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with reduced mutation frequency in
human DNA
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Ludwig Cancer Research Oxford, University of Oxford, Oxford, United Kingdom

Abstract CpG dinucleotides are the main mutational hot-spot in most cancers. The characteristic

elevated C>T mutation rate in CpG sites has been related to 5-methylcytosine (5mC), an

epigenetically modified base which resides in CpGs and plays a role in transcription silencing. In

brain nearly a third of 5mCs have recently been found to exist in the form of 5-

hydroxymethylcytosine (5hmC), yet the effect of 5hmC on mutational processes is still poorly

understood. Here we show that 5hmC is associated with an up to 53% decrease in the frequency of

C>T mutations in a CpG context compared to 5mC. Tissue specific 5hmC patterns in brain, kidney

and blood correlate with lower regional CpG>T mutation frequency in cancers originating in the

respective tissues. Together our data reveal global and opposing effects of the two most common

cytosine modifications on the frequency of cancer causing somatic mutations in different cell types.

DOI: 10.7554/eLife.17082.001

Introduction
Cancer genomics projects have revealed that the distribution of somatic mutations across the

genome is not uniform (Lawrence et al., 2013). Apart from positive and negative selective pressure,

a number of factors can influence regional mutation frequencies, such as chromatin organisation

(Schuster-Böckler and Lehner, 2012), replication timing (Koren et al., 2012), metabolic load

(Ames et al., 1993) and exposure to different mutagens (Poon et al., 2013). Furthermore, highly

transcribed regions generally exhibit lower mutation frequencies due to the influence of transcrip-

tion-coupled repair (Lawrence et al., 2013). In addition to the regional distribution of mutations,

the local nucleotide contexts and mutation types (referred to as mutational signatures) have been

investigated extensively since they provide critical clues about the mechanism of mutagenesis. For

example, consensus motifs for cytidine deaminases (such as APOBEC and AID) were found enriched

at mutational hot-spots, suggesting that activity of these enzymes could be the potential cause of

those mutations (Nik-Zainal et al., 2012; Taylor et al., 2013). The most frequent mutational signa-

ture found in the majority of cancers is C to T transition in a CpG dinucleotide context (CpG>T)

(Alexandrov et al., 2013; Lawrence et al., 2013). This relates to the fact that cytosines in CpG dinu-

cleotides are frequently methylated to form 5-methylcytosine (5mC). The rate of spontaneous deami-

nation of 5mC into T is four fold higher than the rate of deamination of C into U (Lindahl and

Nyberg, 1974). In the germline of vertebrates, this likely facilitated a general depletion of CpGs out-

side of CpG islands which are largely unmethylated.

The genomes of all examined vertebrate species feature DNA methylation, and loss of DNA

methylation is incompatible with normal development in mice (Li et al., 1992; Okano et al., 1999).

DNA methylation plays a role in gene expression, most notably by repressing one allele of imprinted

genes. Moreover, it is involved in maintenance of genome stability, alternative splicing, X chromo-

some inactivation and suppression of retrotransposons (Klose and Bird, 2006; Jones, 2012). In
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2009, 5-hydroxymethylcytosine (5hmC) was indisputably shown to exist in DNA of brain and other

tissues (Kriaucionis and Heintz, 2009). It was concurrently shown that ten-eleven translocation (TET)

enzymes are able to convert 5mC into 5hmC (Tahiliani et al., 2009). Unlike 5mC, which is observed

at similar levels in many cell types, the abundance of 5hmC varies widely. 5hmC was observed to be

particularly enriched in brain cells (Kriaucionis and Heintz, 2009; Lister et al., 2013) and detectable

in embryonic stem cells and all examined tissues (Tahiliani et al., 2009; Globisch et al., 2010;

Szwagierczak et al., 2010; Wu and Zhang, 2011). 5hmC and higher oxidised states of methyl-cyto-

sine have been proposed to play a role in de-methylation via ineffective re-methylation after replica-

tion or directly by thymine DNA glycosylase (TDG) (Tahiliani et al., 2009; He et al., 2011; Maiti and

Drohat, 2011; Shen et al., 2013; Hu et al., 2014). In addition to demethylation, 5hmC has been

implicated in transcriptional regulation, and a number of DNA binding proteins recognising 5hmC

have been identified (Mellén et al., 2012; Spruijt et al., 2013; Takai et al., 2014). 5hmC is found

depleted in primary tumours and TET2 is frequently mutated in myelodysplastic syndrome, acute

myelogenous leukaemia and T-cell lymphoma, indicating that 5hmC plays a role in carcinogenesis.

However, the molecular mechanism by which 5hmC affects carcinogenesis is poorly understood

(Rasmussen and Helin, 2016).

5hmC is an important intermediate during demethylation in zygotes and ES cells (Tahiliani et al.,

2009; Inoue and Zhang, 2011; Wossidlo et al., 2011), but the vast majority of 5hmC is found as a

stable, long-lived modification in adult mouse tissue that undergoes little cell division

(Bachman et al., 2014; Brazauskas and Kriaucionis, 2014). Thus, we hypothesised that – similar to

5mC – long-lived 5hmC could have a substantial influence on the mutability of DNA. Little is known

about the mutational properties of 5hmC, in part because until recently there has been a lack of

information on the precise location of 5hmC in the genome. With the development of techniques for

single-nucleotide resolution mapping of 5mC and 5hmC (Yu et al., 2012; Booth et al., 2014), it is

now possible to differentiate mutation rates at 5mC and 5hmC sites. Recently, Supek et al.

(Supek et al., 2014) reported elevated C>G transversion rates at 5hmC sites, using 5hmC maps

from human and mouse embryonic stem cells. However, these findings are limited by the fact that

embryonic stem cells differ substantially from the somatic tissues in which mutations were observed

(Schultz et al., 2015).

