Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization

  1. Zhong-Yu Liu
  2. Xiao-Feng Li
  3. Tao Jiang
  4. Yong-Qiang Deng
  5. Qing Ye
  6. Hui Zhao
  7. Jiu-Yang Yu
  8. Cheng-Feng Qin  Is a corresponding author
  1. Beijing Institute of Microbiology and Epidemiology, China

Abstract

Viral replicase recruitment and long-range RNA interactions are essential for RNA virus replication, yet the mechanism of their interplay remains elusive. Flaviviruses include numerous important human pathogens, e.g., dengue virus (DENV) and Zika virus (ZIKV). Here, we revealed a highly conserved, conformation-tunable cis-acting element named 5′-UAR-flanking stem (UFS) in the flavivirus genomic 5′ terminus. We demonstrated that the UFS was critical for efficient NS5 recruitment and viral RNA synthesis in different flaviviruses. Interestingly, stabilization of the DENV UFS impaired both genome cyclization and vRNA replication. Moreover, the UFS unwound in response to genome cyclization, leading to the decreased affinity of NS5 for the viral 5′ end. Thus, we propose that the UFS is switched by genome cyclization to regulate dynamic RdRp binding for vRNA replication. This study demonstrates that the UFS enables communication between flavivirus genome cyclization and RdRp recruitment, highlighting the presence of switch-like mechanisms among RNA viruses.

Article and author information

Author details

  1. Zhong-Yu Liu

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiao-Feng Li

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Tao Jiang

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yong-Qiang Deng

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Qing Ye

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hui Zhao

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiu-Yang Yu

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Cheng-Feng Qin

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    For correspondence
    qincf@bmi.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0632-2807

Funding

National Natural Science Foundation of China (31270196)

  • Cheng-Feng Qin

National Natural Science Foundation of China (31000083)

  • Xiao-Feng Li

National Natural Science Foundation of China (30972613)

  • Cheng-Feng Qin

National Natural Science Foundation of China (National Basic Research Program of China, 2012CB518904)

  • Cheng-Feng Qin

National Natural Science Foundation of China (Excellent Young Scientist Program, 81522025)

  • Cheng-Feng Qin

Academy of Medical Sciences (Newton Advanced Fellowship, 81661130162)

  • Cheng-Feng Qin

National Key Research and Development Project of China (2016YFD0500304)

  • Cheng-Feng Qin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,299
    views
  • 1,057
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhong-Yu Liu
  2. Xiao-Feng Li
  3. Tao Jiang
  4. Yong-Qiang Deng
  5. Qing Ye
  6. Hui Zhao
  7. Jiu-Yang Yu
  8. Cheng-Feng Qin
(2016)
Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization
eLife 5:e17636.
https://doi.org/10.7554/eLife.17636

Share this article

https://doi.org/10.7554/eLife.17636

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.