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Abstract Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces

anxiety-like and aversive behavior. While some information is known about the afferent circuitry

that endogenously drives this neural activity and behavior, the downstream receptors and

anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE

system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic

voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify

neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that

photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral

amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like

behavior. Additionally, we report that b-adrenergic receptors mediate the anxiety-like phenotype

of increased NE release in the BLA. These studies begin to illustrate how the complex efferent

system of the LC-NE system selectively mediates behavior through distinct receptor and

projection-selective mechanisms.

DOI: 10.7554/eLife.18247.001

Introduction
The locus coeruleus noradrenergic system (LC-NE) comprises a widespread projection network

throughout the central nervous system capable of modulating a diverse range of behaviors including

arousal, learning, pain modulation, and stress-induced negative affective states (Berridge and

Waterhouse, 2003; Sara, 2009). Understanding the neural circuit basis for how this nearly ubiqui-

tous neuromodulatory network exerts influence on negative affect is a critical step towards therapeu-

tically targeting stress-induced neuropsychiatric disorders (Schwarz and Luo, 2015; Schwarz et al.,

2015; Reyes et al., 2015; McCall et al., 2015; Arnsten et al., 2015; Kebschull et al., 2016). One

particular efferent projection from the LC is to the basolateral amygdala (BLA). The BLA is an
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important candidate anatomical substrate for the widely known role of norepinephrine (NE) in affec-

tive behaviors (Berridge and Waterhouse, 2003; Schwarz et al., 2015; Davis, 1992; Valentino and

Aston-Jones, 2010; Robertson et al., 2016, 2013; Grissom and Bhatnagar, 2011; Siuda et al.,

2015a, 2016; Plummer et al., 2015). The BLA is notable for integrating sensory information to

encode and drive diverse and opposing affective behaviors including anxiety, fear, aversive, and

reward behaviors (Kim et al., 2013; Stuber et al., 2011; Tye et al., 2011; Namburi et al., 2015;

Gore et al., 2015; Belova et al., 2007; Beyeler et al., 2016; Wolff et al., 2014; Bermudez and

Schultz, 2010; Bruchas et al., 2009; Knoll et al., 2011; Sugase-Miyamoto and Richmond, 2005;

Crowley et al., 2016; Sears et al., 2013; Roozendaal et al., 2008, 2006; Miranda et al., 2007).

Notable efforts to uncover the role of the BLA and adrenergic signaling in consolidation of fear

memories have been reported (Sears et al., 2013; Roozendaal et al., 2008, 2006), as well as recent

studies showing that acute stress activates BLA adrenergic receptors (agnostic to the source of NE)

to promote anxiety and other stress-related behaviors (Miranda et al., 2007; Buffalari and Grace,

2009a, 2009b; Chang and Grace, 2013). Similarly acute stress paradigms cause selective activation

of LC-NE neurons (McCall et al., 2015). Together, there have been significant efforts to examine

how source-independent noradrenergic (importantly, there are multiple sources of NE innervating

the BLA (Robertson et al., 2016; Plummer et al., 2015) signaling in the BLA can alter synaptic plas-

ticity, fear encoding, and memory consolidation, yet few studies have directly examined how the

neuromodulatory LC-NE system utilizes BLA output to alter acute risk averse behaviors, such as anxi-

ety (Grissom and Bhatnagar, 2011; Buffalari and Grace, 2009a, 2009b, 2007).

Downstream and independent of this projection, recent studies have demonstrated that direct

activation of both basolateral amygdala (BLA) cell bodies or their projections is both anxiogenic and

socially aversive (Siuda et al., 2015a, 2016; Tye et al., 2011; Felix-Ortiz et al., 2013, 2016; Felix-

Ortiz and Tye, 2014). Furthermore, it has also been demonstrated that increasing BLA excitatory

output through Gas G-protein activation, and more specifically, b-adrenergic receptor signaling

causes acute social anxiety (Siuda et al., 2016). Separately, noradrenergic cell firing in the LC has

been shown to increase in the context of stressful stimuli (McCall et al., 2015; Abercrombie and

Jacobs, 1987a, 1987b; Aston-Jones et al., 1999; Mana and Grace, 1997). While the anatomical

projections from the LC and their cell types have been studied for several years, the precise mecha-

nisms by which fibers from the LC can directly influence BLA function to promote negative affective

behaviors are not understood. Specifically, how LC-BLA projections generate affective behavioral

responses through specific receptor systems and modulation of cell activity is unknown.

To determine the role of locus coeruleus noradrenergic influence on BLA function and negative

affective behavior we optogenetically manipulated LC-NE inputs into the BLA, directly testing

whether NE is released from LC terminals into the BLA and whether this terminal stimulation can

drive anxiety-like and aversive behavioral responses. We demonstrate that photostimulation of LC

projections to the basolateral amygdala releases NE and that this photostimulation evokes down-

stream modulation of neuronal activity in BLA neurons that project to anxiogenic brain regions. Stim-

ulation of these fibers is sufficient to produce conditioned aversion and the stimulation-induced

increased noradrenergic tone is sufficient to produce anxiety-like behavior mediated by local b-

adrenergic receptor activity (b-ARs) in the BLA. Taken together, we report a previously undefined

role for LC-BLA projections in mediating negative affective behavior through activation of b-ARs.

Results

Genetic and anatomical isolation of BLA-projection LC-NE neurons
Our previous work demonstrated that increased tonic LC-NE activity induces anxiety-like and aver-

sive behavioral responses (McCall et al., 2015; Siuda et al., 2015a), we next sought to test whether

these same behaviors can be generated by stimulating LC-NE fibers at localized projections in the

BLA. To examine the potential sources of NE from the LC to the BLA we identified and isolated the

projection using two distinct retrograde tracing approaches. First, we injected the tracer Fluorogold

into the BLA of wild-type mice (Figure 1A). Consistent with previous studies, this non-selective retro-

grade tracing approach revealed known inputs into the BLA from the LC (Robertson et al., 2016;

Asan, 1998; Fallon et al., 1978) (Figure 1B). We next used a dual injection strategy to anatomically

isolate BLA-projecting LC-NE+ neurons. To do so, we used mice expressing Cre under the promoter
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for tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (ThIRES-Cre mice)

(Savitt et al., 2005). Here, we injected a red retrobead tracer into the BLA and the green-labeled

adeno-associated virus, AAV5-DIO-Ef1a-ChR2(H134)-eYFP, into the LC (ThIRES-Cre::LC-BLA:ChR2;

Figure 1C and D). In these animals, we identified BLA-projecting Th+ LC neurons with the presence

of both fluorophores in the same cells (Figure 1D). Next, to examine Th+ terminal innervation of the

BLA, we injected the cell-filling, Cre-dependent reporter AAV5-DIO-Ef1a-eYFP in the LC of ThIRES-

Cre mice (ThIRES-Cre::LC-BLA:eYFP) (Figure 1E). Here we clearly observed labeled LC neurons

(Figure 1F and G) and their projection fibers terminating in the BLA (Figure 1H). To further corrobo-

rate these findings, we examined recent projection experiments performed by the Allen Brain Insti-

tute Mouse Connectivity (ABIMC) project that also genetically and anatomically isolate this

projection (Oh et al., 2014). In three different experiments from three different genetic models, we

observed LC-BLA projections that are qualitatively similar to our own observations (Figure 1—figure

supplement 1A–L). We present these findings here for clarity and ease of independent comparison,

but this work was performed by ABIMC. Together, these anatomical studies identify a discrete pro-

jection of Th+ neurons from the LC that potentially release endogenous NE into the BLA.

Optogenetic activation of LC-BLA terminals releases norepinephrine
into the BLA
Using the same viral optogenetic strategy as above, we examined whether photostimulation of

ThIRES-Cre::LC-BLA:ChR2 projections resulted in NE release at terminals. We validated functional

ChR2 expression using whole-cell current clamp recordings of Th+ LC neurons. As, we previously

demonstrated (McCall et al., 2015), this targeting method and photostimulation protocol was suffi-

cient to generate action potentials at the LC cell bodies (Figure 2A). Next, we used a carbon fiber

microelectrode (CFME) to perform fast-scan cyclic voltammetry (FSCV) in the BLA during LC-NE
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Figure 1. Identifying a LC input to the BLA. (A) Cartoon depicting fluorgold tracing strategy. (B) Representative image (selected from three injected

mice) shows robust retrograde labeling of the LC from injection in the BLA (green = pseudocolored Fluorgold, tyrosine hydroxylase = red). Arrowhead

indicates example co-localization. Scale bar = 100 mm. 4V = 4th ventricle. The TH- cells dorsal and ventral to the LC are likely part of the medial

parabrachial nucleus which has previously identified projections to the BLA (Saper and Loewy, 1980). (C) Cartoon depicting dual injection tracing

strategy for CTB-594 and DIO-ChR2-eYFP. (D) Representative images (selected from three injected mice) shows retrograde labeling in LC of red

retrobeads and anterograde labeling of TH+ cells (green) (Nissl=blue). Arrowhead indicates example co-localization. Scale bar = 100 mm (E) Cartoon

depicting anterograde tracing strategy. (F–H) Coronal images depict robust eYFP (yellow) labeling in the LC (F and G) and BLA (H) of the same mouse

(scale bars = (F) 50 mm, (G) 10 mm, (H) 20 mm. Inset (F), tyrosine hydroxylase = red, scale bar = 25 mm.