A large proportion of mutations observed in any cancer genome originate in its pre-cancerous

cell of origin (Nik-Zainal et al., 2012; Stephens et al., 2012; Tomasetti et al., 2013; Wu et al.,

eLife digest A molecule called DNA encodes genetic information inside our cells. Random

changes to the DNA sequence, known as mutations, can occur in any cell. Most mutations are

harmless, but some can lead to disease – most prominently cancer. Like how car accidents can

happen more often on some roads than others, mutations are more frequent in some parts of the

DNA. Cytosine, one of the four letters of the genetic code, usually accumulates more mutations than

the other three letters.

Cytosine can be decorated with distinct ‘marks’ to form either methyl-cytosine or hydroxymethyl-

cytosine. Methyl-cytosine is known to mutate relatively easily, and is the most common type of

mutation observed in most cancers. However, little was known about how easily hydroxymethyl-

cytosine mutates.

Modifications of cytosine are distributed differently in cells from different tissues. To test whether

hydroxymethyl-cytosine mutates more or less often than methyl-cytosine in human cells, Tomkova

et al. used the cytosine mutations measured in human brain, kidney and blood cancer samples.

Comparing these mutations to maps of cytosine modifications from healthy tissues of the same type

revealed that in all tissues, hydroxymethyl-cytosine appears to mutate less often than methyl-

cytosine.

There are several possible explanations for the difference in mutation frequency between methyl-

cytosine and hydroxymethyl-cytosine. Tomkova et al. plan to investigate these possibilities further in

an effort to fully understand the underlying mechanisms that drive cytosine to mutate.

DOI: 10.7554/eLife.17082.002
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2015) and will have been influenced by its epigenetic landscape. The publication of single-base res-

olution maps of 5mC and 5hmC occupancy in samples of human brain, kidney and blood

(Wen et al., 2014; Chen et al., 2015; Pacis et al., 2015) now enables us to interrogate the tissue-

specific effect of cytosine modifications on somatic mutation rates in unprecedented detail.

Since 5hmC has been shown to be most abundant in human brain (Li and Liu, 2011;

Nestor et al., 2012), we have initially focussed on assessing the relationship between mutability and

DNA modifications in brain cancers. Based on a DNA sequencing data from five brain cancer types

encompassing 665 patients, we show that the dominant mutational signature in brain cancers is

CpG>T, which is modulated by the modification state of cytosine. Strikingly, the CpG>T mutation

frequency of 5-hydroxymethylcytosine is reduced nearly two-fold compared to the methylated state.

We find that the ratio of 5hmC to 5mC in 100 kb genomic intervals correlates with CpG>T mutation

frequency even after accounting for confounding factors like gene density or CpG islands. When we

expand our analysis to include mutations and 5hmC maps from kidney and myeloid lineage of blood

cells, we observe a clear tissue-specific effect of 5hmC on mutagenicity. Finally, we measured 5mC

and 5hmC levels using methodology of high accuracy in eight different human tissue types and show

that reduced 5hmC levels associate with an increased proportion of CpG>T mutations in cancers of

the corresponding tissue. Together, our findings suggest that hydroxymethylation has a significant

influence on the likelihood of mutations at CpG sites across many human tissue types.

Results
We compiled base-resolution maps of 5mC and 5hmC frequency in brain, kidney and myeloid cells

from publicly available sources (Wen et al., 2014; Chen et al., 2015; Pacis et al., 2015). All three

data sets are based on bisulfite (BS) and ’Tet-assisted bisulfite’ (TAB) sequencing, respectively. BS-

Seq detects any modified cytosine (i.e., does not distinguish 5mC and 5hmC) whereas TAB-Seq spe-

cifically detects 5hmC. The combination of the two methods allows an estimation of the levels of

both 5mC and 5hmC for all sufficiently covered cytosines. As 5hmC predominantly occurs in a CpG

context, we focussed the analysis on CpG sites. Sequencing reads come from heterogeneous popu-

lations of cells. Hence, a single locus usually cannot be assigned a single state (C, 5mC or 5hmC).

Instead, we estimated the frequency of modification, hydroxymethylation and methylation per site

using the percentage of BS-Seq reads that showed a modification (referred to as mod level), the per-

centage of TAB-Seq reads that showed hydroxymethylation (referred to as 5hmC level) and their dif-

ference (5mC level = mod level – 5hmC level), respectively.

5hmC sites in brain exhibit lower frequency of CpG>T mutations than
5mC sites
Since brain tissue has been shown to exhibit particularly high levels of 5hmC (Figure 1A), we first

investigated the relationship between the regional distribution of 5hmC, 5mC and mutagenesis in

brain tumours. We reasoned that this approach would provide the highest sensitivity to detect any

correlation between 5hmC and mutation frequency.

We analysed 344370 somatic single nucleotide variants (SNVs) from 665 samples derived from

exome and whole genome sequencing of the following cancer types: Glioblastoma (GBM), Glioma

low grade (GLG), Neuroblastoma (NRB), Medulloblastoma (MDB) and Pilocytic astrocytoma (PA)

(Alexandrov et al., 2013). The dominant point mutation type in these cancers were C>T transitions

in a CpG context (Figure 1B,C), similar to what was observed in combined analyses of all cancer

types (Alexandrov et al., 2013).

Mutations and DNA modifications are not distributed uniformly along the chromosomes. Strik-

ingly, 5hmC levels were visibly and significantly anti-correlated with the frequency of CpG>T (r=-

0.71, chr3), while 5mC levels displayed a positive correlation (r=0.66, chr3, Figure 1D, Figure 1—fig-

ure supplements 1–2). This is not a simple consequence of the uneven distribution of genes, exons,

CpG islands or levels of gene expression (Figure 1—figure supplement 3 and additional analyses

below).

