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Abstract Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate

receptors present across Protostomia. While these receptors are most extensively studied for their

roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a,

in thermosensation in Drosophila. Here we characterize one of the most evolutionarily deeply

conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to

mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed

with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the

sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of

receptors is required for neuronal responses to dry air and behavioral discrimination of humidity

differences. Our results identify IR93a as a common component of molecularly and cellularly

distinct IR pathways important for thermosensation and hygrosensation in insects.

DOI: 10.7554/eLife.17879.001

Introduction
Ionotropic Receptors (IRs) are a large subfamily of ionotropic glutamate receptors (iGluRs) that

appear to have evolved in the last common protostome ancestor (Benton et al., 2009;

Croset et al., 2010; Rytz et al., 2013). In contrast to the critical role of iGluRs in synaptic communi-

cation, IRs have diverse roles in chemosensory detection (Koh et al., 2014; Rytz et al., 2013). The

best-defined functions of IRs are in olfaction, where they mediate sensory neuron responses to

diverse chemicals, including many acids and amines (Rytz et al., 2013; Silbering et al., 2011). Most

IRs are thought to form heteromeric ligand-gated ion channels, in which broadly expressed co-

receptor subunits (e.g., IR8a, IR25a and IR76b) combine with more selectively expressed IR subunits

that confer stimulus specificity (Abuin et al., 2011; Rytz et al., 2013). Many of these IRs are highly

conserved in insects, indicating that they define sensory pathways common to a wide range of spe-

cies (Croset et al., 2010; Rytz et al., 2013).

Although most conserved IRs have been assigned chemosensory roles, we recently reported that

one of these receptors, IR21a, mediates cool sensing (together with IR25a) in a population of neu-

rons in the Drosophila melanogaster larva, the dorsal organ cool cells (DOCCs) (Ni et al., 2016).
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This finding raised the possibility that other IRs serve non-chemosensory functions. In this work we

characterize one of these ’orphan’ receptors, IR93a, which has orthologs across arthropods

(Corey et al., 2013; Groh-Lunow et al., 2014; Rytz et al., 2013). RNA expression analysis in several

insects and crustaceans indicates that this receptor gene is transcribed in peripheral sensory organs

(Benton et al., 2009; Corey et al., 2013; Groh-Lunow et al., 2014; Rytz et al., 2013), but its role(s)

are unknown. Using Drosophila as a model, we find that IR93a acts with different combinations of

IRs in distinct populations of neurons to mediate physiological and behavioral responses to both

thermosensory and hygrosensory cues.

Results

IR93a is expressed in larval thermosensory neurons and is essential for
cool avoidance
To investigate the expression and function of IR93a, we generated antibodies against a C-terminal

peptide sequence of this receptor and obtained two Ir93a mutant alleles: Ir93aMI05555, which con-

tains a transposon insertion in the fifth coding exon, and Ir93a122, which we generated using

CRISPR/Cas9 to delete 22 bases within the sequence encoding the first transmembrane domain

(Figure 1a).

In larvae, IR93a protein is expressed in several neurons in the dorsal organ ganglion, one of the

main sensory organs in the larval head (Stocker, 1994) (Figure 1b–c). These neurons encompass the

DOCCs (labeled by an Ir21a promoter-Gal4-driven GFP reporter), and the protein localizes promi-

nently to the dendritic bulb at the tip of the sensory processes of these cells (Figure 1c). All expres-

sion was absent in Ir93a mutants, confirming antiserum specificity (Figure 1c).

These observations indicated that IR93a might function in cool sensing. Indeed, when larval ther-

motaxis was assessed on a thermal gradient (Klein et al., 2015), we found both Ir93a mutant alleles

exhibited strong defects in cool avoidance (Figure 1d). Cell-specific expression of an Ir93a cDNA in

the DOCCs under Ir21a-Gal4 control fully rescued this mutant phenotype (Figure 1d). These data

demonstrate an essential role for IR93a in DOCCs in larval thermotaxis.