DOI: 10.7554/eLife.18247.002

The following figure supplement is available for figure 1:

Figure supplement 1. Further identification of LC input to the BLA.

DOI: 10.7554/eLife.18247.003
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terminal stimulation. Using the extended waveform method (see methods) in acute brain slices of

ThIRES-Cre::LC-BLA:ChR2 animals, we stimulated slices with 30 5 ms light pulses from a 473 nm LED,

at 10 Hz (Figure 2B). Photostimulation of BLA slices, produced characteristic cyclic voltammograms

and uptake consistent with NE (McElligott et al., 2013; Herr et al., 2012) (t1/2 = 2.0 ± 0.2 s,

Figure 2C and D). Following a 20 min baseline, 1 mM reserpine (an inhibitor of vesicular monoamine

transporters) was perfused on the slices to deplete catecholamines from the axon terminals

(Dahlstroem et al., 1965). Reserpine treatment significantly attenuated the measured oxidative cur-

rents (31.6 ± 1.0% of baseline, Figure 2E and F) further confirming optically-evoked catecholamine

release in this isolated ThIRES-Cre::LC-BLA:ChR2 projection. These findings suggest that optogenetic

manipulation of LC-BLA terminals causes release of endogenous NE from the LC into the BLA.

In vivo photostimulation of LC-BLA terminals modulates BLA activity
BLA neurons have well reported responses to exogenous application of NE (Buffalari and Grace,

2007), but their response to endogenous NE release, explicitly from the LC, has not been previously

defined. We next determined whether the optically-evoked endogenous catecholamine release

would mimic the responses of BLA neurons to exogenous NE. To do so, we examined BLA single-

unit activity in ThIRES-Cre::LC-BLA:ChR2 mice using 16-channel microelectrode arrays coupled to a

fiber optic implant (optrode arrays) (McCall et al., 2015; Sparta et al., 2011). These optrode arrays

were used to isolate and record BLA single-unit activity before, during, and after photostimulation

of ThIRES-Cre::LC-BLA:ChR2 projections (473 nm, 5 Hz, 10 ms pulse width) (Figure 3A and B). In these

experiments photostimulation of ThIRES-Cre::LC-BLA:ChR2 terminals caused an increase in firing

N
E

 I
m

a
x
 (
%

 b
a
s
e
lin

e
)

0

50

100

150

0 20 40 60

Reserpine

Time (min)

1.5 nA

0

-1.0 nA

-0.4 V

1.3 V

-0.4 V

Reserpine

 Time (s)

0 5 10 15

  Time (s)

0 5 10 15

Carbon fiber 

microelectrode 

LED

1.5 V

0.8 V

-0.5 V

-0.5 V 1.5 V

0.8 V

-0.5 V

-0.5 V

A C D

E

-0.4 V

1.3 V

-0.4 V

ThCre LC ChR2; BLA FSCV

AAV5-EF1 -DIO-ChR2-eYFP

0

50

100

150

N
E

 I
m

a
x
 (
%

 b
a
s
e
lin

e
)

0 mV

-65 mV

B

F

Baseline Reserpine

**

Baseline

0.1 s

2
0
 m

V

ThCre LC ChR2; LC CC

AAV5-EF1 -DIO-ChR2-eYFP

Figure 2. Photostimulation of LC terminals in the BLA releases norepinephrine. (A) LC neuron firing reliably to 10 Hz optical stimulation (CC=whole cell

current clamp). (B) Fast scan cyclic voltammetry (FSCV) schematic. (C–D) Oxidative and reductive currents (scale bar 2 s by 0.4 nA), with representative

cyclic voltammograms (inset) and representative color plots (below) in response to photostimulation are attenuated by reserpine (1 mM). Color plots for

baseline and after reserpine (1 mM): Files were collected over 15 s (X-axis) where the carbon fiber microelectrode was ramped with a triangular

waveform from �0.4V to 1.3V and back to �0.4V at 400 V/S (Y-axis) and sampled at 10 Hz. 10 Hz, 473 nm blue LED stimulation onset at 2 s. Oxidative

currents (nA) are positive in direction and reductive currents are negative (see color coded scale bar on right). (E) Attenuation in NE oxidative current in

response to reserpine (1 mM) n = 3 pairs; mean ± S.E.M). (F) Average of first 20 min and last 15 min in (E) (Data represented as mean ± SEM, Paired

Student’s t-tests to baseline, Mean difference = 68.56, t(2) = 18.75, **p=0.0028, 95% CI [52.82 to 84.29]).

DOI: 10.7554/eLife.18247.004

McCall et al. eLife 2017;6:e18247. DOI: 10.7554/eLife.18247 4 of 23

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.18247.004
http://dx.doi.org/10.7554/eLife.18247


F
ir
in

g
 r

a
te

  
(H

z
)

OFF 5 Hz

D

LV

LC
BLA

 ThCre LC ChR2; BLA optrode

AAV5-EF1 -DIO-ChR2-eYFP

A

E

C

180 360 540
-5

5

180 360 540

5

180 360 540

PCA1

P
C

A
2

0 180 360 540

0

5

10

15

20

25

0 180 360 540

0

5

10

15

20

25

F
ir
in

g
 r

a
te

  
(H

z
)

0 180 360 540

0

5

10

15

20

25

B

F
ir
in

g
 r

a
te

  
(H

z
)

F
ir
in

g
 r

a
te

  
(H

z
)

N
o

rm
a

liz
e

d
 f

ir
in

g
 r

a
te

  
(z

)

N
o

rm
a

liz
e

d
 f

ir
in

g
 r

a
te

  
(z

)

N
o

rm
a

liz
e

d
 f

ir
in

g
 r

a
te

  
(z

)

F G

K L M

-5

0

5

Time (s) Time (s) Time (s)
H I J

Time (s) Time (s) Time (s)

5 Hz 5 Hz5 Hz

5 Hz 5 Hz5 Hz

5 Hz

N
o

rm
a

liz
e

d
 f

ir
in

g
 r

a
te

  
(z

)

0 180 360 540

4

9

29

0

-5

0

-5

0

5

0

10

20

30

40

50

= + -
0

200

400

600

L
a
te

n
c
y
 (

m
s
)

= + -
0

10

20

30

40

B
a
s
e
lin

e
 f
ir
in

g
 r

a
te

  
(H

z
)

= + -
0.0

0.2

0.4

0.6

0.8

B
u
rs

ts
/s

e
c
o
n
d

0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

C
o
m

p
a
ri
s
o
n
s
 (

%
)

Waveform similarity (r)

= + -
0

50

100

%
 s

p
ik

e
s
 in

 b
u
rs

ts

= + -
0

10

20

30

40

M
e
a
n
 f
re

q
u
e
n
c
y
/b

u
rs

t 
 (

H
z
)

N O P

*

Figure 3. Photostimulation of LC terminals in the BLA alters neuronal activity. (A) Schematic illustrating single-unit extracellular recording paradigm of

BLA neurons modulated by ChR2-expressing LC-BLA terminals. (B) Representative principal component analysis plot showing the first two principal

components with clear clustering of a single unit (maroon) from the noise (grey). Inset shows the waveform and spikes making up the isolated unit.

Y-scale is 150 microvolts and x-scale is 500 ms. (C) Recordings from eight hemispheres of six Th-CreLC-BLA:ChR2 mice show the distribution of firing rates

Figure 3 continued on next page
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frequency in 21.4% of units recorded in the BLA (Figure 3C–E,H; Figure 3—figure supplement 1A),

while some cells (9.5%) displayed inhibitory responses (Figure 3D,F,I; Figure 3—figure supplement

1B). The remaining neurons (69.0%) appeared to not change in response to photostimulation

(Figure 3D,G,J; Figure 3—figure supplement 1C). Furthermore, in a subset of cells blindly selected

(without knowledge of the increase/decrease/static response to photostimulation) following the 5 Hz

recordings, we also observed similar increases in firing rates to constant photostimulation, where the

overall population of neurons increased firing during stimulation (Figure 3—figure supplement

1D and E). In cases where the firing rate increased, the mean ± SD latency to fire following each light

pulse was 129.3 ± 108.9 ms, suggesting that this change is not due to fast, monosynaptic neuro-

transmission, but likely a polysynaptic and/or neuromodulatory effect (Figure 3K). Likewise, in cases

where the firing rate decreased the mean latency was slower at 172.6 ± 77.01 ms, and neither case

was significantly different to neurons whose firing rate did not change following photostimulation

(260.4 ± 165.7) (Figure 3K).