Averaging over the entire genome, the frequency of C>T mutations differed substantially

between 5mChigh (5mChigh: mod level > 10% and 5hmC level / mod level � 0.3) and 5hmChigh

(5hmChigh: mod level > 10% and 5hmC level / mod level � 0.5) sites. The fraction of mutated

5hmChigh sites was significantly lower than the fraction of mutated 5mChigh sites (Figure 1E). The
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Figure 1. C>T mutations are common in the genome but depleted in 5hmC sites compared to 5mC sites. (A) Distribution of 5hmC in a CpG context in

brain compared to kidney and blood. (B) Frequency of SNVs in brain cancer exomes, stratified by sequence context, normalised by frequency of

trinucleotides. (C) Distribution of single-nucleotide variants (whole genomes) in brain cancer according to type, context and modification state. (D)

CpG>T mutation frequency (black), 5hmC (blue) and 5mC (orange) density in 100 kbp windows of chromosome 3, smoothed with a Gaussian filter

(n = 50, sigma = 2.5). (E) Average fraction of mutated sites for 5mChigh vs. 5hmChigh over all patient samples (CpG sites only; ***p<0.001; **p< 0.01;

*p< 0.05, see Materials and methods).

DOI: 10.7554/eLife.17082.003

The following figure supplements are available for figure 1:

Figure supplement 1. Distribution of CpG>T mutations vs modifications across all chromosomes.

DOI: 10.7554/eLife.17082.004

Figure supplement 2. Distribution of CpG>T mutations vs modifications across all chromosomes.

DOI: 10.7554/eLife.17082.005

Figure supplement 3. Distribution of CpG>T mutations vs other genomic features.

DOI: 10.7554/eLife.17082.006
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Figure 2. Differential mutation frequency between 5mC and 5hmC is present in all 5 brain cancer types and correlates with age at diagnosis. (A)

Average fraction of mutated CpG sites for 5mChigh vs. 5hmChigh computed separately for each cancer type. (B) Box plot of C>T mutation frequency, as

shown in A. (C) Correlation of whole genome CpG>T mutation frequency with age at the time of diagnosis in patients with Medulloblastoma and

Pilocytic Astrocytoma.

Figure 2 continued on next page
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lower mutation frequency was consistently observed in data derived from both exome and whole

genome sequencing projects (p<0.001, Wilcoxon signed-rank test). Moreover, all brain cancer types

individually displayed a significant (28–53%, p<0.05 in all types) reduction of C>T mutations in

5hmChigh sites (Figure 2A,B).

It has been shown that CpG>T mutations are one of the two mutational signatures correlating

with age (Alexandrov et al., 2015), supporting the fact that these mutations were gathered during

the entire lives of the patients, not only after the origin of cancer. Here we observed that this corre-

lation is present in both methylated and hydroxymethylated sites (Figure 2C). Moreover, the slope

for 5mC was steeper than for 5hmC, suggesting that even the mechanisms causing the difference of

CpG>T mutability between 5mC and 5hmC were present in the pre-cancerous cell of origin.

We also compared the fraction of mutated 5mChigh and 5hmChigh sites for the other two possible

types of mutations: C>A and C>G. As shown in Figure 1E, C>A or C>G transversions are an order

of magnitude less frequent than C>T transitions in both 5mC and 5hmC sites. The relationship

between C>A and C>G mutations and 5hmC varied between cancer types. In GBM and LGG the fre-

quency of C>A mutations was significantly higher in 5mChigh compared to 5hmChigh sites, but in

NRB, MDB and PA we detected no significant difference. The frequency of C>G mutations in

5mChigh sites differed significantly from 5hmChigh sites only in MDB, PA and GBM. In MDB and PA,

5hmChigh sites were slightly enriched for C>G mutations, whereas in GBM an enrichment was

observed at 5mChigh sites. Since C>T transitions are the most common somatic mutation type in

brain and the difference in C>T mutations between 5mChigh and 5hmChigh sites is more consistent

among cancer types than in the C>A and C>G transversions, we focus mainly on C>T mutations in

the remainder of this report.

We confirmed that C>T mutations are significantly depleted at 5hmC sites across a wide range of

thresholds in definitions of 5mChigh and 5hmChigh (Figure 2—figure supplement 1A–F). In fact,

more stringent definitions of 5hmC (e.g., 5hmChigh: 5hmC level / mod level � 0.7) result in even

greater differences (42–59%) in C>T mutation frequencies between 5mChigh and 5hmChigh sites (Fig-

ure 2—figure supplement 1G–I, Figure 3—figure supplement 1A–D), but these definitions would

reduce the number of sites too much for our subsequent statistical analyses.

Reduced 5hmC mutability in brain is not accounted for by genomic
regions or gene expression
We next examined whether the decreased frequency of C>T transitions at 5hmC vs. 5mC sites might

be an indirect effect of 5hmC being associated with genomic regions of lower mutability. Levels of

5mC and 5hmC vary across genomic regions. For example, 5hmC density is elevated in highly

expressed genes in brain (Mellén et al., 2012; Yu et al., 2012; Lister et al., 2013; Wen et al.,

2014). The observed decrease in C>T mutation frequencies might therefore be attributable to

higher gene expression, which would correlate with higher transcription coupled repair. We there-

fore performed the analysis described above separately for regions with high vs. low gene expres-

sion in human brain (see Materials and methods). There was a lower overall mutation frequency in

highly expressed genes (Figure 3A–B), but both highly and lowly expressed genes exhibited signifi-

cantly lower C>T transition rates at 5hmC sites compared to 5mC sites (Figure 3A–D). This suggests

that the observed effect is independent of transcription and thus not a result of transcription cou-

pled repair.

Gene expression is only one of many possible region-related confounding factors. Hence, to cor-

rect for any regional variation, we performed the analysis on groups of sites generated by pairing

the modified CpGs: each 5hmC site was paired with the nearest yet unpaired 5mC site from an

equivalent genomic and sequence context (an approach adapted from Supek et al., 2014, see

Materials and methods). Thereby we compared the mutation frequencies of two groups (one group

comprising 5mC sites and one group comprising 5hmC sites) containing the same number of loci

Figure 2 continued

DOI: 10.7554/eLife.17082.007

The following figure supplement is available for figure 2:

Figure supplement 1. Depletion of C>T mutations in 5hmChigh is relatively insensitive to varying definitions of 5mChigh and 5hmChigh.

