutants were

used in this manuscript.

Growth conditions
Seeds were sterilized with 70% ethanol and 0.1% Triton for 10 min and afterwards washed twice

with autoclaved water. All seeds were imbibed in water for three days at 4˚C in darkness before plat-

ing 30–40 seeds on 0.5x MS (Duchefa, Haarlem, The Netherlands), 0.8% Phytoagar in vented petri

dishes that were sealed with micropore tape (3 M, Two Harbors, MN). Germination was induced by

150 mmol*m�2*s�1 of white light for 6 hr. Afterwards plants were either kept in white light, trans-

ferred to darkness or to LED cabinets equipped with red (673 nm), far-red (745 nm) and blue (471

nm) LEDs (floralLEDs StarterKit 2, CLF Plant Climatics, Wertingen, Germany). Unless otherwise

noted, constant red, far-red or blue light was applied with an intensity of 30 mmol*m�2*s�1. All white

light treatments were carried out at 150 mmol*m�2*s�1 of fluorescent white light with a 16-h-light/8-

h-dark cycle. Starting with the light induction of germination, plants were kept at 21–22˚C. 0.5x MS

plates were supplemented with 1% (30 mM) sucrose or 15 mM glucose only if mentioned explicitly.

Growth in a CO2-deficient environment was accomplished by growing unsealed vented petri dishes

in a sealed plastic bag with 5 g NaOH and 5 g CaO (Kircher and Schopfer, 2012).

Four day old seedlings that were harvested for protein extracts and metabolite measurements

were grown vertically on top of 100 mm nylon meshes (nitex 03/100–44, Sefar, Heiden, Switzerland).
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For the glucose treatment in these experiments seedlings were transferred with the mesh to plates

containing 15 mM glucose. Light treatments entailed irradiation with 60 mmol*m�2*s�1 of blue and

red light each. Both treatments were started 24 hr before and continued until the harvest of the

material. To exclude ungerminated seeds and empty seed shells form the metabolite measurements,

only above root tissue was harvested. All seedlings were rinsed with distilled water prior to harvest.

Liquid culture
About 30–40 seeds, that were imbibed as described above, were sown in 3 ml 0.5x MS in petri

dishes of 35 mm diameter. Plants were kept in darkness for three days after the induction of germi-

nation by 6 hr light treatment. The medium of three day old etiolated seedlings was supplemented

with 15 mM glucose and/or 0.5–2 mM AZD-8055 (Santa Cruz Biotechnology, Dallas, TX). Stock solu-

tions of 1000x concentrated AZD-8055 were diluted in DMSO, therefore control plants were mock

treated with the same volume of DMSO.

In situ hybridization
A detailed protocol of the in situ hybridization procedure was provided previously

(Medzihradszky et al., 2014).

RNA extraction and qRT-PCR
Total RNA was extracted from 100 mg seven day old Arabidopsis seedlings with the Plant RNA Puri-

fication Reagent (Invitrogen, Carlsbad, CA) according to the instructions of the manufacturer,

digested with TURBO DNAse (Ambion/ Thermo Fisher, Waltham, MA) and purified with RNeasy

Mini Kit (Quiagen, Hilden, Germany). Equal amounts of RNA were used for oligo dT primed cDNA

synthesis with the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher, Waltham, MA). The

qPCR reaction was set up using the SG qPCR Master Mix (EURx, Gdansk, Poland) and run on a

Chromo4 Real-Time PCR System (Bio-Rad, Hercules, CA) with technical duplicates each. The relative

expression levels were calculated using the ddCt method with PP2A expression as a reference.

Results shown are the means of 2 independent biological replicates. The following oligos were used:

PP2A: A01067: TAA CGT GGC CAA AAT GAT GC and A01068: GTT CTC CAC AAC CGC TTG GT;

WUS: A00317: TTA TGA TGG CGG CTA ACG AT and A00318: TTC AGT ACC TGA GCT TGC ATG;

PHYB total: A05986: AGC AAA TGG CTG ATG GAT TC and A05987: GCT TGT CCA CCT GCT GCT

AT; PHYB 3’UTR: A05984: GCG ACC ATT GTC AAC TGC TA and A05985: CTC CGA CGT CGT

TAG ACA CA.

Histochemical GUS staining
Four day old seedlings were harvested in 90% acetone and incubated at �20˚C for at least 1 hr.

Seedlings were washed with PBS and incubated in substrate buffer (1x PBS (pH 7.0), 1 mM K3Fe(III)

(CN)6, 0.5 mM K4Fe(II)(CN)6, 1 mM EDTA, 1% Triton X-100, 1 mg/ml X-gluc) at 22˚C over night.

After staining, the seedlings were incubated with 60% and subsequently in 95% ethanol to remove

chlorophyll.