We next sought to determine whether these differences in neuronal response arise from distinct

subsets of BLA neurons. To do so, we examined the baseline firing rate, waveforms, and bursting

properties of recorded units. Neurons that increase firing in response to LC-BA terminal stimulation

have a significantly lower mean basal firing rate (2.194 ± 2.22 SD) than those that decrease firing

(13.06 ± 11.82 SD), however neither group is distinguishable from non-responsive neurons

(Figure 3L). To quantifiably assess the waveform shapes of the recorded neurons, we calculated the

average waveform for each neuron and performed a linear correlation on these values within each

group of neurons. These analyses demonstrate that all neurons that increase firing to LC-BLA photo-

stimulation have an r value greater than 0.835 and all neurons that decrease have an r value above

0.820, while the population of neurons that did not significantly respond to photostimulation have

an r above 0.515. These results indicate that neurons that do not respond to photostimulation are

less internally similar, while the excited and inhibited cells are more similar within groups, suggesting

that these modulated neurons are more likely to each be part of single class of neurons (Figure 3M).

Finally, we examined the bursting properties of the recorded neurons. While most neurons exhibited

some bursting properties, no differences were found between groups in terms of frequency of burst-

ing (Figure 3N), mean firing rate during bursts (Figure 3O), or the percentage of spikes from the

recording sessions that occurred within a burst (Figure 3P). Together, these heterogeneous firing

properties are consistent with previous studies using iontophoresis of NE into the BLA, and further

highlight the complex pharmacological and circuit activity that NE modulates within the BLA

(Buffalari and Grace, 2007; Ferry et al., 1997; Huang et al., 1996). These results suggest that pho-

tostimulation of LC terminals in the BLA causes varied neuronal firing rate responses, with the major-

ity of photostimulation-responsive neurons increasing firing in response to the LC-NE terminal

photostimulation.

Figure 3 continued

present in BLA neurons prior to and following LC-BLA terminal photostimulation (473 nm, 5 Hz, 3 min). (D) Average normalized firing rate of neurons

that increase (maroon), decrease (grey), or do not change (black) firing rate in response to photostimulation. Inset, shows number of neurons in each

group. Representative histograms (1 s bins) of isolated single-units showing increase (E) or decrease (F), or no change (G) in neuronal firing in response

to photostimulation (473 nm, 5 Hz, 3 min). Z-scored population responses of neurons showing increase (H) or decrease (I), or no change (J) in neuronal

firing in response to photostimulation. (K) Response latency following onset of photostimulation for cells that did not alter firing (=) (n = 29), increased

firing (+) (n = 9), or decreased firing (-) (n = 4). (Data represented as mean ± SD). (L) The same cells sorted by baseline firing rate. (Data represented as

mean ± SEM. Kruskal-Wallis test one-way ANOVA for non-parametric data with Dunn’s multiple comparisons test, Kruskal-Wallis statistic = 6.536,

p=0.0381; + vs. – Mean rank difference = �18.75, adjusted *p=0.0329; + vs. + Mean rank difference = �6.828, adjusted p=0.4341; - vs. = Mean rank

difference = 11.92, adjusted p=0.2053.) (M) Waveform similarity, within group distribution of linear correlations. Inset, every average waveform for each

recorded unit separated by response profile (= black, + maroon, - grey). (N–P) Bursting profiles for each recorded neuron. (N) Number of bursts per

second. (Data represented as mean ± SEM). (O) Mean firing rate within bursts for each neuron. (Data represented as mean ± SEM). (P) Proportion of

recorded spikes that occurred during bursts. (Data represented as mean ± SEM).

DOI: 10.7554/eLife.18247.005

The following figure supplement is available for figure 3:

Figure supplement 1. Photostimulation of LC terminals in the BLA alters neuronal activity.

DOI: 10.7554/eLife.18247.006
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LC-BLA terminal stimulation biases activation towards anxiety-
promoting BLA neurons
The BLA is thought to be a heterogeneous hub for emotional processing containing separable popu-

lations for regulating either positive or negative affect. Recent studies have suggested that these

opposing populations are distinct in either their projection target or their cell-type (Stuber et al.,

2011; Namburi et al., 2015; Beyeler et al., 2016; Felix-Ortiz et al., 2016; Burgos-Robles et al.,

2017; Kim et al., 2016, 2017; Correia et al., 2016). Given the role of BLA adrenergic receptors in

modulating anxiety-like and aversion behaviors (Siuda et al., 2015a, 2016), we hypothesized that

LC-NE innervation of BLA neurons may preferentially bias activation of neurons that promote anxi-

ety-like behavior such as the ventral hippocampus (vHPC)- and central amygdala (CeA)- projecting

BLA neurons as opposed to projections that promote positive affect and anxiolysis such as nucleus

accumbens (NAc)-projecting BLA neurons. Using a combination of retrograde viral tracing, immuno-

histochemistry, and optogenetic stimulation in Th-CreLC-BLA:ChR2 mice, we assessed these potential

tri-synaptic circuits that may underlie anxiety-like behaviors (Figure 4A). Photostimulation of LC-NE

terminals in the BLA (5 Hz, 10 ms) significantly increases the number of cFos-expressing BLA neurons

in ThIRES-Cre::LC-BLA:ChR2 animals compared to ChR2-lacking (Figure 4B; Figure 4—figure supple-

ment 1A–D) and contralateral BLA controls following photostimulation (Figure 4—figure supple-

ment 1E). To assess whether the cFos+ BLA neurons resulting from LC-NE terminal activation were

biased toward a particular class of BLA projection neurons we next repeated the experiment with

the retrograde tracer Cholera toxin subunit B (CTB) injected into BLA projection regions (vHPC,

CeA, and NAc). These immunohistochemistry studies reveal that the cFos present following LC-NE

terminal activation in the BLA, overlaps significantly more with vHPC- and CeA-targeted compared

to NAc-targeted CTB in the BLA (Figure 4C–G; Figure 4—figure supplement 1F–H). These results

suggest that LC-NE terminals in the BLA preferentially activate vHPC- and CeA- projecting BLA neu-

rons thought to be involved in modulating negative valence and affective behaviors.

LC-BLA terminal stimulation is sufficient to elicit a conditioned place
aversion
After identifying the LC terminals to the BLA as a projecting source of NE, that photostimulation of

these terminals are capable of altering BLA activity, and that this photostimulation appears to bias

BLA activation towards circuits involved in negative affect, we next tested whether this same pattern

of terminal stimulation can drive an immediate negative valence. Fiber optics were implanted at LC-

NE terminal sites in the BLA of ThIRES-Cre mice with AAV5-DIO-Ef1a-ChR2(H134)-eYFP previously

injected into the LC (ThIRES-Cre::LC-BLA:ChR2) (Figure 5A, Figure 5—figure supplement 1A). Sur-

prisingly, photostimulation of ThIRES-Cre::LC-BLA:ChR2 terminals using the parameters that induce a

real-time place aversion at LC-NE cell bodies (McCall et al., 2015) failed to elicit a real-time aversion

in ThIRES-Cre::LC-BLA:ChR2 animals (Figure 5B and C). There was no significant change in place test-

ing behavior (Figure 5C) or locomotor behavior (Figure 5D) within animals or compared to ThIRES-

Cre::LC-BLA:eYFP controls at either a physiologically-relevant 5 Hz or an over-driven 60 Hz photosti-

mulation. This finding is particularly interesting in light of previous systemic pharmacology experi-

ments (McCall et al., 2015) that suggested the immediate negative valence induced by LC-NE

stimulation is mediated by a1 adrenergic receptor activation. These results indicate that the real-

time negative valence of LC-NE stimulation is likely produced via another LC-NE projection and one

that is not recruited through antidromic stimulation of BLA-projecting LC neurons.

It is also possible that the neuromodulatory effects on this circuit require a long-term associative

memory component compared to fast-acting, acute activation of similar pathways (Kim et al., 2013;

Namburi et al., 2015; Haubensak et al., 2010). To directly test whether long-term learned associa-

tions are produced by ThIRES-Cre::LC-BLA:ChR2 stimulation, we employed a Pavlovian conditioned

place aversion (CPA) assay similar to our previous work (McCall et al., 2015; Siuda et al., 2015a; Al-

Hasani et al., 2013; Siuda et al., 2015b) (Figure 5E, Figure 5—figure supplement 1B). When

allowed to freely explore two contextually-differentiated chambers, following two conditioning days

of photostimulation of ThIRES-Cre::LC-BLA:ChR2 terminals (5 Hz, 10 ms), animals expressing ChR2-

eYFP spent significantly less time in the context that was previously paired with photostimulation

compared to the ThIRES-Cre::LC-BLA:eYFP controls (Figure 5F and G). Neither group of mice showed

significant changes in locomotor activity before, during, or after conditioning (Figure 5H). Together,
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these results suggest that there is a learned negative association produced by photostimulation of

Th+ fibers in the BLA. This association is capable of producing avoidance from contexts in which the

photostimulation previously occurred.