DOI: 10.7554/eLife.17082.008
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Figure 3. Depletion of C>T mutations in 5hmC sites is not explained by gene expression or regional mutation rate variation. (A–B) Frequency of

mutations in 5mChigh vs 5hmChigh sites within highly expressed (A) or lowly expressed (B) genes (see Materials and methods). (C–D) Boxplot

visualisation of C>T mutation frequency for each cancer type. (E) For each patient sample, the overall difference in mutations in paired sites was

calculated and compared using a Wilcoxon signed-rank test. Shown here is a histogram of samples by the difference in mutations for paired 5mC and

5hmC sites (negative values shown blue, positive in orange; see Materials and methods for details). Mutations in 5mC sites exceed paired 5hmC sites,

causing a shift to the right. (F) Same as E but using a more stringent definition of 5mC (only sites with threshold5mC � 0.2).

Figure 3 continued on next page
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(6801374 cytosines in each group). As a result of this experimental setup, a substantial fraction of

mutated 5mC sites were excluded, greatly reducing the statistical power of this ’paired’ analysis.

Nevertheless, the frequency of C>T mutations in 5hmC remained significantly lower than in 5mC in

both exomes and genomes (Figure 3E–F), supporting that the difference between 5mC and 5hmC

mutation frequency is not caused by regional differences.

To ensure that there is no confounding bias in the spatial distribution of mutations around 5mC

or 5hmC sites, respectively, we plotted mutation frequencies in a 2 kb radius up and downstream of

modified loci (Figure 3—figure supplement 1G, Materials and methods). The mutation frequency

differed substantially in the aligned positions of DNA modifications but was indistinguishable in the

surrounding area. In conclusion, regional mutation rate variability is unlikely to account for the differ-

ence in C>T mutational load in 5mC and 5hmC sites.

Relative 5hmC correlates with CpG>T mutation frequency
The 5mC and 5hmC frequency at each base reflect the prevalence of each modification within the

sequenced cell population. We hypothesised that if 5hmC had a direct effect on C>T mutation likeli-

hood, we would observe an increase in mutation frequency with decreasing 5hmC occupancy. To

test this, we formally defined 5hmCrel as the ratio of the proportion of reads supporting 5hmC, rela-

tive to the proportion of reads supporting any modification at a particular cytosine (5hmCrel = 5hmC

level / mod level). We then divided brain CpG sites into bins according to their 5hmCrel level and

computed the fraction of mutated sites in each bin (Figure 4A). We observed a clear linear relation-

ship between 5hmCrel values and C>T mutation frequencies. Notably, the correlation was present in

all the tested brain cancer types in exome- and whole genome-sequenced samples. A regression

slope test confirmed significance of this relationship in all the cancer types. To confirm that the

results are not influenced by an uneven distribution of information across bins, we performed quan-

tile binning so that each bin contains an approximately equal number of positions (see

Materials and methods). The results of quantile bins were equivalent to evenly spaced bins (Fig-

ure 4—figure supplement 1H).

For comparison, we also evaluated the relationship between 5hmCrel and the frequency of C>A

and C>G mutations (Figure 4A). Consistent with our previous results, an increase in 5hmCrel is asso-

ciated with an increase in C>G mutations in whole genomes (from MDB and PA samples), but the

relationship in other cancer types shows no significant trend. C>A mutations decrease with 5hmCrel

levels in GBM but exhibit no significant signal in the remaining tumour types.

This result supports the conclusion that the decrease in C>T mutation frequency at 5hmC sites is

not an artefact of our chosen definition of 5mC or 5hmC. Even more importantly, it supports the

notion that this decrease is directly caused by the properties of these DNA modifications.

Mutation load of 5hmC sites is similar to unmodified cytosines
The findings reported so far could be attributed to an elevated mutation rate in 5mC, to a lowered

mutagenicity of 5hmC or a combination of the two. To investigate this question, we compared muta-

tion frequencies at 5mC and 5hmC sites to that of unmodified cytosines. We divided all the

sequenced CpG sites into 9x9 bins according to their levels of 5mC and 5hmC. We observed that

the mutation frequency of unmodified cytosine is similar to 5hmC, whereas 5mC exhibited much

higher mutation frequency (Figure 4B). Further, we calculated the mutation frequency distribution in

sites that exhibited almost no methylation or almost no hydroxymethylation, respectively. When

methylated sites are excluded, the mutation frequency does not show any significant trend with

increasing levels of 5hmC (Figure 4C). Conversely, excluding hydroxymethylated sites leads to a sig-

nificant gradient in mutation frequency with increasing levels of 5mC (Figure 4D). When only fully

modified sites (mod level � 90%) are taken into account, increasing levels of 5hmC (i.e., decreasing

levels of 5mC) are associated with a significant decrease in C>T mutation frequency (Figure 4E).

Figure 3 continued

DOI: 10.7554/eLife.17082.009

The following figure supplement is available for figure 3:

Figure supplement 1. Depletion of C>T mutations in 5hmChigh is relatively insensitive to varying definitions of 5mChigh and 5hmChigh.

DOI: 10.7554/eLife.17082.010
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Figure 4. Mutation frequency negatively correlates with 5hmCrel level per base. (A) Fraction of mutated CpG sites as a function of 5hmCrel levels by

mutation and cancer type. Bins to the left represent sites predominantly methylated, while bins to the right contain increasingly hydroxymethylated

Figure 4 continued on next page
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5hmC is a predictor of CpG>T mutation frequency across the genome
To examine the exclusive impact of DNA modifications on regional frequencies of mutations, we

split the genome into 100 kb windows and fitted a generalised linear model to explain the observed

per-window CpG>T mutation frequency from a combination of features including average 5mC and

5hmC levels, 5hmCrel, gene density, CpG island density amongst others. Only whole genome

sequencing data were used for this analysis. To compare the resulting models, we calculated their

respective ’explained deviance’ D2, a generalisation of explained variance that is more appropriate

for comparing generalised linear models (see Materials and methods).