Microscopy and fluorescence quantification
To image the fluorescent reporter activities in the SAM, seedlings were split in half by pulling one

cotyledon away from the SAM with forceps. The exposed meristem was imaged with a Zeiss Imager

M1, the Plan-APOCHROMAT 20x/0.8 objective (Zeiss, Oberkochen, Germany) and YFP- and

mCHERRY-specific filter sets. For the quantification of VENUS and mCHERRY signal intensities the

settings for the intensity of the fluorescent lamp and exposure times were unchanged for each chan-

nel. 16-bit B/W pictures of at least 20 SAMs per sample were analyzed by FIJI (Schindelin et al.,

2012), using the background subtraction (100 pixel rolling ball radius) prior to measuring the mean

gray value of a circular area surrounding the SAM with a diameter of 51 mm (100 pixels) for WUS and

41 mm (80 pixles) diameter for CLV3. Quantifications in each figure were normalized to the median

of the fluorescence levels of wild-type plants grown in red light for four days. Only exception: in

Figure 5A and B we used the glucose treated plants as a reference and in Figure 5D the cop1

mutant plants (second box in each box plot). For all these experiments plants of one experimental
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set were always grown and analyzed in parallel to the untreated (dark-grown) and the corresponding

reference sample.

In situ sections were analyzed with the same microscope and a 40x/0.95 Plan-APOCHROMAT

objective (Zeiss, Oberkochen, Germany). Equipment and settings used for confocal microscopy was

described earlier (Daum et al., 2014).

TOR activity assay
Proteins were extracted from 50 mg materials in 250 ml 2x Laemmli buffer (0.25 mM Tris-HCL pH

6.8, 8% SDS, 5% ß-mercaptoethanol, 20% glycerol) supplemented with 1.5% phosphatase inhibitor

cocktail 2 (Sigma-Aldrich, St. Louis, MO). After adding extraction buffer, samples were briefly mixed

and heated at 95˚C for 10 min. Cellular debris was removed by two centrifugation steps (10 min,

14,000 rpm, 4˚C). 20 mg protein were separated on a 10% SDS gel and transferred to PVDF mem-

brane. Phospho-p70 S6 kinase (Thr(P)-389) polyclonal antibody (No.9205, Cell Signaling Technology,

Cambridge, UK) was used to detect S6K phosphorylation. S6K1/2 antibody (AS12-1855, Agrisera

AB, Vännäs, Sweden) was used to detect total S6K1 and S6K2.

Metabolite measurements
Three biological replicates were harvested for and analyzed as described (Poschet et al., 2011) by

the Metabolomics Core Technology Platform at the University of Heidelberg. PCA was performed

with statistical language R (version 3.3.1). For the analysis all metabolite data except the amino acid

measurements were used.
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McNellis TW, von Arnim AG, Araki T, Komeda Y, Miséra S, Deng XW. 1994. Genetic and molecular analysis of an
allelic series of cop1 mutants suggests functional roles for the multiple protein domains. Plant Cell 6:487–500.
doi: 10.1105/tpc.6.4.487

Medzihradszky A, Schneitz K, Lohmann JU. 2014. Detection of mRNA expression patterns by nonradioactive in
situ hybridization on histological sections of floral tissue. Methods in Molecular Biology 1110:275–293. doi: 10.
1007/978-1-4614-9408-9_14

Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C. 2002. Expression and disruption
of the Arabidopsis TOR (target of rapamycin) gene. Proceedings of the National Academy of Sciences of the
United States of America 99:6422–6427. doi: 10.1073/pnas.092141899

Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C. 2003. Regulation of photoperiodic flowering by
Arabidopsis photoreceptors. Proceedings of the National Academy of Sciences of the United States of America
100:2140–2145. doi: 10.1073/pnas.0437826100

Pfeiffer et al. eLife 2016;5:e17023. DOI: 10.7554/eLife.17023 19 of 21

Research article Developmental Biology and Stem Cells Plant Biology

http://dx.doi.org/10.1111/j.1365-313X.1992.00083.x
http://dx.doi.org/10.4161/auto.6555
http://dx.doi.org/10.1146/annurev-arplant-043014-114648
http://dx.doi.org/10.3389/fpls.2013.00093
http://dx.doi.org/10.3389/fpls.2013.00093
http://dx.doi.org/10.1038/emboj.2009.4
http://dx.doi.org/10.1093/jxb/err004
http://dx.doi.org/10.1073/pnas.0908122106
http://dx.doi.org/10.1023/A:1006496308160
http://dx.doi.org/10.1023/A:1006496308160
http://dx.doi.org/10.1093/jxb/eru049
http://dx.doi.org/10.1038/emboj.2010.164
http://dx.doi.org/10.1101/gad.969702
http://dx.doi.org/10.1101/gad.969702
http://dx.doi.org/10.1111/j.1365-313X.2012.05033.x
http://dx.doi.org/10.1073/pnas.1203746109
http://dx.doi.org/10.1371/journal.pone.0083043
http://dx.doi.org/10.1093/jxb/ert474
http://dx.doi.org/10.1016/j.tplants.2010.08.003
http://dx.doi.org/10.1105/tpc.109.070672
http://dx.doi.org/10.1105/tpc.107.057075
http://dx.doi.org/10.1105/tpc.004416
http://dx.doi.org/10.1105/tpc.105.035931
http://dx.doi.org/10.1016/j.cub.2007.05.009
http://dx.doi.org/10.1105/tpc.6.4.487
http://dx.doi.org/10.1007/978-1-4614-9408-9_14
http://dx.doi.org/10.1007/978-1-4614-9408-9_14
http://dx.doi.org/10.1073/pnas.092141899
http://dx.doi.org/10.1073/pnas.0437826100
http://dx.doi.org/10.7554/eLife.17023
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Photoconversion and nuclear trafficking cycles determine phytochrome A’s response profile to far-red light.
Cell 146:813–825. doi: 10.1016/j.cell.2011.07.023

Reed JW, Nagatani A, Elich TD, Fagan M, Chory J. 1994. Phytochrome A and phytochrome B have overlapping
but distinct functions in arabidopsis development. Plant Physiology 104:1139–1149.