Optogenetic targeting of LC-NE projections to the BLA promotes
anxiety-like behavior through beta-adrenergic receptor activity
Following the observation that stimulation of LC-BLA fibers alone is sufficient to cause a conditioned

aversion, we next tested whether the same stimulation of these terminals would drive acute anxiety-

like behaviors similar to those we recently reported in response to direct LC-NE cell body activation.

Photostimulation of ThIRES-Cre::LC-BLA:ChR2 terminals using parameters that induce anxiety-like

behavior at LC-NE cell bodies (McCall et al., 2015) resulted in a significant decrease in time spent in

the center of the open field (OFT) with no significant change in general locomotor activity

(Figure 6A–D, Figure 6—figure supplement 1A). These experiments suggest that stimulation of

only the subset of LC-NE fibers that project to the BLA is sufficient to induce anxiety-like behaviors.
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Figure 4. Photostimulation of LC terminals in the BLA preferentially activates BLA circuitry associated with anxiety-

like behavior. (A) Diagram of viral and optogenetic strategy. (B) 5 Hz photostimulation increases cFos expression

within the BLA in ThIRES-Cre::LC-BLA:ChR2+ animals compared to ThIRES-Cre::LC-BLA:ChR2- controls (Data

represented as mean ± SEM, n = 9 ChR2, n = 4 Ctrl; average of 3 sections/mouse; Student’s t-test, Mean

difference = 19.17, t(10) = 4.005, **p=0.0040, 95% CI [�35.47 to �10.11). (C) 5 Hz photostimulation increases cFos

expression significantly more in BLA neurons projecting to the vHPC and CeA compared to NAc in ThIRES-Cre::LC-

BLA:ChR2 animals (Data represented as mean ± SEM, n = 9 vHPCCTB, n = 6 CeACTB, n = 9 CeACTB, 3 sections per

mouse; One-Way ANOVA, Bonferroni’s Multiple Comparison Test, F2,20 = 7.199, **p=0.0044; ThIRES-Cre::LC-BLA:

ChR2:CTB-vHPC vs. ThIRES-Cre::LC-BLA:ChR2:CTB-NAc Mean difference = 12.95, t(20) = 3.585, **p<0.01 95% CI

[3.511 to 22.39]; ThIRES-Cre::LC-BLA:ChR2:CTB-CeA vs. ThIRES-Cre::LC-BLA:ChR2:CTB-NAc. Mean difference = 11.25,

t(20) = 2.802, *p<0.05 95% CI [0.7605 to 21.74]. Representative images of the BLA expressing cFos after 5 Hz

photostimulation in (D) ThIRES-Cre::LC-BLA:ChR2 injected with CTB in NAc, (E) vHPC, or (F) CeA. Scale bar, 100 mm.

(G) Confocal images showing colocalization of CTB and cFos after 5 Hz photostimulation in the NAc, vHPC, and

CeA. Scale bar, 50 mm.

DOI: 10.7554/eLife.18247.007

The following figure supplement is available for figure 4:

Figure supplement 1. Photostimulation of LC terminals in the BLA preferentially activates BLA circuitry associated

with negative affect.

DOI: 10.7554/eLife.18247.008
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Our prior work revealed that systemic antagonism of b-ARs blocks the anxiogenic, but not the

real-time aversive, components of tonic LC-NE stimulation (McCall et al., 2015). We next tested

whether b-AR activity in the BLA is necessary for LC-NE mediated anxiogenesis. To do so we

implanted a combined fiberoptic-fluid cannula into the BLA and delivered either an artificial cerebro-

spinal fluid vehicle or the non-selective b-AR antagonist, Propranolol (1 mg)(Roozendaal et al.,

2008, 2006; Chang and Grace, 2013; Shanks et al., 1966), prior to photostimulation (Figure 6E–H,

Figure 6—figure supplement 1B). The same photostimulation paradigm that was anxiogenic in the

OFT, caused a decrease in time spent in the open area of the elevated zero maze (EZM) of ChR2+

animals that received vehicle, compared to YFP-expressing, vehicle controls (Figure 6G and H).

Importantly, when we locally antagonized b-ARs directly in the BLA prior to photostimulation, anxio-

genesis was completely blocked in ChR2+ animals with no effect on eYFP-expressing, propranolol

controls (Figure 6G and H). These findings suggest that local b-AR activation by NE release from

LC-BLA terminals is the substrate responsible for the photostimulation-induced anxiety-like

behavior.
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Figure 5. Photostimulation of LC terminals in the BLA causes conditioned aversion. (A) Cartoon of viral and fiber optic delivery strategy and calendar of

real-time place testing studies. (B) Representative traces of behavior at different frequencies. (C) Frequency response of RTPT and (D) locomotor activity

at 5 and 60 Hz. Data represented as mean ± SEM, n = 4 eYFP, 5 ChR2. (E) Conditioned place aversion (CPA) behavioral calendar. (F) Representative

CPA traces. (G) ThIRES-Cre::LC-BLA:ChR2 mice (maroon; n = 9) show a conditioned aversive response to chamber paired with photostimulation

compared to ThIRES-Cre::LC-BLA:eYFP controls (grey; n = 8) (Data represented as mean ± SEM, Student’s t-test, Mean difference = 131.3, t(15) = 2.39,

*p=0.0303, 95% CI [14.32 to 248.4) following two days of conditioning with (H) no significant differences in locomotor behavior during conditioning day

1 (CD1) and or conditioning day 2 (CD2) in CPA.

DOI: 10.7554/eLife.18247.009

The following figure supplement is available for figure 5:

Figure supplement 1. Photostimulation of LC terminals in the BLA drive aversive behavior.

DOI: 10.7554/eLife.18247.010
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Discussion
We aimed to dissect the functional role of LC to BLA inputs, and to determine the specific receptors

within the BLA that mediate LC-NE influenced anxiety-like behavior in the region. Taken together,

these data suggest that photostimulation of LC-BLA projections releases NE into the BLA and this
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Figure 6. Photostimulation of LC terminals in the BLA promotes anxiety-like behavior through beta-adrenergic receptors. (A) Calendar of OFT studies.

(B) Representative heat maps of activity during OFT. (C) 5 Hz photostimulation causes an anxiety-like phenotype in OFT of ThIRES-Cre::LC-BLA:ChR2

animals compared to ThIRES-Cre::LC-BLA:eYFP controls (Data represented as mean ± SEM, n = 10 eYFP, 11 ChR2; Student’s t-test, Mean

difference = 116.9, t(19) = 3.46, **p=0.0026, 95% CI [46.20 to 187.5) with (D) no change in locomotor activity (Data represented as mean ± SEM). (E)

Cartoon of viral, cannula, and fiber optic delivery strategy and (F) calendar of EZM behavior. (G) 5 Hz photostimulation causes an anxiety-like phenotype

in EZM of ThIRES-Cre::LC-BLA:ChR2 animals compared to ThIRES-Cre::LC-BLA:eYFP controls, which is reversed by intra-BLA propranolol pretreatment

(Data represented as mean ± SEM, n = 11 eYFP + Vehicle, n = 9 ChR2 + Vehicle, n = 7 eYFP + Propranolol, n = 8 ChR2 + Propranolol; One-Way

ANOVA, Bonferroni’s Multiple Comparison Test, F3,31 = 8.95, p=0.0002; ThIRES-Cre::LC-BLA:eYFP+Vehicle vs. ThIRES-Cre::LC-BLA:ChR2+Vehicle. Mean

difference = 14.74, t(2) = 3.94, **p<0.01 95% CI [4.21 to 25.27]; ThIRES-Cre::LC-BLA:ChR2+Vehicle vs. ThIRES-Cre::LC-BLA:ChR2+Propranolol. Mean

difference = 16.93, t(2) = 4.19, **p<0.01 95% CI [5.46 to 28.31]; ThIRES-Cre::LC-BLA:eYFP+Propranolol vs. ThIRES-Cre::LC-BLA:ChR2+Vehicle. Mean

difference = 18.37, t(2) = 4.39, ***p<0.001 95% CI [6.57 to 30.18). (H) Representative heat maps of activity during EZM.

DOI: 10.7554/eLife.18247.011

The following figure supplement is available for figure 6:

Figure supplement 1. Photostimulation of LC terminals in the BLA drive anxiety-like behavior.

DOI: 10.7554/eLife.18247.012
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same photostimulation alters BLA firing. This altered firing appears to preferentially increase activity

in BLA neurons that project to area known to modulate negative affect such as the CeA and vHPC.

In behaving animals, this stimulation of LC terminals in the BLA facilitates a conditioned aversion and

acute anxiety-like behaviors. Importantly, the experiments here cannot determine whether the

observed changes in BLA unit activity and the conditioned place aversion are mediated directly by

NE release from LC terminals. Instead, these affects could be generated through antidromic stimula-

tion of LC cell bodies (and their diverging efferent projections) or through plastic changes resulting

from the repeated and long-term stimulation protocols used during the two 30 min conditioning ses-

sions. However, using local, site-specific pharmacological blockade, we identified that b-ARs within

the BLA are necessary for the anxiety-like component of this behavior. These data provide a critical

framework for understanding the downstream influence of the LC-NE system in the BLA as it relates

to anxiety-like behavioral states.