IR93a is required, together with IR21a and IR25a, for cool-dependent
physiological responses of DOCCs
We next assessed whether IR93a is required for the physiological responses of DOCCs to cooling by

optical imaging of these neurons using the genetically encoded calcium indicator, GCaMP6m

(Chen et al., 2013). As previously reported (Klein et al., 2015; Ni et al., 2016), wild-type DOCCs

exhibit robust increases in intracellular calcium in response to cooling (Figure 2a). These responses

were dramatically reduced in Ir93a mutants, and could be rescued by cell-specific expression of an

Ir93a cDNA (using the R11F02-Gal4 DOCC driver [Klein et al., 2015]) (Figure 2a,b). This dramatic

loss of DOCC temperature sensitivity resembles that observed in both Ir21a and Ir25a mutants

(Ni et al., 2016), and is consistent with IR21a, IR25a and IR93a functioning together to mediate cool

activation of the DOCCs.

To provide a more direct readout of thermotransduction in these neurons than soma calcium

measurements, we tested the requirement for IR93a, IR21a and IR25a in cool-evoked membrane

voltage changes using the genetically encoded voltage sensor, Arclight (Jin et al., 2012). In wild-

type animals, cool-dependent voltage changes were observed in the DOCC sensory dendritic bulbs

(Figure 2c–d), where IRs are localized (Figure 1c). This response was completely eliminated in Ir21a,

Ir25a and Ir93a mutants (Figure 2c–e), indicating that each of these IRs is required for temperature-

dependent voltage changes in this sensory compartment.

IR93a is co-expressed with IR25a and IR40a in the antennal sacculus
In adults, Ir93a transcripts were previously weakly detected in a set of neurons in the third antennal

segment surrounding the sacculus, a three-chambered pouch whose opening lies on the posterior

surface of the antenna (Benton et al., 2009) (Figure 3a). With our IR93a antibody, we detected

IR93a expression in neurons innervating sacculus chamber I (11.0 ± 0.5 neurons, n = 48 animals;

mean ± SEM) and chamber II (13.9 ± 0.7 neurons, n = 23), with signal detected both in the soma and

in the sensory cilia that project into cuticular sensory hairs (sensilla) (Figure 3b). As in larval DOCCs,
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IR25a was expressed in IR93a-expressing cells in the sacculus (Figure 3c). By contrast, no expression

was detected in these cells when using our Ir21a promoter driver (data not shown). We found

instead that the IR93a/IR25a sacculus neurons express a distinct receptor, IR40a (Figure 3d–e)

(Benton et al., 2009; Silbering et al., 2016).
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Figure 1. IR93a is expressed in Dorsal Organ Cool Cells (DOCCs) and is required for cool avoidance. (a) Gene structure of the Ir93a locus; sequences

encoding the transmembrane (TM) domains and channel pore are colored. The blue triangle denotes site of MiMIC insertion in Ir93aMI05555, and the

CRISPR/Cas9-generated deletion in the Ir93a122 allele is shown below. (b) Schematic of the larval anterior showing the bilaterally symmetric Dorsal

Organ Ganglia (grey) within which three Dorsal Organ Cool Cells (DOCCs) are located. (c) Immunofluorescence of the larval anterior (corresponding to

the boxed region in the schematic) showing expression of IR93a protein (magenta) in DOCCs (Ir21a-Gal4;UAS-GFP [Ir21a>GFP]) (green), as well as

additional sensory neurons. Ir93aMI05555 mutants lack IR93a immunostaining. The arrow and arrowhead label the soma and dendritic bulb of one of the

DOCCs. Scale bar is 10 mm. (d) Cool avoidance behavior assessed as navigational bias (movement toward warmth / total path length) of individual

larval trajectories on an ~0.36˚C/cm gradient extending from ~13.5˚C to ~21.5˚C, with a midpoint of ~17.5˚C. Letters denote statistically distinct

categories (alpha = 0.05; Tukey HSD). wild type (Canton-S), n = 37 animals. Ir93aMI05555, n = 132. Ir21a-Gal4/+; Ir93aMI05555, n = 72. Ir93aMI05555,UAS-

Ir93a/ Ir93aMI05555, n = 80. Ir21a-Gal4/+; Ir93aMI05555,UAS-Ir93a/ Ir93aMI05555, n = 45. Ir93a122, n = 101.