The best individual predictor of CpG>T mutation frequency was 5hmCrel (D
2 = 0.11), outperform-

ing all other features (Figure 5A). Interestingly, the sum of 5mC and 5hmC levels (’mod’) performed

worst, suggesting that bisulfite sequencing measurements alone are a poor predictor of mutagenic-

ity. When combining all 11 features into one model, the total explained deviance for 100 kb windows

was 16%.

Varying the chosen window size (3 kbp – 3 Mbp; Figure 5B, Figure 5—figure supplement 1A–C)

does not substantially change the comparison of the predictive power of the respective features. In

all cases, 5mC and 5hmCrel were the two best predictors, with 5hmCrel performing slightly better

with smaller windows. However, the total explained deviance increased with window size, reaching

values as high as 45% for univariate models and 60% for models with all predictors. This led us to

question whether the increasing predictive power of larger windows has a biological reason, or

whether it is a consequence of the lower data density in small windows.

Since many smaller windows contain no observed mutations, low D2 values could simply reflect a

lack of data. To test this, we generated simulated mutations so that a ’perfect’ predictor was linearly

related to the mutation likelihood per window (see Materials and methods). We then measured the

effect of window and sample size (number of patients) on the observed D2, repeating the simulations

10 times. The resulting curves of the explained deviance resemble those measured in the real data

(Figure 5—figure supplement 1D). Moreover, in the simulated data, higher numbers of patients

lead to higher D2 even for smaller window sizes, suggesting that lower D2 values in smaller windows

indeed are a consequence of lower data density.

Level of genic 5hmC correlates with decrease of CpG>T
It has been reported that 5hmC is enriched in gene bodies, and several brain cancer sequencing

data sets. We therefore tested whether the relationship between 5hmC and mutations, which we

observed across the whole genome, is also detectable in exonic regions alone.

In line with our earlier results, we found that 5hmCrel significantly contributes to the deviance

explained by the model, beyond covariation with gene expression (Figure 5C–D; F-test p<2e-100).

We hypothesised that this effect should be most pronounced when using modC>T and CpG>T as

the response variable, whereas it should decrease when using definitions of mutations that include a

progressively wider range of loci (C>T, C>N, N>N). Indeed, the unique contribution of 5hmCrel to

the explained gene mutation frequency decreased as the mutation sets became larger and more dis-

tant from modC>T (Figure 5C–D, Figure 5—figure supplements 2–3). Nevertheless, in all of the

cases, 5hmCrel significantly improved the fit of the model. Conversely, we confirmed that 5hmCrel

had no significant predictive power for the frequency of T>N mutations (Figure 5C–D; column T>N),

supporting the hypothesis that 5hmCrel selectively affects mutations in modified cytosines.

Figure 4 continued

sites. Black line denotes linear regression fit (F-test for coefficient deviation from 0, see Materials and methods). (B) Distribution of CpG>T mutation

frequency by modification type. The top left bin contains cytosines that are mostly unmodified, the bottom left bin contains exclusively methylated

cytosines and the top right bin contains cytosines that are mostly hydroxymethylated. (C) Top row of B, i.e. distribution of mutations in unmethylated

sites. (D) First column of B, i.e. distribution of mutations in sites without 5hmC. (E) Diagonal of B, i.e. distribution of mutations in highly modified sites.

DOI: 10.7554/eLife.17082.011

The following figure supplement is available for figure 4:

Figure supplement 1. CpG>T mutation frequency as a function of 5hmCrel levels with equal binning (each bin contains approximately the same

number of sites).

DOI: 10.7554/eLife.17082.012
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Figure 5. Predictors of mutations: 5hmCrel compared to other genomic features. (A) Prediction of CpG>T mutation frequency (using whole genome

sequencing only) in 100 kbp genomic windows. Predictors are sorted according to the D2 in a univariate model. The height of the kth bar denotes the

D2 of a model with the first k predictors. (B) Comparison of the nine predictors of CpG>T mutation features by D2 in a univariate models, in a range of

window sizes. (C) Prediction of different types of mutation frequency in genes. Increase in D2 of a generalised linear model including 5hmCrel over gene

expression (purple) or gene expression over 5hmCrel (green) (see Materials and methods). (D) Significance of observations in C (see

Materials and methods).

DOI: 10.7554/eLife.17082.013

The following figure supplements are available for figure 5:

Figure supplement 1. Genome-wide prediction of CpG>T mutation frequency: 5hmCrel compared to other genomic features.

DOI: 10.7554/eLife.17082.014

Figure supplement 2. Effects of 5hmCrel levels on gene mutability.

Figure 5 continued on next page
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Decreased CpG>T mutation frequency in 5hmC is not limited to brain
tissue
Two recently published datasets allowed us to address the question of mutational properties of

5mC and 5hmC also in two other tissues: kidney (Chen et al., 2015) and blood (Pacis et al., 2015).

For blood we used 174 sequencing samples from Acute Myeloid Leukaemia (AML) as the cancer

type closest to the blood dendritic cells in which the BS-Seq and TAB-Seq measurements were per-

formed. For kidney we combined 585 samples from four distinct sequencing projects, covering Kid-

ney Clear Cell, Kidney Papillary and Kidney Chromophobe carcinomas.

Matching our findings in brain, 5hmC sites were mutated significantly less frequently than 5mC

sites in both tissue types (Figure 6B), irrespective of whether genome or exome sequencing data

were used. Moreover, a similar difference was present in all available replicates of the BS-Seq and

TAB-Seq measurements (6 for blood, 2 for kidney, Figure 6—figure supplement 1A).

Genomic distribution of 5hmC differs substantially between the three tissue types (Figure 6—fig-

ure supplement 2). Consequently, we expected the association between mutation frequency and

5hmC to be highest when mutation and modification data are derived from matching tissue types.