The BLA is a crucial component in the neural circuitry of negative affective behaviors (Davis, 1992;

Davidson, 2002). Activation of BLA cell bodies and their projections can bidirectionally mediate anx-

iety-like behavior and fear encoding (Davis, 1992; Kim et al., 2013; Tye et al., 2011;

Namburi et al., 2015; Beyeler et al., 2016; Wolff et al., 2014; Knoll et al., 2011; Crowley et al.,

2016; Sears et al., 2013; Roozendaal et al., 2006; Felix-Ortiz et al., 2013; Debiec and Ledoux,

2004), but how this behavioral control is altered by neuromodulators is not well understood. NE is

increased in the BLA following stressful events (Galvez et al., 1996; Hatfield et al., 1999). The BLA

receives noradrenergic input from the LC (Asan, 1998; Fallon et al., 1978) as well the Hoxb1+ neu-

ronal populations in the lower brainstem and NTS (Robertson et al., 2016). Despite the LC input

being less dense than other NE input (Plummer et al., 2015), here we directly show that molecu-

larly-defined Th+ positive fibers from the LC release catecholamines into the amygdala and alter

behavior. Previous studies have demonstrated that noradrenergic tonic cell firing in the LC increases

following stressful stimuli (McCall et al., 2015; Abercrombie and Jacobs, 1987a, 1987b; Aston-

Jones et al., 1999; Mana and Grace, 1997). We now demonstrate that selective activation of Th+

LC terminals from these neurons modulates BLA neuronal activity in vivo. Despite a diversity of

recorded responses, these findings align with prior studies suggesting neurons that increase firing to

LC-BLA photostimulation have a higher probability of being BLA projection neurons, while those

that decrease have a higher probability of being BLA interneurons (Figure 3L) (Likhtik et al., 2006).

Therefore, it seems that it is reasonable that LC-BLA modulation might be selectively increasing

activity of BLA projection neurons, though further studies using phototagging or imaging BLA neu-

rons is required. Though it is well established that activation of b-ARs increases BLA activity

(Buffalari and Grace, 2007; Huang et al., 1996; Pu et al., 2009), we cannot conclude that this is

the only mechanism by which LC-BLA fibers modulate BLA activity. Indeed, it is likely that the diver-

sity of neuronal responses we observed are mediated through different receptors systems

(Buffalari and Grace, 2007) and/or local or distal polysynaptic recurrent circuitry (Wolff et al.,

2014; Rosenkranz and Grace, 2002, 1999). Furthermore, while we do not know the genetic identity

or projection targets of the BLA neurons from which we recorded, it is possible that NE serves to

preferentially shift BLA activity in neurons that favor anxiety-like behavior (i.e. those that project to

the ventral hippocampus, prefrontal cortex, or central amygdala) rather those that favor positive

affect and anxiolysis (i.e. projections to the nucleus accumbens and bed nucleus of the stria termina-

lis)(Kim et al., 2013; Stuber et al., 2011; Tye et al., 2011; Namburi et al., 2015; Beyeler et al.,

2016; Felix-Ortiz et al., 2013, 2016; Felix-Ortiz and Tye, 2014). We attempted to begin to

address this question using a retrograde labeling strategy combined with immunohistochemistry for

cFos. Our results suggest that there is selective modulation of BLA projections neurons. The com-

bined retrograde labeling and photostimulation studies indicate that, cFos, a secondary marker for

neuronal excitation (Madabhushi et al., 2015), is selectively increased in the CeA- and vHPC-projec-

ting BLA neurons (Figure 4). Furthermore, our recent reports demonstrate that increasing the activ-

ity of CaMKII+ BLA neurons via chemogenetic or optogenetic activation of Gas-signaling also

produces an anxiogenic-like state, suggesting that excitatory cells possibly mediate the LC-BLA nor-

adrenergic effect (Siuda et al., 2015a, 2016). However, further work will be necessary to understand

the cell-type and projection-specific relationship between LC-NE modulation of BLA activity and its

ability to drive negative affective behavior through downstream circuits and receptor systems.

Additionally, we show that photostimulation at the site of LC terminals in the BLA conditions aver-

sive behavior. However, it remains to be seen whether this conditioned aversive behavior is
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mediated locally in the BLA by NE. This effect may could be due to factors outside of the BLA and

distinct from NE release such as antidromic activity at the LC cell bodies or from prolonged changes

to LC circuit activity elsewhere that result from long-term, repeated optogenetic stimulation. How-

ever, a similar photostimulation paradigm increases anxiety-like behavior that is blocked by local

antagonism of b-ARs in the BLA. It is well established that prolonged NE release in the BLA modu-

lates memory storage through b-AR-mediated cAMP production and this effect, in turn, is regulated

by a1-AR and a2-AR activity (Galvez et al., 1996; Hatfield et al., 1999; Liang et al., 1990;

Ferry and McGaugh, 2008; Ferry et al., 1999a, 1999b). In particular, many groups have shown nor-

adrenergic influence in fear-related memory formation (Sears et al., 2013; Roozendaal et al., 2008,

2006; Debiec and Ledoux, 2004; Garrido Zinn et al., 2016; Skelly et al., 2017). Our findings sup-

port these prior works while offering new insight into how this circuitry might acutely modulate neg-

ative affect. The observation that the LC-BLA circuitry carries an intrinsically negative valence

suggests that this circuit can natively promote negative affect, rather than merely

enhancing memory. However, it is possible that without explicit memory cues, our photostimulation

paradigm conditions an aversion via recruitment of many other neurotransmitter systems

(Brioni et al., 1989; Marsicano et al., 2002). This might not be the case in the presence of a positive

cue or reward where the LC-BLA projection may still simply enhance the memory. Further studies

will be necessary to fully evaluate the implications of the apparent negative affect promoted by

exogenous stimulation of this circuit. While there is some concern that photostimulation of ThIRES-

Cre::LC-BLA:ChR2 fibers could cause backpropagating action potentials to LC-NE cell bodies result-

ing in NE release elsewhere in the brain for the conditioned place aversion, the observation that the

anxiety-like phenotype can be blocked with local b-AR antagonism (Figure 6G) suggests there is

some degree of circuit isolation in our study. Additionally, the observation that this stimulation does

not replicate all of the behavioral phenotypes of cell body activation (McCall et al., 2015)

(Figure 5C; i.e. no RTPA) further supports this interpretation. However, we cannot definitively con-

clude that the observed CPA (Figure 5F and G) is mediated through the same postsynaptic mecha-

nism (i.e. b-AR activation) in the BLA as the anxiety-like phenotype. To this point, we recently

demonstrated that Gas signaling (the same signaling mechanism that b-AR activates) in CaMKIIa+

BLA neurons is sufficient for anxiogenesis, without driving either a real-time or conditioned place

aversion (Siuda et al., 2015a, 2016). Additionally, throughout these experiments we have not

directly addressed any potential confounds that arise from long-term expression of exogenous

opsins (Miyashita et al., 2013; Ferenczi et al., 2016; Warden et al., 2012). Instead, our behavioral

controls (eYFP-expression with photostimulation) are aimed at controlling spurious effects of exoge-

nous protein expression, heating, and light delivery to the BLA (Yizhar et al., 2011). Together with

our work at LC-NE cell bodies (McCall et al., 2015), these studies and the current findings suggest

that LC neurons with fibers in the BLA are capable of conditioning aversion, though possibly through

other brain regions and possibly independent of b-AR activation.

The lack of a real-time place aversion is a particularly interesting observation. We previously dem-

onstrated the real-time place aversion elicited by LC-NE cell body activation to be dependent on a1-

AR activation (McCall et al., 2015). Together these results suggest that both the anatomical sub-

strate and receptor system responsible for this behavior is distinct from the efferent LC-NE pro-

cesses responsible for noradrenergic mediated anxiety-like behavior. Furthermore, there are

important distinctions between the RTPA and the CPA assays. RTPA is essentially an instrumental

conditioning paradigm that relies on operant learning of the subject as it engages the environment,

while CPA is a passive, classical conditioning paradigm that possibly recruit distinct brain circuitry

during the learning process (Day and Carelli, 2007). Another consideration is the longer time course

of NE transmission and receptor activation compared to fast-acting, small molecule neurotransmit-

ters, such as g-Aminobutyric acid (GABA) and glutamate (Otis and Mody, 1992; Isaacson et al.,

1993; Zoli et al., 1998; Szapiro and Barbour, 2007; Agnati et al., 2010; Palij and Stamford,

1994; Courtney and Ford, 2014). These temporal dynamics, combined with the role of NE on mem-

ory formation (Sears et al., 2013; Roozendaal et al., 2008, 2006; Debiec and Ledoux, 2004;

Sara, 2000), might confound the RTPA assay that relies on distinct pairing of the transition from one

chamber to the other with changes in neural activity. With activation of adrenergic receptors, these

effects may have slower time dynamics than what is necessary for the place-dependent operant con-

ditioning scheme – despite what we observed through cell body activation (McCall et al., 2015). It is

well known, for example, that b-AR signaling through cAMP-gated calcium channels that will likely
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increase firing acutely, but that they also signal through Arrestin-mediated transduction. The latter

can lead to long-term changes in gene and protein expression in addition to changes synaptic plas-

ticity and neuronal activity (Siuda et al., 2015a). All of these molecular considerations may also play

a key role in the behavior we observed. While numerous potential circuit-based targets exist, it

seems possible that NE projections to the mesolimbic dopamine system have the potential to medi-

ate instrumental learning including real-time aversive behaviors. The LC sends functional projections

to the dopaminergic system and numerous groups have demonstrated bidirectional control of real-

time place preference and aversion behaviors within this system (Siuda et al., 2015b;

Jennings et al., 2013; Lammel et al., 2012; Stamatakis and Stuber, 2012; Tan et al., 2012;

van Zessen et al., 2012; Isingrini et al., 2016).