DOI: 10.7554/eLife.17879.002
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Figure 2. Cool-responsive calcium and voltage changes in DOCCs require IR93a. (a) Left: DOCC responses monitored using R11F02>GCaMP6m.

DOCC cool-responsive increases in fluorescence are dramatically reduced in Ir93aMI05555, and responses are rescued by expression of a wild-type Ir93a

cDNA under R11F02-Gal4 control. Traces, average ± SEM. Right: Ratio of fluorescence at 14˚C versus 20˚C depicted using a violin plot (internal white

circles show median; black boxes denote 25th to 75th percentiles; whiskers extend 1.5 times interquartile range). Letters denote statistically distinct

Figure 2 continued on next page
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Figure 2 continued

categories, p<0.01, Steel-Dwass test. wild type, n = 12 cells. Ir93aMI05555, n = 44. Ir93aMI05555; R11F02>Ir93a, n = 46. (b) Temperature-dependent DOCC

voltage responses in the sensory endings of wild-type (upper panels) or Ir93aMI05555 mutant (lower panels) larvae monitored using R11F02>Arclight.

Arrowheads denote DOCC dendritic bulbs. Note that Arclight fluorescence decreases upon depolarization. Asterisks denote cuticular autofluorescence

from adjacent sensory structures. (c) Robust cool-responsive depolarization of DOCC sensory endings is observed in otherwise wild-type animals using

either R11F02>Arclight or Ir21a>Arclight. Depolarization response is eliminated in Ir93aMI05555, Ir25a2, and Ir21aD1 mutants. Traces, average ± SEM.

Violin plot depicts ratio of fluorescence at 14˚C versus 20˚C. ** denotes distinct from wild-type control, p<0.01 compared to control, Steel-Dwass test.

R11F02-Gal4;UAS-Arclight, n = 57 cells. R11F02-Gal4;UAS-Arclight;Ir93aMI05555, n = 24. R11F02-Gal4;UAS-Arclight; Ir25a2, n = 30. Ir21a-Gal4;UAS-

Arclight, n = 18. Ir21a-Gal4;UAS-Arclight; Ir21aD1, n = 23.

DOI: 10.7554/eLife.17879.003
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Figure 3. IR93a is co-expressed with IR25a and IR40a in sacculus neurons. (a) Left: schematic of the adult Drosophila antenna, illustrating the location of

the sacculus (red) in the interior of this appendage. Right: the sacculus is composed of three main chambers (I, II, III), which are lined with sensilla of

various morphologies (cartoon adapted from [Shanbhag et al., 1995]). (b) Top: immunofluorescence on a whole-mount wild-type antenna showing

expression of IR93a protein (green) in two groups of soma (arrows) around sacculus chambers I and II; these chambers are visualized by cuticle

autofluorescence shown in the images on the right. The arrowhead marks the concentration of IR93a in the dendritic endings that innervate the sensilla

in chamber I. Note that the dendrites of chamber II neurons are not visible in this image; sensilla localization of IR93a in these cells is more easily

detected in antennal sections; see panel (d). Bottom: Ir93aMI05555 mutants lack detectable IR93a protein. Scale bar is 20 mm. (c–e) Double

immunofluorescence with the indicated antibodies on antennal cryosections revealing co-expression of these IRs in sacculus neurons; the arrows point

to the cluster of neurons innervating chamber II. Scale bar is 10 mm. IR25a is expressed in additional neurons that do not express IR93a or IR40a

because of IR25a’s broader role as an olfactory IR co-receptor (Abuin et al., 2011).