To test this hypothesis, we used a GLM on genomic windows of 100 kbp to predict CpG>T mutation

rate from a combination of 5hmCrel maps of all three tissues. Strikingly, for each cancer type, the

best predictor came from the same tissue type (Figure 6A), suggesting that tissue differences in

5hmC are reflected in the CpG>T mutation landscape. The same results were obtained in all avail-

able replicates of the 5hmCrel maps (Figure 6—figure supplement 1B). Finally, we added a 5hmCrel

map derived from embryonic stem cells (ESC) as an additional predictor, to compare our findings to

previously reported results (Supek et al., 2014). As we anticipated, the ESC-derived 5hmC levels

have substantially lower predictive power on CpG>T mutation rate than any of the tissue-derived

maps.

While base-resolution maps of 5hmC for human tissue are still rare, there is a wide range of BS-

Seq data sets available in public databases. Given our findings thus far, we predicted that tissues

with high levels of 5hmC relative to 5mC would exhibit fewer CpG>T mutations in modified sites

than tissues with low total 5hmC. To test this hypothesis, we measured total levels of 5mC and

5hmC using High Pressure Liquid Chromatography (HPLC-UV) in DNA of eight human tissue types

for which BS-Seq maps are publicly available (Figure 6—figure supplement 3). In order to account

for unrelated cancer-type specific differences in CpG>T mutability, we normalised the mutation fre-

quency in modified sites by the mutation frequency in unmodified sites. The analysis of association

between genomic 5hmC and enrichment of CpG>T mutations revealed a strong negative correlation

(Figure 6C) in all tissue types except lung. Interestingly, this difference seems to stem from smok-

ing-related effects. Lung cancer mutation data from heavy smokers revealed a markedly lower fre-

quency of CpG>T mutations in modified sites, relative to other mutations. It has been reported that

the typical C>A mutational signature associated with smoking was found significantly enriched in

CpGs outside CpG islands, suggesting that it preferentially occurs at modified CpG sites

(Pleasance et al., 2010). Accordingly, our data indicate that CpG>T mutations might also be differ-

entially affected by smoking-related mutagens.

Discussion
Here we have established a link between the landscape of DNA modifications and the mutational

profile of somatic human cells. Our measurements indicate that 5hmCs carry between 28 and 53%

fewer mutations than methylated cytosines in brain. This results in a mutational load at 5hmC sites

that is comparable to that of unmodified cytosines in CpG dinucleotides. This effect is not only

observable in brain, but also in kidney cancers and myeloid leukaemias. The relationship between

5hmC and CpG>T mutation rate can be detected at the scale of the exome as well as genome-wide

and is independent of other region-specific influences on mutation frequency. We show that the

Figure 5 continued

DOI: 10.7554/eLife.17082.015

Figure supplement 3. Effects of 5hmCrel levels on gene mutability.

DOI: 10.7554/eLife.17082.016
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Figure 6. Decreased CpG>T mutation frequency in 5hmC is not limited to brain tissue. (A) Predictions of CpG>T mutation frequency in whole genome

cancers in blood (AML), kidney and brain using 5hmCrel maps from blood, kidney, brain and embryonic stem cells (ESC) in 100 kbp genomic windows.

The values are z-score normalised per rows in order to normalise for different number of patients and mutations in each cancer type (the original D2

values are in parentheses); the higher values of D2 (green), the better predictions. (B) CpG>T mutation frequency in 5mC vs. 5hmC in kidney and blood.

(C) Correlation of total 5hmCrel levels (measured with HPLC) with frequency of CpG>T mutations in modified cytosines normalised by the frequency in

unmodified cytosines in different tissues (see Materials and methods).

DOI: 10.7554/eLife.17082.017

The following figure supplements are available for figure 6:

Figure 6 continued on next page
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relative impact of hydroxymethylation on mutagenesis decreases proportionally to the level of 5hmC

in the tissue, suggesting that it represents a general property of this DNA modification.

Two possible scenarios could explain the striking difference in mutability between 5mC and

5hmC. Firstly, spontaneous and enzymatic deamination reactions of 5hmC could be less favourable

than 5mC. As a consequence, fewer new mutation events would be expected at 5hmC sites. Indeed,

cytosine deaminases (namely, AID and APOBEC1-3) have 4.4–38x lower activity on sites with 5hmC

compared to 5mC, supporting this possibility (Nabel et al., 2012; Rangam et al., 2012). Secondly,

deamination of 5mC produces thymine whereas 5hmC deaminates to 5-hydroxymethyluracil (5hmU).

This atypical base in DNA could be more efficiently recognised and replaced by the DNA glycosy-

lases initiating base-excision repair (BER). Determining the relative contribution of DNA glycosylases

to the lower mutation rate would be challenging, since some of these enzymes recognise several

types of mismatches. TDG and MBD4 excise both T and 5hmU when mis-paired with G

(Hardeland et al., 2003; Cortellino et al., 2011; Guo et al., 2011; Hashimoto et al., 2012;

Moréra et al., 2012), whereas SMUG1 does not repair T:G but has a robust activity for 5hmU:G

(Nilsen et al., 2001; Kemmerich et al., 2012). Therefore, there might be more efficient repair of

5hmU in the genome. Further genome sequencing efforts might identify patients with rare inactivat-

ing mutations in BER and/or mismatch-repair pathways that could be valuable for future investiga-

tions of the relationship between DNA repair and cytosine mutability.

It has previously been suggested that 5hmC levels increase the frequency of C>G mutations

(Supek et al., 2014). As part of this analysis, only a very small (albeit statistically significant) decrease

of C>T mutations in 5hmC sites in both SNPs and cancer SNVs was observed. There are two factors

that could explain why we observe very different effects sizes for C>T and C>G mutations in 5hmC

sites. Firstly, Supek et al. consider all sites with as little as one 5hmC read to be hydroxymethylated,

whereas we require the level of 5hmC to exceed 5mC. In fact, when examining the effect of variation

in these thresholds (Figure 2—figure supplement 1A–F), we noticed that the results for C>G fluctu-

ate substantially across the range of tested cut-off values (see also Figure 3—figure supplement

1E–F). Secondly, we present evidence that tissue-specific changes in 5hmC patterns have great influ-

ence on the extent of correlation between 5hmC and mutability (Figure 6B). Specifically, 5hmC

genomic localisation in embryonic stem cells was a poor predictor of CpG>T mutations in brain, kid-

ney and blood, compared to the respective tissue-specific 5hmC patterns.