Taken together, our results here and elsewhere (McCall et al., 2015; Siuda et al., 2015a,

2016) demonstrate that LC-NE downstream influence on negative affective behaviors is an elaborate

and complex system likely involving many different postsynaptic receptor systems and anatomical

projection targets. Importantly, the LC projection to the BLA is a clear functional efferent target for

LC-mediated anxiety-like behavior. These findings have broad implications for our understanding of

the mechanisms of anxiety and other negative affective disorders and suggest that further study of

these noradrenergic circuits and signaling pathways should greatly advance our current understand-

ing of related psychopathologies.

Materials and methods

Animals
Adult (25–35 g) male C57BL/6J (RRID:IMSR_JAX:000664) and ThIRES-Cre (RRID:IMSR_EM:00254)

backcrossed to C57BL/6J mice were group-housed, given access to food and water ad libitum and

maintained on a 12 hr:12 hr light:dark cycle. All animals were held in a facility in the lab 1 week prior

to surgery, post-surgery and throughout the duration of the behavioral assays to minimize stress

from transportation and disruption from foot traffic. To determine animal numbers we used G*Power

3 power analysis software (RRID:SCR_013726) (Faul et al., 2007; Charan and Kantharia, 2013)

informed by data from our typical animal usage logs from similar experiments to suggest a priori

means an standard deviations for each intended statistical methods (i.e. Student’s t-tests, ANOVAs,

etc.) or Mead’s resource equation to yield between 10 and 20 degrees of freedom for the error com-

ponent when no prior data was available (Charan and Kantharia, 2013; Festing and Altman,

2002). Any variation from these approaches was due to behavioral attrition from off-target injec-

tions/implants or headcap failures. All procedures were approved by the Animal Care and Use Com-

mittee of Washington University and conformed to US National Institutes of Health guidelines.

Viral preparation
Plasmids encoding pAAV-EF1a-DIO-eYFP [final titer 5 � 1012 vg/ml], pAAV-EF1a-double floxed-

hChR2(H134R)-eYFP-WPRE-HGHpA [final titer 2 � 1013 vg/ml], were obtained from Addgene

(Addgene.org) originally from the Deisseroth Laboratory at Stanford University. The DNA was ampli-

fied with a Maxiprep kit (Promega) and packaged into AAV5 serotyped viruses by the WUSTL Hope

Center Viral Core.

Stereotaxic surgery
Mice were anaesthetized in an induction chamber (4% isoflurane) and placed in a stereotaxic frame

(Kopf Instruments, Model 1900) where they were maintained at 1–2% isoflurane throughout the pro-

cedure. A craniotomy was performed and mice were injected as follows. For locus coeruleus terminal

studies, 500–1000 nl of AAV5-DIO-ChR2 or AAV5-DIO-eYFP was injected unilaterally (with the

exception of two animals for the single-unit electrophysiology experiments that were bilateral) into

the locus coeruleus at stereotaxic coordinates from bregma: �5.45 mm anterior-posterior (AP),

±1.25 mm medial-lateral (ML), �3.65 mm dorsal-ventral (DV). Mice were then implanted with chronic

fiber optic in the BLA at stereotaxic coordinates from bregma: �1.60 mm AP, ±2.90 mm ML, and

�4.75 mm DV. For experiments involving local drug infusion into the BLA, a metal cannula (Plastic-

sOne) was implanted at �1.60 mm AP, ±2.90 mm ML, and �4.25 mm DV and either an internal infu-

sion cannula or fiber optic was placed to extend another 0.5 mm. The fiber optic or cannula implants
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were secured using two bone screws (CMA, 743102) and affixed with TitanBond (Horizon Dental

Products) and dental cement (Lang Dental)(McCall et al., 2015, 2013). Mice were allowed to

recover for at least 6 weeks prior to behavioral testing; this interval permitted optimal AAV expres-

sion and Cre recombinase activity. For retrograde studies 400 nl of Flurogold or Retrobeads were

injected into the BLA at �1.60 mm AP, ±2.90 mm ML, and �4.75 mm DV. Mice were allowed to

recover for one week for fluorogold and two weeks for retrobeads, prior to perfusion for histological

examination. Cholera Toxin subunit b AlexaFluor 555 (Invitrogen; CTB-555) was injected using a

Neuros Hamilton Synringe (32 gauge, beveled) to the NAc (+1.25 mm AP, ±0.75 mm ML, �4.30 mm

DV; 200 nl), CeM (�0.80 mm AP, ±2.35 mm ML, �5.20 mm DV; 150 nL), vHPC (�3.55 mm AP, +3.50

ML, �4.00 mm DV; 250 nL). The beveled syringe was inserted facing caudally for both NAc and

vHPC and medially for CeA injections. CTB was prepared fresh for each series of experiments

(Conte et al., 2009).

cFos induction
ThIRES-Cre::LC-BLA:ChR2 mice were injected with CTB-555 (Invitrogen, Carlsbad, CA) into the NAc,

CeM, or vHPC at least 6 weeks following AAV5-DIO-ChR2-eYFP injection into the LC. Mice were

then implanted with a chronic fiber optic in the BLA as described above. Mice were allowed to

recover for 5 days and habituated to a chamber and fiber optic tether over 2 days. Seven days fol-

lowing CTB injection, 5 Hz photostimulation (10 ms pulses, 10 mW) was delivered to the BLA for 20

min. Mice were then sacrificed for immunohistochemistry 90 min following the onset of photostimu-

lation. Following immunohistochemistry and imaging, images were background subtracted using

ImageJ Fiji (RRID:SCR_002285). Cells were manually counted by an experimenter blind to the experi-

mental conditions.

Immunohistochemistry
Immunohistochemistry was performed as described (McCall et al., 2015; Siuda et al., 2015a,

2016). Briefly, mice were anesthetized with pentobarbital and transcardially perfused with ice-cold

4% paraformaldehyde in phosphate buffer (PB). Brains were dissected, post-fixed for 24 hr at 4˚C
and cryoprotected with solution of 30% sucrose in 0.1M PB at 4˚C for at least 24 hr, cut into 30 mm

sections and processed for immunostaining. 30 mm brain sections were washed three times in PBS

and blocked in PBS containing 0.5% Triton X-100% and 5% normal goat serum. Sections were then

incubated for ~16 hr at room temperature in chicken anti-TH (1:2000, Aves Labs, Tigard, OR) or rab-

bit anti-phospho-cFos (1:500, Cell Signaling Technology, Danvers, MA). Following incubation, sec-

tions were washed three times in PBS and then incubated for 2 hr at room temperature goat anti-

chicken or anti-rabbit Alexa Fluor 594 or 633 (1:500, Invitrogen, Carlsbad, CA) were then washed

three times in PBS and followed by three 10 min rinses in PB and mounted on glass slides with Hard-

set Vectashield (Vector Labs, Burlingame, CA) (RRID:AB_2336787) for microscopy. All sections were

imaged on both epifluorescent and confocal microscopes. Gain and exposure time were constant

throughout each experiment, and all image groups were processed in parallel using Adobe Photo-

shop CS5 (Adobe Systems, San Jose, CA) (RRID:SCR_014199).