DOI: 10.7554/eLife.17879.004
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IR93a, IR25a and IR40a are necessary for hygrosensory behavior
Morphological studies have suggested that neurons in sacculus chambers I and II are hygroreceptive

(Shanbhag et al., 1995), raising the possibility that IR93a, IR25a, and IR40a are required for hygro-

sensory behavior. To test this hypothesis, we adapted an experimental paradigm (Perttunen and

Salmi, 1956) in which flies choose between regions of differing humidity generated by two underly-

ing chambers: one containing deionized water and the other containing water saturated with a non-

volatile solute (ammonium nitrate) to lower its vapor pressure (Figure 4a). This assay design created

a humidity gradient of ~96% relative humidity (RH) to ~67% RH, with negligible variation in tempera-

ture (Figure 4b). Consistent with previous observations (Perttunen and Salmi, 1956), wild-type flies

exhibited a strong preference for lower humidity (Figure 4c). This preference was completely elimi-

nated in Ir93a and Ir25a mutant flies, and significantly reduced, but not abolished, in Ir40a mutants

(Figure 4c, Figure 4—figure supplement 1a). All of these behavioral defects were robustly rescued

by the corresponding cDNAs, confirming the specificity of the mutant defects (Figure 4c). Impor-

tantly, the loss of Ir21a (or other antennal-expressed IR co-receptors, Ir8a and Ir76b) did not disrupt

dry preference. To exclude any potential contribution of the non-volatile solute to the behavior

observed, we also tested flies in a humidity gradient (~89% to ~96% RH) generated using underlying

chambers of deionized water alone and air (Figure 4a). Even in this very shallow gradient, wild type

flies displayed a strong preference for the side with lower humidity (Figure 4d), and this preference

was dependent on IR93a, IR25a and IR40a, but independent of IR21a (Figure 4d). The distinction

between the functions of IR21a and IR40a extended to thermotaxis, as Ir40a mutants exhibited no

defects in this IR21a-dependent behavior (Figure 4—figure supplement 1a–b), consistent with lack

of expression of IR40a in the larval DOCCs (data not shown).

IRs mediate dry detection by sacculus neurons
To test whether the IR40a/IR93a/IR25a-expressing sacculus neurons are physiological hygrosensors,

we monitored their calcium responses to changes in the RH of an airstream (of constant tempera-

ture) directed towards the antenna. We used Ir40a-Gal4 to express UAS-GCaMP6m selectively in

these neurons, and measured GCaMP6m fluorescence in their axon termini, which innervate two

regions of the antennal lobe, the ’arm’ and the ’column’ (Silbering et al., 2016; Silbering et al.,

2011) (Figure 5a–b).

We observed that these sacculus neurons behave as dry-activated hygrosensors: decreasing the

RH from ~90% to ~7% RH elicited an increase in GCaMP6m fluorescence, while increasing RH from

~7% to ~90% elicited a decrease (Figure 5c–g). Calcium changes were most apparent in the ’arm’

(Figure 5c). Importantly, these physiological responses were IR-dependent: mutations in either Ir93a

or Ir40a eliminated the dry response (Ir25a mutants were not tested), and these defects were

restored with corresponding cDNA rescue transgenes (Figure 5d–g). These data corroborate the

requirement for IRs in behavioral preference for lower humidity.

The TRP channels Nanchung and Water witch do not mediate IR-
dependent dry sensation
Previous work has implicated two Transient Receptor Potential (TRP) channels, Nanchung and

Water witch, in hygrosensation (Liu et al., 2007), but it is unclear whether they have an essential

function in this modality (Enjin et al., 2016; Ji and Zhu, 2015) and the cells in which these proteins

act are unknown (Jourjine et al., 2016; Liu et al., 2007). In our gradient assay, we found that ani-

mals mutant for nanchung or water witch displayed partially diminished dry preference behavior

(Figure 6a). However, neither nan nor wtrw was required for the dry responsiveness of IR40a-

expressing sacculus neurons (Figure 6b–e). Thus, these TRP channels are not essential for IR-depen-

dent dry sensing, suggesting that they contribute to hygrotaxis through other mechanisms.

