Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca2+ signalling in glutamatergic interneurons

  1. Siddharth Jayakumar
  2. Shlesha Richhariya
  3. O Venkateswara Reddy
  4. Michael J Texada
  5. Gaiti Hasan  Is a corresponding author
  1. Tata Institute of Fundamental Research, India
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Neuronal circuits are known to integrate nutritional information, but the identity of the circuit components is not completely understood. Amino acids are a class of nutrients that are vital for the growth and function of an organism. Here, we report a neuronal circuit that allows Drosophila larvae to overcome amino acid deprivation and pupariate. We find that nutrient stress is sensed by the class IV multidendritic cholinergic neurons. Through live calcium imaging experiments, we show that these cholinergic stimuli are conveyed to glutamatergic neurons in the ventral ganglion through mAChR. We further show that IP3R-dependent calcium transients in the glutamatergic neurons convey this signal to downstream medial neurosecretory cells (mNSCs). The circuit ultimately converges at the ring gland and regulates expression of ecdysteroid biosynthetic genes. Activity in this circuit is thus likely to be an adaptation that provides a layer of regulation to help surpass nutritional stress during development.

Article and author information

Author details

  1. Siddharth Jayakumar

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Shlesha Richhariya

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. O Venkateswara Reddy

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael J Texada

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2479-1241
  5. Gaiti Hasan

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    gaiti@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7194-383X

Funding

National Centre for Biological Sciences (Core funding)

  • Gaiti Hasan

Council of Scientific and Industrial Research (Graduate fellowship)

  • Siddharth Jayakumar

National Centre for Biological Sciences (Graduate fellowship)

  • Shlesha Richhariya

Howard Hughes Medical Institute

  • Michael Texada

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Jayakumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,283
    views
  • 697
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siddharth Jayakumar
  2. Shlesha Richhariya
  3. O Venkateswara Reddy
  4. Michael J Texada
  5. Gaiti Hasan
(2016)
Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca2+ signalling in glutamatergic interneurons
eLife 5:e17495.
https://doi.org/10.7554/eLife.17495

Share this article

https://doi.org/10.7554/eLife.17495

Further reading

    1. Neuroscience
    Merlin Monzel, Pitshaporn Leelaarporn ... Cornelia McCormick
    Research Article

    Aphantasia refers to reduced or absent visual imagery. While most of us can readily recall decade-old personal experiences (autobiographical memories, AM) with vivid mental images, there is a dearth of information about whether the loss of visual imagery in aphantasics affects their AM retrieval. The hippocampus is thought to be a crucial hub in a brain-wide network underlying AM. One important question is whether this network, especially the connectivity of the hippocampus, is altered in aphantasia. In the current study, we tested 14 congenital aphantasics and 16 demographically matched controls in an AM fMRI task to investigate how key brain regions (i.e. hippocampus and visual-perceptual cortices) interact with each other during AM re-experiencing. All participants were interviewed regarding their autobiographical memory to examine their episodic and semantic recall of specific events. Aphantasics reported more difficulties in recalling AM, were less confident about their memories, and described less internal and emotional details than controls. Neurally, aphantasics displayed decreased hippocampal and increased visual-perceptual cortex activation during AM retrieval compared to controls. In addition, controls showed strong negative functional connectivity between the hippocampus and the visual cortex during AM and resting-state functional connectivity between these two brain structures predicted better visualization skills. Our results indicate that visual mental imagery plays an important role in detail-rich vivid AM, and that this type of cognitive function is supported by the functional connection between the hippocampus and the visual-perceptual cortex.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Alfonso Aguilera, Marta Nieto
    Insight

    A tailored cocktail of genes can reprogram a subset of progenitors to no longer produce glial cells and instead develop into neurons involved in motor control.