Reed JW, Nagpal P, Poole DS, Furuya M, Chory J. 1993. Mutations in the gene for the red/far-red light receptor
phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development.
Plant Cell Oneline 5:147–157. doi: 10.1105/tpc.5.2.147

Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendra S, Logan D,
Mattoo A, Selvaraj G, Datla R. 2012. Target of rapamycin signaling regulates metabolism, growth, and life span
in Arabidopsis. Plant Cell 24:4850–4874. doi: 10.1105/tpc.112.107144

Schepetilnikov M, Dimitrova M, Mancera-Martı́nez E, Geldreich A, Keller M, Ryabova LA. 2013. TOR and S6K1
promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. The EMBO Journal
32:1087–1102. doi: 10.1038/emboj.2013.61

Schepetilnikov M, Kobayashi K, Geldreich A, Caranta C, Robaglia C, Keller M, Ryabova LA. 2011. Viral factor
TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. The EMBO Journal 30:
1343–1356. doi: 10.1038/emboj.2011.39

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source
platform for biological-image analysis. Nature Methods 9:676–682. doi: 10.1038/nmeth.2019

Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T. 2000. The stem cell population of Arabidopsis
shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:
635–644. doi: 10.1016/S0092-8674(00)80700-X

Shin YJ, Kim S, Du H, Choi S, Verma DP, Cheon CI. 2012. Possible dual regulatory circuits involving AtS6K1 in the
regulation of plant cell cycle and growth. Molecules and Cells 33:487–496. doi: 10.1007/s10059-012-2275-4

Sibout R, Sukumar P, Hettiarachchi C, Holm M, Muday GK, Hardtke CS. 2006. Opposite root growth phenotypes
of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLOS Genetics 2:e202–
1911. doi: 10.1371/journal.pgen.0020202

Skylar A, Hong F, Chory J, Weigel D, Wu X. 2010. STIMPY mediates cytokinin signaling during shoot meristem
establishment in Arabidopsis seedlings. Development 137:541–549. doi: 10.1242/dev.041426

Su YS, Lagarias JC. 2007. Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine
mutants of Arabidopsis phytochromes in transgenic plants. Plant Cell 19:2124–2139. doi: 10.1105/tpc.107.
051516

Tepperman JM, Hudson ME, Khanna R, Zhu T, Chang SH, Wang X, Quail PH. 2004. Expression profiling of phyB
mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression
during seedling de-etiolation. Plant Journal 38:725–739. doi: 10.1111/j.1365-313X.2004.02084.x

Pfeiffer et al. eLife 2016;5:e17023. DOI: 10.7554/eLife.17023 20 of 21

Research article Developmental Biology and Stem Cells Plant Biology

http://dx.doi.org/10.1093/jxb/ert242
http://dx.doi.org/10.1105/tpc.111.091306
http://dx.doi.org/10.1105/tpc.014928
http://dx.doi.org/10.1105/tpc.112.102194
http://dx.doi.org/10.1105/tpc.112.102194
http://dx.doi.org/10.1093/pcp/pch047
http://dx.doi.org/10.1199/tab.0054
http://dx.doi.org/10.1104/pp.110.166801
http://dx.doi.org/10.1093/mp/ssu087
http://dx.doi.org/10.1016/j.pbi.2014.09.012
http://dx.doi.org/10.1104/pp.111.186825
http://dx.doi.org/10.1093/pcp/pcs051
http://dx.doi.org/10.1242/dev.061036
http://dx.doi.org/10.1016/j.cell.2011.07.023
http://dx.doi.org/10.1105/tpc.5.2.147
http://dx.doi.org/10.1105/tpc.112.107144
http://dx.doi.org/10.1038/emboj.2013.61
http://dx.doi.org/10.1038/emboj.2011.39
http://dx.doi.org/10.1038/nmeth.2019
http://dx.doi.org/10.1016/S0092-8674(00)80700-X
http://dx.doi.org/10.1007/s10059-012-2275-4
http://dx.doi.org/10.1371/journal.pgen.0020202
http://dx.doi.org/10.1242/dev.041426
http://dx.doi.org/10.1105/tpc.107.051516
http://dx.doi.org/10.1105/tpc.107.051516
http://dx.doi.org/10.1111/j.1365-313X.2004.02084.x
http://dx.doi.org/10.7554/eLife.17023


Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GT, Gruissem W, Van de Peer Y, Inzé D, De Veylder L.
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