Discussion
From their ancestral origins within the synaptic iGluR family, IRs are widely appreciated to have

evolved functionally diverse roles in environmental chemosensory detection (Croset et al., 2010;

Rytz et al., 2013). Here we provide evidence that a previously uncharacterized member of this rep-

ertoire, IR93a, functions in two critical non-chemosensory modalities, thermosensation and
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Figure 4. Hygrosensory behavior requires IR93a, IR25a and IR40a. (a) Schematic of the hygrosensory behavior assays. ~67% to ~96% RH gradients were

generated by filling wells with either a saturated solution of ammonium nitrate in water or pure water. ~89% to ~96% RH gradients were generated by

pairing empty wells with wells filled with pure water. Nylon mesh prevented fly contact with solutions. Dry preference was quantified by counting flies

on either side of chamber midline. 25–35 flies were used per assay. (b) Mean ± SD of RH and temperature measured at indicated gradient positions.

~67% to ~96% RH, n = 58 gradients. ~89% to ~96% RH, n = 28. (c,d) Dry preference assessed on ~67% vs. ~96% (c) and ~89% vs. ~96% (d) gradients.

Asterisks denote statistically distinct from wild type (**p<0.01; *p<0.05, Steel with control). wild type, n = 16 assays. Ir8a mutant (Ir8a1), n = 8. Ir76b

mutant (Ir76b2), n = 14. Ir21a mutant (Ir21a123), n = 14. Ir25a mutant (Ir26a2), n = 11. Ir25a rescue (Ir25a2; UAS-Ir25a), n = 15. Ir40a mutant (Ir40a1), n = 15.

Ir40a rescue (Ir40a1; UAS-Ir40a), n = 9. Ir40a CRISPR mutant (Ir40a134), n = 10. Ir93a mutant (Ir93aMI05555), n = 11. Ir93a rescue (Ir93aMI05555, UAS-Ir93a),

n = 14. Ir40a mutant alleles and thermosensory behavior are shown in Figure 4—figure supplement 1a–b. Note that UAS-cDNA rescues were

observed in the absence of Gal4 drivers, reflecting Gal4-independent expression of UAS transgenes (Figure 4—figure supplement 1c–d).

DOI: 10.7554/eLife.17879.005

The following figure supplement is available for figure 4:

Figure supplement 1. Description of Ir40a mutants and analysis of Gal4-independent transgene expression.

DOI: 10.7554/eLife.17879.006
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hygrosensation. In both of these roles, IR93a acts with the broadly expressed co-receptor IR25a.

However, these IRs mediate these two modalities in different populations of neurons in conjunction

with a third, distinct IR: with IR21a in cool sensation, but not dry sensation, and with IR40a in dry sen-

sation, but not cool sensation. All of these receptors are widely conserved in insects, indicating that

these sensory pathways likely underlie behavioral responses of diverse species to these important

environmental stimuli.

The identification of an IR21a/IR25a/IR93a-dependent cool-sensing system provides a molecular

counterpart to the well-established TRP channel and ’Gustatory’ Receptor GR28B(D) warmth-sensing

systems (Barbagallo and Garrity, 2015; Ni et al., 2013). By contrast, despite the importance of

hygrosensation in helping insects to avoid desiccation or inundation (Chown et al., 2011) and – in
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blood-feeding species such as mosquitoes – to locate mammalian hosts (Brown, 1966;

Olanga et al., 2010), the neuronal and molecular basis of this sensory modality is poorly under-

stood. Hygrosensitive neurons have been identified electrophysiologically in large insects (Tichy and

Gingl, 2001; Tichy and Kallina, 2010), but their behavioral role has been hard to determine. In Dro-

sophila, the antenna has long been suspected to be an important hygrosensory organ

(Perttunen and Syrjamaki, 1958; Sayeed and Benzer, 1996), but there has been little consensus

on the relevant populations of neurons and sensory receptors (Ji and Zhu, 2015; Liu et al., 2007;
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Yao et al., 2005). We have identified a discrete population of dry-activated hygroreceptors in the

sacculus that express IR40a/IR93a/IR25a. Together with an independent study (Enjin et al., 2016),

our data provide physiological and behavioral evidence supporting these as one pathway that ena-

bles flies to distinguish external humidity levels.