Antibody Species Dilution Source RRID

TH Chicken 1:2000 Aves Labs RRID:AB_10013440

Alexa Fluor 594 anti-chicken IgG Goat 1:500 Invitrogen RRID:AB_142803

Alexa Fluor 633 anti-chicken IgG Goat 1:500 Invitrogen RRID:AB_1500591

Alexa Fluor 633 anti-rabbit IgG Goat 1:500 Invitrogen RRID:AB_2535731

Phospho-cFos Rabbit 1:500 Cell Signaling RRID:AB_10557109

Slice preparation
Slice electrophysiology and voltammetry experiments were performed as previously described

(Stamatakis et al., 2013). Briefly, mice were anesthetized (Euthasol) and perfused with ice-cold

sucrose aCSF (in mM: 225 sucrose, 119 NaCl, 1.0 NaH2PO4, 4.9 MgCl2, 0.1 CaCl2, 26.2 NaHCo3,
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1.25 glucose). Following rapid decapitation, coronal slices containing LC and BLA were prepared on

a vibratome (VT-1200, Leica Microsystems, Wetzlar, Germany) and allowed to rest for at least 30 min

in oxygenated aCSF (in mM: 119 NaCl, 2.5 KCl, 1.0 NaH2PO4, 1.3 MgCl2, 2.5 CaCl2, 26.2 NaHCO3,

and 11 glucose) at 35˚C prior to placement in the recording chamber where slices were perfused

with oxygenated aCSF at 37˚C at a rate of 2 ml/min.

Slice electrophysiology
Whole-cell current clamp recordings were made in LC neurons expressing ChR2-eYFP with a Multi-

clamp 700B amplifier (Molecular Devices, Sunnyvale, CA) (RRID:SCR_011323). Since LC neurons are

spontaneously active, current was injected such that the cell was resting at �65 mV. To elicit action

potentials, slices were stimulated with 5 pulses of blue LED at a rate of 10 Hz (Thorlabs, 473 nm, 5

ms pulse width, 1 mW) via the 40X objective.

Fast scan cyclic voltammetry
Carbon fiber microelectrodes (CFME, 75 mm in length) were lowered into 300 mM coronal slices and

placed where the densest ChR2-eYFP expression was observed (CeA/BLA border) ThIRES-Cre::LC-

BLA:ChR2 mice. To detect NE, the CFME was ramped from �0.4 V to 1.3 V versus a Ag/AgCl refer-

ence electrode (in the bath) at a rate of 400 V/s at 10 Hz. Slices were stimulated with 30 pulses of a

blue LED (Thorlabs, 473 nm, 5 ms pulse width, 1 mW) via a 40X objective at 10 Hz every 5 min to

release NE. Electrochemical data was collected and analyzed using a combination of Tar Heel CV

(ESA, Chelmsford, MA) (Robinson and Wightman, 2007), HDCV (http://www.chem.unc.edu/facili-

ties/electronics_software.html) (Bucher et al., 2013), and Labview (RRID:SCR_014325). Following

collection, background subtracted cyclic voltammograms (CVs) were smoothed one time with a Fast

Fourier Transformation (Bucher et al., 2013). CVs had characteristic oxidation and reduction peaks

coinciding with catecholamine detection (ox: 600–700 mV red: �200–300 mV). Oxidative currents

were analyzed at the peak of the oxidative potential for individual experiments. Clearance half-life

(t1/2) was measured in Clampfit 10.2 (Molecular devices) as previously described (McElligott et al.,

2013).

In vivo electrophysiology
Spontaneous single unit activity was recorded as previously described (McCall et al., 2015;

Siuda et al., 2015a). Briefly, mice were lightly anesthetized (1% isoflurane), placed in a stereotactic

frame and two skull screws were placed on either side of the midline to ground the electrode array.

The recording apparatus consisted of a 16-channel (35 mm tungsten wires, 150 mm spacing between

wires, 150–33 mm spacing between rows, Innovative Physiology, Durham, NC) electrode array. This

array was epoxied to a fiber optic and lowered into the BLA (stereotaxic coordinates from bregma:

�1.3 mm (AP),±2.9 mm (ML) and �4.9 mm (DV). Extracellular recordings were taken from ThIRES-Cre::

LC-BLA:ChR2 mice. Spontaneous and photostimulated neuronal activity was recorded from each

electrode, bandpass-filtered with activity between 250 and 8000 Hz, and analyzed as spikes. Voltage

signals were amplified and digitally converted using OmniPlex and PlexControl (Plexon, Dallas, TX)

(RRID:SCR_014803). For ThIRES-Cre::LC-BLA:ChR2 recordings, 3 min of baseline recordings were

made followed by 3 min of 5 Hz photostimulation (10 ms pulses, 10 mW) and then another 3 min

post- stimulation (off, on, off). Principle component analysis and/or evaluation of t-distribution with

expectation maximization was used to sort spikes using Offline Sorter (Plexon)(RRID:SCR_000012)

and only cells with distinct clusters away from the noise that remained firing throughout the duration

of the recording were included. To assess firing rate changes for each cell, all spikes were binned

into 1 s bins. Using z-scores (z= (x-m)/s; where x is the sampled firing rate of the neuron per bin), fir-

ing rates were normalized to the mean baseline firing rate during the 60 s before the start of the

photostimulation. Neurons were classified as increasing firing during photostimulation if their aver-

age z-score during photostimulation was greater than 1. Similarly, neurons were classified as

decreasing firing if their average z-score during photostimulation was less than �1. All units with

average z-scores from �1 to 1 during photostimulation were classified as no change. To determine

the latency to fire, we calculated the average time from the onset of first photostimulation to the

next spike from each cell, independent of whether the cell classified as increasing, decreasing, or

static. To determine baseline firing rate, all spikes were binned into 1 s bins and the mean of the first
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180 s of the recording (prior to any photostimulation) was used. Average waveforms were computed

from each isolated unit using the first 540 s of each recording session. Subsequently, we performed

linear correlations between each neuron of a designated class (i.e. increasing, decreasing, or static)

where r = 1 would be an identical waveform. Bursts were defined as at least two spikes with an inter-

spike interval (ISI) of <170 ms to start a burst, and two spikes with an ISI > 300 ms to terminate a

burst. Percent spikes in bursts was quantified by recording the number of spikes in bursts out of the

total number of spikes from a unit.

General behavior notes
Behavioral assays were performed in a sound attenuated room maintained at 23˚C. Lighting was

measured and stabilized at ~4 lux for anxiety tests and ~200 lux for place testing. All behavioral

apparatuses were cleaned with 70% ethanol in between animals. In each assay, animals received con-

stant photostimulation throughout the entire trial. AAV5-DIO-ChR2 and AAV5-DIO-eYFP animals

received 5 ms pulses of 10 Hz photostimulation (473 nm). Movements were video recorded and ana-

lyzed using Ethovision Software (RRID:SCR_000441).

Real time place testing (RTPT)
Mice were placed into a custom-made unbiased, balanced two-compartment conditioning apparatus

(52.5 � 25.5 � 25.5 cm) as previously described (McCall et al., 2015; Siuda et al., 2015b; Al-

Hasani et al., 2015) and allowed to freely roam the entire apparatus for 20 min. Entry into one com-

partment triggered constant photostimulation (5 Hz for LC-BLA; ~10 mW light power) while the ani-

mal remained in the light-paired chamber. Entry into the other chamber ended the

photostimulation. The side paired with photostimulation was counterbalanced across mice. Time

spent in each chamber and total distance traveled for the entire 20 min trial was measured using

Ethovision 8.5 (Noldus, Wageningen, Netherlands). Data are expressed as mean ± S.E.M percent

time spent in photostimulation-paired chamber.

Conditioned place aversion (CPA)
Mice were trained in an unbiased, balanced three compartment conditioning apparatus as previously

described (McCall et al., 2015). Briefly, mice were pre-tested by placing individual animals in the

small central compartment and allowing them to explore the entire apparatus for 30 min. Time spent

in each compartment was recorded with a video camera (ZR90; Canon, Tokyo, Japan) and analyzed

using Ethovision 8.5 (Noldus). Mice were randomly assigned to light and no-light compartments and

received no light in the morning and light (5 Hz for LC-BLA) in the afternoon at least 4 hr after the

morning training on two consecutive days. CPA was assessed on day 4 by allowing the mice to roam

freely in all three compartments and recording the time spent in each. Scores were calculated by

subtracting the time spent in the light stimulus-paired compartment post-test minus the pre-test.

Open field test (OFT)
OFT testing was performed as described (McCall et al., 2015) in a square enclosure (50 � 50 cm).

We connected ThIRES-Cre::LC-BLA:ChR2 mice to fiber optics and allowed them to roam freely for 21

min. Photostimulation alternated between off and on (5 Hz (10 ms width)) photostimulation (~10 mW

light power)) states in 3 min time segments, beginning with 3 min of no stimulation. The open field

was cleaned with 70% ethanol between each trial. The center was defined as a square comprised of

25% the total area of the OFT (i.e. each length was 50% that of the total OFT).

Elevated zero maze (EZM)
EZM testing was performed as described (McCall et al., 2015), the EZM (Harvard

Apparatus, Holliston, MA) was made of grey plastic, 200 cm in circumference, comprised of four 50

cm sections (two opened and two closed). The maze was elevated 50 cm above the floor and had a

path width of 4 cm with a 0.5 cm lip on each open section. ThIRES-Cre::LC-BLA:ChR2 animals were

connected to cables coupled to a function generator, positioned head first into a closed arm, and

allowed to roam freely for 7 min. Animals received 5 Hz (10 ms width) photostimulation (~10 mW

light power). For the b-AR antagonism experiment, mice were injected into the BLA with Propranolol
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(1 mg, intra-BLA, 30 min prior to behavior, Tocris, Bristol, United Kingdom). Mean open arm time

was the primary measure of anxiety-like behavior.