The best predictor of CpG>T mutations in any of the three tested tissues was the 5hmCrel map

from the corresponding anatomical site. This provides evidence that the slow accumulation of

CpG>T mutations in the pre-cancerous tissue was strongly influenced by the DNA modification land-

scape. However, any bulk tissue sample encompasses a mixture of different cell types. Mounting evi-

dence suggests that solid tumours originate from a defined subset of cells within any one tissue

type. For example, glioblastomas were proposed to originate from stem or progenitor cell types

enriched in the subventricular zone, while medulloblastomas have mixed cells of origin (Vis-

vader, 2011). Those cell types are of low abundance in normal tissue biopsies. The fact that we

observe a clear inverse relationship between CpG>T mutations and the location of 5hmC in multiple

tissue types suggests that the DNA modification landscape in cancer-progenitor cells is sufficiently

similar to the tissue average to be informative about the mutation frequencies in cancer.

Under this assumption we predict that the impact of DNA modifications on the frequency of

CpG>T mutations is likely to be bigger than measured here, since the terminally differentiated cells

that make up the bulk of the tissue may have diverged further from cancer-progenitor cells.

Advancements in the identification of cancer origins and isolation of single cells, combined with

Figure 6 continued

Figure supplement 1. Decreased CpG>T mutation frequency in 5hmC is present in three tissues consistently for different replicates of modification

maps.

DOI: 10.7554/eLife.17082.018

Figure supplement 2. Comparison of 5hmC in 10 kbp windows in blood, kidney (2 replicates), and brain.

DOI: 10.7554/eLife.17082.019

Figure supplement 3. HPLC measurements of total 5hmC and 5mC in eight tissues.

DOI: 10.7554/eLife.17082.020
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single-cell bisulfite sequencing, will enable an improved assessment of the impact of DNA modifica-

tions on mutability.

The strong correlation between relative 5hmC levels in a tissue and the mutability of modified

cytosine also points towards a shared underlying mutagenic process. The notable deviation of smok-

ing-induced lung-cancers supports this hypothesis. We speculate that a yet undefined smoking-

induced mutagenic mechanism preferentially affects unmethylated CpG sites. More experimental

work will be needed to elucidate the biochemical causes for this phenomenon. In the future, the lin-

ear relationship between 5hmC levels and CpG>T mutation rate could thus be used to identify other

environmental mutagens with a differential effect on modified cytosines.

Materials and methods

Code
Most of the analyses were performed using Matlab. Code and other required files are available on

Figshare under doi 10.6084/m9.figshare.c.3249394 (Tomkova et al., 2016).

Mutation data
Cancer somatic mutations (see Supplementary file 1b) were obtained from a dataset compiled by

Alexandrov et al. (2013), complemented with whole genome samples from ICGC, (Wang et al.,

2014), and TCGA. Briefly, aligned reads for 49 AML tumour and normal samples were downloaded

from the UCSC CGHub website under TCGA access request #10140. Somatic variants were called

using Strelka (Saunders et al., 2012) with default parameters. All variants were classified by the

pyrimidine of the mutated Watson-Crick base pair (C or T) and the immediate 5’ and 3’ sequence

context into 96 possible mutation types as described by Alexandrov et al. (2013).

Modification data
DNA modification information (see Supplementary file 1a) for brain was extracted from supplemen-

tary information provided by Wen et al. (2014). Only sites with more than 5 TAB-Seq reads were

taken into account. 5hmChigh and 5mChigh sites were defined based on values of mod level (uncon-

verted/total BS-Seq reads) and 5hmC level (unconverted/total TAB-Seq reads) per site:

. 5mChigh: mod level > 10% and 5hmC level / mod level � threshold5mC

. 5hmChigh: mod level > 10% and 5hmC level / mod level � threshold5hmC

Effects of the choice of both thresholds were explored and then the values of threshold5mC = 0.3

and threshold5mC = 0.5 were used. In blood, BS-Seq and TAB-Seq values in CpG sites were taken

from supplementary files provided by Pacis et al. (2015). For kidney and ESC maps, raw reads were

processed with Trim galore, Bismark (Krueger et al., 2012) and Mark duplicates from Picard tools.

Multiple replicates were processed both independently and together (adding the reads from the

replicates together). Only sites with at least 10% mod level were taken into account to compute

5hmCrel.

To compute the number of modified sites inside the exome, the reference Illumina Truseq defini-

tion of exon loci was downloaded from the Illumina website. Overlapping exons were merged using

bedtools so that each genomic site is covered by at most one exon. Two-sided paired Wilcoxon

signed-rank test was used for testing significance between mutation frequency of 5mChigh and

5hmChigh sites. The same test was used for all the following statistics, if not stated otherwise.

Gene expression data
Gene expression (in FPKM) from RNAseq experiments on 630 brain tissue samples were down-

loaded from the GTEx human tissue expression project (http://www.gtexportal.org/home/).

Visualisation on genome
The following genomic features were computed in 100 kbp windows: average 5hmC, 5mC, 5hmCrel

(all from the supplementary information provided by Wen et al. (2014), i.e. mod � 10%), average

log(1 + gene expression), gene density, exon density, CpG density, modCpG density, CpG island

(CGI) density, and average modification level (from raw BS-Seq reads). These features and CpG>T
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mutation frequency (from MDB and PA whole-genome sequencing datasets) were z-score normal-

ised and plotted per chromosome after Gaussian smoothing with parameters n = 50, sigma = 2.5.

Mutation frequency in highly and lowly expressed genes
Genes were sorted according to their median expression values. The upper 50-percentile (9701

genes) were classified as highly expressed, the rest as lowly expressed. Introns were included only

for whole genome samples.