In addition to the roles of IR93a in cool and dry sensing, it is very likely that this receptor defines

additional sensory pathways. Our expression analysis has identified IR93a-positive cells that do not

express IR21a or IR40a, such as non-DOCCs in the larval dorsal organ (Figure 1c). Moreover, the

milder hygrosensory behavior phenotype of our protein null Ir40a mutants compared to Ir93a (or

Ir25a) mutants hints that IR93a may have broader roles in this sensory modality than acting exclu-

sively with IR40a. The populations of IR93a-expressing neurons characterized in this study are them-

selves heterogeneous. For example, IR40a/IR93a/IR25a-expressing sacculus neurons belong to two

morphologically and physiologically distinct subpopulations. Arm neurons have contralateral projec-

tions (Silbering et al., 2011) and respond robustly to low humidity, while column neurons

are exclusively ipsilateral (Silbering et al., 2011) and respond more weakly to humidity, as well as

displaying mild thermosensitivity (Enjin et al., 2016). IR40a-expressing neurons also respond to

ammonia (Silbering et al., 2016). Given that these neurons are housed in apparently poreless sen-

silla (Shanbhag et al., 1995), we speculate that this chemical activates these cells indirectly, for

example, through modification of the humidity of the air, or the temperature of the cuticular surface,

within the sacculus.

A key future challenge will be to determine the mechanisms by which IRs contribute to the sensa-

tion of thermal and humidity cues. We previously showed that ectopically-expressed IR21a can con-

fer cool sensitivity to other IR-expressing neurons, consistent with IR21a acting as a sensory

specificity determinant (Ni et al., 2016). It will be important to determine if IR40a serves a more per-

missive role or functions in a similar capacity in dry sensing. The contribution (if any) of the Venus fly-

trap-like ligand-binding domains of these receptors is of particular interest. Although this domain

recognizes glutamate in iGluRs, and diverse organic molecules in chemosensory IRs, it is conceivable

that these domains mediate thermo- and hygrosensory detection in these receptors in a ligand-inde-

pendent manner. For example, IR21a could transduce information via temperature-dependent con-

formational changes. The requirement for IR93a (and IR25a) in both thermosensation and

hygrosensation also indicates that these modalities could share common mechanisms of sensory

detection. For example, hygrosensation could involve a thermosensory component, based on evapo-

rative cooling. Alternatively, both temperature and moisture detection could involve mechanosensa-

tion, based on swelling or shrinkage of sensory structures, as suggested in mammals and C. elegans

(Filingeri, 2015; Russell et al., 2014). Further characterization of how IRs mediate temperature and

moisture detection is currently limited by our inability to reconstitute thermosensory or hygrosensory

responses in heterologous systems by expressing the known combinations of IRs (G.B., L.N., A.F.S.,

R.B. and P.G., unpublished data). IRs, like iGluRs, are thought to form heterotetrameric complexes

(Abuin et al., 2011), raising the possibility that additional IR subunits are required. It is also conceiv-

able that other types of accessory signaling molecules act with IRs, and/or that the cellular and cutic-

ular specializations of the thermosensory and hygrosensory structures are critical to allow monitoring

of these ubiquitous and ever-changing environmental stimuli.

Materials and methods

Fly strains
Ir25a2 (Benton et al., 2009), UAS-Ir25a (Abuin et al., 2011), Ir8a1 (Abuin et al., 2011),

Ir21a123 (Ni et al., 2016), Ir76b2 (Zhang et al., 2013), R11F02-Gal4 (Klein et al., 2015), Ir40a-Gal4

(Silbering et al., 2011), Ir40a1 (Silbering et al., 2016), UAS-Ir40a (Silbering et al., 2016), Ir93aMI05555

(Venken et al., 2011), UAS-GCaMP6m (P[20XUAS-IVS-GCaMP6m]attp2 and P[20XUAS-IVS-

GCaMP6m]attp2attP40 [Chen et al., 2013]), UAS-Arclight (Cao et al., 2013,) UAS-GFP (P[10XUAS-

IVS-Syn21-GFP-p10]attP2 [Pfeiffer et al., 2012]), nan36a (Gong et al., 2004), wtrw2 (Kwon et al.,

2010) and y1 P(act5c-cas9, w) M(3xP3-RFP.attP)ZH-2A w* (Port et al., 2014) were previously

described.

