Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization

  1. Zhong-Yu Liu
  2. Xiao-Feng Li
  3. Tao Jiang
  4. Yong-Qiang Deng
  5. Qing Ye
  6. Hui Zhao
  7. Jiu-Yang Yu
  8. Cheng-Feng Qin  Is a corresponding author
  1. Beijing Institute of Microbiology and Epidemiology, China

Abstract

Viral replicase recruitment and long-range RNA interactions are essential for RNA virus replication, yet the mechanism of their interplay remains elusive. Flaviviruses include numerous important human pathogens, e.g., dengue virus (DENV) and Zika virus (ZIKV). Here, we revealed a highly conserved, conformation-tunable cis-acting element named 5′-UAR-flanking stem (UFS) in the flavivirus genomic 5′ terminus. We demonstrated that the UFS was critical for efficient NS5 recruitment and viral RNA synthesis in different flaviviruses. Interestingly, stabilization of the DENV UFS impaired both genome cyclization and vRNA replication. Moreover, the UFS unwound in response to genome cyclization, leading to the decreased affinity of NS5 for the viral 5′ end. Thus, we propose that the UFS is switched by genome cyclization to regulate dynamic RdRp binding for vRNA replication. This study demonstrates that the UFS enables communication between flavivirus genome cyclization and RdRp recruitment, highlighting the presence of switch-like mechanisms among RNA viruses.

Article and author information

Author details

  1. Zhong-Yu Liu

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiao-Feng Li

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Tao Jiang

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yong-Qiang Deng

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Qing Ye

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hui Zhao

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiu-Yang Yu

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Cheng-Feng Qin

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    For correspondence
    qincf@bmi.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0632-2807

Funding

National Natural Science Foundation of China (31270196)

  • Cheng-Feng Qin

National Natural Science Foundation of China (31000083)

  • Xiao-Feng Li

National Natural Science Foundation of China (30972613)

  • Cheng-Feng Qin

National Natural Science Foundation of China (National Basic Research Program of China, 2012CB518904)

  • Cheng-Feng Qin

National Natural Science Foundation of China (Excellent Young Scientist Program, 81522025)

  • Cheng-Feng Qin

Academy of Medical Sciences (Newton Advanced Fellowship, 81661130162)

  • Cheng-Feng Qin

National Key Research and Development Project of China (2016YFD0500304)

  • Cheng-Feng Qin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,322
    views
  • 1,059
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhong-Yu Liu
  2. Xiao-Feng Li
  3. Tao Jiang
  4. Yong-Qiang Deng
  5. Qing Ye
  6. Hui Zhao
  7. Jiu-Yang Yu
  8. Cheng-Feng Qin
(2016)
Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization
eLife 5:e17636.
https://doi.org/10.7554/eLife.17636

Share this article

https://doi.org/10.7554/eLife.17636

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.