Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization

  1. Zhong-Yu Liu
  2. Xiao-Feng Li
  3. Tao Jiang
  4. Yong-Qiang Deng
  5. Qing Ye
  6. Hui Zhao
  7. Jiu-Yang Yu
  8. Cheng-Feng Qin  Is a corresponding author
  1. Beijing Institute of Microbiology and Epidemiology, China

Abstract

Viral replicase recruitment and long-range RNA interactions are essential for RNA virus replication, yet the mechanism of their interplay remains elusive. Flaviviruses include numerous important human pathogens, e.g., dengue virus (DENV) and Zika virus (ZIKV). Here, we revealed a highly conserved, conformation-tunable cis-acting element named 5′-UAR-flanking stem (UFS) in the flavivirus genomic 5′ terminus. We demonstrated that the UFS was critical for efficient NS5 recruitment and viral RNA synthesis in different flaviviruses. Interestingly, stabilization of the DENV UFS impaired both genome cyclization and vRNA replication. Moreover, the UFS unwound in response to genome cyclization, leading to the decreased affinity of NS5 for the viral 5′ end. Thus, we propose that the UFS is switched by genome cyclization to regulate dynamic RdRp binding for vRNA replication. This study demonstrates that the UFS enables communication between flavivirus genome cyclization and RdRp recruitment, highlighting the presence of switch-like mechanisms among RNA viruses.

Article and author information

Author details

  1. Zhong-Yu Liu

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiao-Feng Li

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Tao Jiang

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yong-Qiang Deng

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Qing Ye

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hui Zhao

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiu-Yang Yu

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Cheng-Feng Qin

    Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    For correspondence
    qincf@bmi.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0632-2807

Funding

National Natural Science Foundation of China (31270196)

  • Cheng-Feng Qin

National Natural Science Foundation of China (31000083)

  • Xiao-Feng Li

National Natural Science Foundation of China (30972613)

  • Cheng-Feng Qin

National Natural Science Foundation of China (National Basic Research Program of China, 2012CB518904)

  • Cheng-Feng Qin

National Natural Science Foundation of China (Excellent Young Scientist Program, 81522025)

  • Cheng-Feng Qin

Academy of Medical Sciences (Newton Advanced Fellowship, 81661130162)

  • Cheng-Feng Qin

National Key Research and Development Project of China (2016YFD0500304)

  • Cheng-Feng Qin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffrey S Kieft, University of Colorado Denver School of Medicine, United States

Version history

  1. Received: May 9, 2016
  2. Accepted: September 30, 2016
  3. Accepted Manuscript published: October 1, 2016 (version 1)
  4. Version of Record published: November 8, 2016 (version 2)

Copyright

© 2016, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,168
    views
  • 1,050
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhong-Yu Liu
  2. Xiao-Feng Li
  3. Tao Jiang
  4. Yong-Qiang Deng
  5. Qing Ye
  6. Hui Zhao
  7. Jiu-Yang Yu
  8. Cheng-Feng Qin
(2016)
Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization
eLife 5:e17636.
https://doi.org/10.7554/eLife.17636

Share this article

https://doi.org/10.7554/eLife.17636

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.