Ir40a134 (Figure 4—figure supplement 1a) and Ir93a122 (Figure 1a) were generated by trans-

gene-based CRISPR/Cas9-mediated genome engineering (Port et al., 2014), using either an Ir40a-
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targeting gRNA (5’-GCCCGTTTAAGCAAGACATC) or an Ir93a-targeting gRNA (5’-TCAGCAGAA

TGATGCCCATT) expressed under U6-3 promoter control (dU6-3:gRNA) in the presence of act-cas9.

UAS-mCherry:Ir93a contains codons 29–869 of the Ir93a ORF (corresponding to Ir93a-PD [flybase.

org], without the sequence encoding the predicted endogenous signal peptide), which were PCR

amplified from Oregon R antennal cDNA and subcloned into pUAST-mCherry attB (Abuin et al.,

2011) (which encodes the calreticulin signal sequence upstream of the mCherry ORF). This construct

was integrated into VK00027 by phiC31-mediated transgenesis (Genetic Services, Inc.).

Behavior
Thermotaxis of early second instar larvae was assessed over a 15 min period on a temperature gradi-

ent extending from 13.5 to 21.5˚C over 22 cm (~0.36˚C/cm) as described (Klein et al., 2015). As

thermotaxis data were normally distributed (as assessed by Shapiro-Wilk test), statistical compari-

sons were performed by Tukey HSD test, which corrects for multiple comparisons.

To assay hygrosensory behavior, 8 well rectangular dishes (12.8 � 8.55 � 1.5 cm; ThermoFisher

#267060) were modified to serve as humidity preference chambers. The lids of two 8 well plates

were used. A heated razor blade was used to cut out the middle of one lid, and a nylon mesh was

glued into place around the edges, providing a surface for the animals to walk on which separated

them from contact with any liquid. A soldering iron was used to melt a small hole in a second culture

plate lid, which could then be placed over the screen, creating a chamber ~0.7 cm in height in which

the flies could move freely. To monitor the gradients formed, an additional chamber was constructed

with four holes equally spaced along its length to allow the insertion of humidity sensors (Sensirion

EK-H4 evaluation kit) for monitoring the humidity and temperature.

Prior to the start of each experiment, 4 wells on one side of the culture dish were filled with puri-

fied water, while the opposite 4 were filled with ~4 ml water and sufficient ammonium nitrate to

obtain a saturated solution (~3 g). The gradient was assembled with the screen and lid piece, and

the whole apparatus wrapped in food service film to avoid any transfer of air between the inside and

outside of the device. Gradients were transferred to an environmental room that maintained at con-

stant external temperature and humidity (25˚C and 70%RH). Ammonium nitrate gradients were per-

mitted to equilibrate for approximately 1 hr and were stable over many hours. For the water and air

only gradients, the air only side humidified over time. These gradients were incubated for 25 min

prior to use to allow the temperature to equilibrate; the humidity of the dry side typically rose by

~2% RH during the 30 min assay (values shown are at the 30 min time point). A small hole was poked

through the food service film covering the device to allow animals to be transferred to the gradient.

This hole was sealed using transparent scotch tape once the animals were inside. Experiments used

1–4 day old adult flies that had been sorted under light CO2 anesthesia into groups of 30 (15 male

and 15 female) animals 24 hr before testing, and transferred to fresh tubes. Flies were allowed 30

min to settle on the gradient, at which point a photograph was taken of their position, and the num-

ber of animals on each side counted, allowing calculation of a dry preference index as follows:

Dry Preference¼
# animals on dry side � # animals on moist side

total # of animals

As moisture preference data did not conform to normal distributions (as assessed by Shapiro-

Wilk test, p<0.01), statistical comparisons to wild-type control were performed by Steel test, a non-

parametric test that corrects for multiple comparisons, using JMP11 (SAS).