Pairing of 5mC and 5hmC sites
For each 5hmChigh site in random order, the nearest not previously selected 5mChigh site was

selected such that the 5mC-5hmC pair fulfilled the following conditions: both 5hmChigh and 5mChigh

sites are inside an exon or both are outside exons, and both share the same context (CG, CHG, and

CHH, where H is T, A or C). This resulted in 6801374 pairs with a median distance of 1 and 25th and

75th quantiles of -177 and +177, respectively.

Mutation frequency around aligned 5mC and 5hmC
Modified sites with no other modifications in a 2 kb radius were selected (374000 sites with 5mC

and the same number of 5hmC sites), and the mutation frequency up to 2 kbp upstream and down-

stream (in bins without other modifications) was plotted.

Gradients analysis
All modified cytosines (i.e., mod level > 10%) in the CpG context were divided into 9 right-open

intervals according to their ratio of 5hmC level to mod level. The leftmost bin contained cytosines

where the major modification is 5mC, while the rightmost bin contained cytosines where the major

modification is 5hmC. In each bin, the frequency of mutations was computed and plotted. A linear

regression model was fitted to the data (function fitlm in Matlab) and the significance of the linear

coefficient was tested using F-test for the hypothesis that the regression coefficient is zero (function

coefTest in Matlab). For gradients with equal binning each interval contained approximately the

same number of sites (apart from the first bin, which included all values with 5hmCrel=0).

Prediction of mutation frequency in genomic windows
CpG>T mutation frequency (response variable) and genomic features (predictors; same as above in

Visualisation on genome) were computed in genomic windows of sizes 3 kbp–3 Mbp. Then a gener-

alised linear model (fitglm) assuming Poisson distribution of the response variable was fitted with a

linear model specification (i.e., intercept + linear term for each predictor) and DispersionFlag set to

true. Model fits were compared in terms of D2 and p-value (model.devianceTest), as recommended,

e.g., in Guisan and Zimmermann (2000), Mittlböck and Heinzl (2004).

Simulation of effects of number of patients on GLM
Each chromosome was split into windows of a given window size. For each window, all CpG sites

were counted. A random predictor was generated in each window with a beta distribution (Beta

(3,4)). For each patient, a random number of mutations in each window was generated as

Binomialððn¼windowSize iWindowð Þ; p¼
predictor iWindowð Þ

coefficient
Þ

where:

coefficient ¼

P
iWindowwindowSize iWindowð Þ � predictor iWindowð Þ

174

The coefficient was set so that the expected total number of mutations per patient summed to

174, the observed average number of CpG>T mutations in brain WGS data. The response variable

was set as the average CpG>T mutation frequency over all patients. A GLM was fit on the given pre-

dictor and response variable and D2 was measured. The process was repeated 10 times for each

combination of window size and number of patients.
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Gene-wise prediction of mutation frequency
Mutation frequency was modelled with two predictor variables: average 5hmCrel per gene and loge-

transformed gene expression. The following response variables computed in exons of each gene

were compared:

. modC>T: number of C>T mutations in modified C sites / number of modified C sites

. CpG>T: number of C>T mutations in CpG sites / number of CpG sites

. C>T: number of C>T mutations / number of C sites

. C>N: number of mutations from C / number of C sites

. N>N: number of mutations / number of sites

. T>N: number of mutations from T / number of T sites

Genes with missing values in at least one of the predictors and genes classified as outliers in at

least one response variable were excluded from the analysis. Outliers were classified in the following

way: y � quantile(y, 0.999) + 2.5 * (quantile(y, 0.999) – quantile(y, 0.001)). Out of 17,605 genes, 10

were classified and removed as outliers: ASPN, BBOX1, CCL4, ESPN, FOLH1, HLA-DPB1, IDH1,

NLRP6, S100P, and TP53. The same GLM model as above was used. To calculate the relative contri-

bution of one predictor variable over the other, two models were fitted with either one or both pre-

dictor variables and the difference in D2 was used.

HPLC measurements of total 5hmC and 5mC in eight tissues
10mg of genomic DNA (amsbio; D1234003, D1234004, D1234035, D1234086, D1234090, D1234122,

D1234142, D1234148, D1234149, D1234152, D1234171, D1234188, D1234200, D1234206,

D1234226, D1234227, D1234246, D1234248, D1234260, D1234274, HG-101) was treated with 1U

RNase A (Thermo Scientific), purified by phenol chloroform ethanol precipitation and incubated

overnight in hydrolysis solution (45 mM NaCl, 9 mM MgCl2, 9 mM Tris pH 7.9, �250 U/ml Benzo-

nase (sigma), 50 mU/ml Phosphodiesterase I, �20 U/ml Alkaline phosphatase, 46.8 ng/ml EHNA

hydrochloride, 8.64 mM deferoxamine). Protein components were removed by centrifugation

through Amicon centrifugal filter unit (3 kDa cut-off, Millipore) before samples were lyophilised and

resuspended in buffer A. Nucleosides were resolved with an Agilent UHPLC 1290 instrument fitted

with Eclipse Plus C18 RRHD 1.8 mm (2.1 � 150 mm column) and detected and quantified with Agi-

lent 1290 DAD fitted with a Max-Light 60 mm cell. Buffer A was 100 mM ammonium acetate, pH

6.5; buffer B was 40% acetonitrile, and the flow rate 0.4 ml min�1. The gradient was between 1.8–

100% of 40% acetonitrile with the following steps: 1–2 min, 100% A; 2–16 min 98.2% A, 1.8% B; 16–

18 min 70% A, 30% B; 18–20 min 50% A, 50% B; 20–21.5 min 25% A, 75% B; 21.5–22.5 min 100% B;

22.5–24.5 min 100% A. Relative abundance of 5mC and 5hmC were established by detection of

adenosine at 280nm allowing determination of total cytosine by extinction coefficient calculation

using standards.
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