Calcium and Arclight imaging
Calcium and Arclight imaging of larval thermosensors was performed as previously described

(Klein et al., 2015). Pseudocolor images were created using the 16-colors lookup table in ImageJ

1.43r. Adult antennal lobe calcium imaging was performed as described for olfactory imaging

(Silbering et al., 2012), with slight modifications to sample preparation and stimulation. Briefly, 3–7

day old flies were fixed to a Plexiglas stage using UV-glue (A1 Tetric Evoflow, Ivoclar Vivadent), the

antennae were pulled forward and a small opening was made in the head capsule to allow visual

access to the antennal lobes. For the stimulation compressed air from a tank was passed through

activated charcoal and then either through an empty gas washing bottle or a gas washing bottle

filled with distilled water producing either a dry airstream of ~7% RH or a humid airstream of
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~90% RH. A computer controlled solenoid valve (The Lee Company, Westbrook, CT) was used to

switch the airflow between the two gas washing bottles. The flow was kept constant at 1 l/min with

a parallel arrangement of two 500 ml/min mass flow controllers (PKM SA, www.pkmsa.ch) placed

before the gas washing bottles. Activating the solenoid valve resulted in a complete reversal of RH

from low to high or high to low within less than 10 s. For each animal tested, both high to low and

low to high RH transitions were applied in random order. Following humidity stimulation, a final

pulse of 10% ammonia was applied as a control to confirm cellular activity (Silbering et al., 2016)

(animals showing no response to this positive control were excluded from the analysis). Data were

processed using Stackreg (ImageJ) (Thevenaz et al., 1998) to correct for movement artifacts (ani-

mals with movement artifacts that could not be corrected with Stackreg were excluded from the

analysis) and custom scripts in Matlab and R as previously described (Silbering et al., 2011). As

quantified imaging data did not conform to normal distributions (as assessed by Shapiro-Wilk test,

p<0.01), statistical comparisons were performed by Steel-Dwass test, a non-parametric test that cor-

rects for multiple comparisons, using JMP11 (SAS).

Immunohistochemistry
Larval immunostaining was performed as described (Kang et al., 2012). Immunofluorescence on

antennal cryosections or whole-mount antennae was performed essentially as described (Saina and

Benton, 2013), except that whole-mount antennae were placed in Vectashield immediately after the

final washes without dehydration. The following antibodies were used: rabbit anti-IR25a (1:1000;

[Benton et al., 2009]), guinea pig anti-IR40a (1:200, [Silbering et al., 2016]), rabbit anti-IR93a (pep-

tide immunogen CGEFWYRRFRASRKRRQFTN, Proteintech, Rosemont, IL, USA, 1:4000 for tissue

sections and 1:500 for whole-mount tissue), guinea pig anti-IR25a (peptide immunogen SKAALRPRF

NQYPATFKPRF, Proteintech, Rosemont, IL, USA, 1:200), mouse anti-GFP (1:200; Roche), goat anti-

rabbit Cy3 (1:100 larva, 1:1000 sections; Jackson ImmunoResearch), goat anti-rabbit Alexa488 (1:100

antenna whole-mount, 1:1000 antennal sections, A11034 Invitrogen AG), goat anti-guinea pig

(1:1000, A11073 Invitrogen AG) and donkey anti-mouse FITC (1:100; Jackson ImmunoResearch).

RT-PCR
cDNA for each genotype was purified from 20 fly heads (RETROscript, Ambion) for RT-PCR. Primers

used: Ir25a forward, 5’-TAGCAGTCAGCGGGACAATG; Ir25a reverse, 5’ -GAGTGGATTGCGTGAC-

GAGA; Ir40a forward, 5’-GGCGAGGACAAGGCAGTA; Ir40a reverse, 5’-CGGCAGCGGTCATCTTA

TCT; Ir93a forward, 5’-TGCCAAGGTCCAGCAGATTC; Ir93a reverse, 5’-AACATGTTCAGGGTC

TCGGC. RpL32 forward, 5’-GCTAAGCTGTCGCACAAATG; RpL32 reverse 5’-GTTCGATCCG

TAACCCGATGT.
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