Genotyping of mouse lines
DNA was isolated from tail tissue obtained from weanling mice (21–28 days of age), and PCR screen-

ing was performed using the following primers: Cre recombinase (forward: 5’- GCA TTA CCG GTC

GAT GCA ACG AGT GAT GAG-3’ and reverse: 5’- GAG TGA ACG AAC CTG GTC GAA ATC AGT

GCG-3’) yielding a 400 bp PCR product in Cre positive animals. Fatty acid-binding protein intestinal

primers (forward: 5’- TGG ACA GGA CTG GAC CTC TGC TTT CCT AGA-3’ and reverse: 5’- TAG

AGC TTT GCC ACA TCA CAG GTC ATT CAG-3’) were used as positive controls and yield a 200 bp

PCR product.

Statistics/data analysis
All summary data are expressed as mean ± SEM. Statistical significance was taken as *p<0.05,

**p<0.01, ***p<0.001, as determined by the Student’s t-test (paired and unpaired): One-Way Analy-

sis of Variance (ANOVA) or One-Way Repeated Measures ANOVA, followed by Dunnett’s or Bonfer-

roni post hoc tests as appropriate. In cases where data failed the D’Agostino and Pearson omnibus

normality test, non-parametric analyses were used. Statistical analyses were performed in GraphPad

Prism 5.0 (RRID:SCR_002798).
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Dahlstroem A, Fuxe K, Hillarp NA, N-åke H. 1965. Site of action of reserpine. Acta Pharmacologica Et
Toxicologica 22:277–292. doi: 10.1111/j.1600-0773.1965.tb01823.x, PMID: 14328200

Davidson RJ. 2002. Anxiety and affective style: role of prefrontal cortex and amygdala. Biological Psychiatry 51:
68–80. doi: 10.1016/S0006-3223(01)01328-2, PMID: 11801232

Davis M. 1992. The role of the amygdala in fear and anxiety. Annual Review of Neuroscience 15:353–375.
doi: 10.1146/annurev.ne.15.030192.002033, PMID: 1575447

Day JJ, Carelli RM. 2007. The nucleus accumbens and pavlovian reward learning. The Neuroscientist 13:148–159.
doi: 10.1177/1073858406295854, PMID: 17404375

Debiec J, Ledoux JE. 2004. Disruption of reconsolidation but not consolidation of auditory fear conditioning by
noradrenergic blockade in the amygdala. Neuroscience 129:267–272. doi: 10.1016/j.neuroscience.2004.08.018,
PMID: 15501585

Fallon JH, Koziell DA, Moore RY. 1978. Catecholamine innervation of the basal forebrain. II. Amygdala,
suprarhinal cortex and entorhinal cortex. The Journal of Comparative Neurology 180:509–531. doi: 10.1002/
cne.901800308, PMID: 659673

Faul F, Erdfelder E, Lang AG, Buchner A. 2007. G*Power 3: a flexible statistical power analysis program for the
social, behavioral, and biomedical sciences. Behavior Research Methods 39:175–191. doi: 10.3758/
BF03193146, PMID: 17695343

Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. 2013. BLA to vHPC inputs modulate anxiety-
related behaviors. Neuron 79:658–664. doi: 10.1016/j.neuron.2013.06.016, PMID: 23972595

Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM. 2016. Bidirectional modulation of anxiety-
related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321:197–
209. doi: 10.1016/j.neuroscience.2015.07.041, PMID: 26204817

Felix-Ortiz AC, Tye KM. 2014. Amygdala inputs to the ventral Hippocampus bidirectionally modulate social
behavior. Journal of Neuroscience 34:586–595. doi: 10.1523/JNEUROSCI.4257-13.2014, PMID: 24403157

McCall et al. eLife 2017;6:e18247. DOI: 10.7554/eLife.18247 19 of 23

Research article Neuroscience

http://dx.doi.org/10.1016/S0165-0173(03)00143-7
http://dx.doi.org/10.1016/S0165-0173(03)00143-7
http://www.ncbi.nlm.nih.gov/pubmed/12668290
http://dx.doi.org/10.1016/j.neuron.2016.03.004
http://www.ncbi.nlm.nih.gov/pubmed/27041499
http://dx.doi.org/10.1016/0006-8993(89)90945-1
http://www.ncbi.nlm.nih.gov/pubmed/2752279
http://dx.doi.org/10.1371/journal.pone.0008528
http://dx.doi.org/10.1371/journal.pone.0008528
http://www.ncbi.nlm.nih.gov/pubmed/20052275
http://dx.doi.org/10.1021/ac402263x
http://www.ncbi.nlm.nih.gov/pubmed/24083898
http://dx.doi.org/10.1523/JNEUROSCI.2007-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.2007-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17989300
http://dx.doi.org/10.1016/j.neuroscience.2009.07.003
http://www.ncbi.nlm.nih.gov/pubmed/19589368
http://www.ncbi.nlm.nih.gov/pubmed/19589368
http://dx.doi.org/10.1017/S1461145708009140
http://www.ncbi.nlm.nih.gov/pubmed/18647435
http://dx.doi.org/10.1038/nn.4553
http://www.ncbi.nlm.nih.gov/pubmed/28436980
http://dx.doi.org/10.1523/JNEUROSCI.2420-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.2420-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23345220
http://dx.doi.org/10.4103/0976-500X.119726
http://www.ncbi.nlm.nih.gov/pubmed/24250214
http://dx.doi.org/10.1038/nprot.2009.93
http://www.ncbi.nlm.nih.gov/pubmed/19617887
http://dx.doi.org/10.7554/eLife.12669
http://www.ncbi.nlm.nih.gov/pubmed/27671733
http://dx.doi.org/10.1523/JNEUROSCI.0166-14.2014
http://dx.doi.org/10.1523/JNEUROSCI.0166-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/24872568
http://dx.doi.org/10.1016/j.celrep.2016.02.069
http://www.ncbi.nlm.nih.gov/pubmed/26997280
http://dx.doi.org/10.1111/j.1600-0773.1965.tb01823.x
http://www.ncbi.nlm.nih.gov/pubmed/14328200
http://dx.doi.org/10.1016/S0006-3223(01)01328-2
http://www.ncbi.nlm.nih.gov/pubmed/11801232
http://dx.doi.org/10.1146/annurev.ne.15.030192.002033
http://www.ncbi.nlm.nih.gov/pubmed/1575447
http://dx.doi.org/10.1177/1073858406295854
http://www.ncbi.nlm.nih.gov/pubmed/17404375
http://dx.doi.org/10.1016/j.neuroscience.2004.08.018
http://www.ncbi.nlm.nih.gov/pubmed/15501585
http://dx.doi.org/10.1002/cne.901800308
http://dx.doi.org/10.1002/cne.901800308
http://www.ncbi.nlm.nih.gov/pubmed/659673
http://dx.doi.org/10.3758/BF03193146
http://dx.doi.org/10.3758/BF03193146
http://www.ncbi.nlm.nih.gov/pubmed/17695343
http://dx.doi.org/10.1016/j.neuron.2013.06.016
http://www.ncbi.nlm.nih.gov/pubmed/23972595
http://dx.doi.org/10.1016/j.neuroscience.2015.07.041
http://www.ncbi.nlm.nih.gov/pubmed/26204817
http://dx.doi.org/10.1523/JNEUROSCI.4257-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24403157
http://dx.doi.org/10.7554/eLife.18247


Ferenczi EA, Vierock J, Atsuta-Tsunoda K, Tsunoda SP, Ramakrishnan C, Gorini C, Thompson K, Lee SY, Berndt
A, Perry C, Minniberger S, Vogt A, Mattis J, Prakash R, Delp S, Deisseroth K, Hegemann P. 2016. Optogenetic
approaches addressing extracellular modulation of neural excitability. Scientific Reports 6:23947. doi: 10.1038/
srep23947, PMID: 27045897

Ferry B, Magistretti PJ, Pralong E. 1997. Noradrenaline modulates glutamate-mediated neurotransmission in the
rat basolateral amygdala in vitro. European Journal of Neuroscience 9:1356–1364. doi: 10.1111/j.1460-9568.
1997.tb01490.x, PMID: 9240393

Ferry B, McGaugh JL. 2008. Involvement of basolateral amygdala alpha2-adrenoceptors in modulating
consolidation of inhibitory avoidance memory. Learning & Memory 15:238–243. doi: 10.1101/lm.760908,
PMID: 18391184

Ferry B, Roozendaal B, McGaugh JL. 1999a. Involvement of alpha1-adrenoceptors in the basolateral amygdala in
modulation of memory storage. European Journal of Pharmacology 372:9–16. doi: 10.1016/S0014-2999(99)
00169-7, PMID: 10374709

Ferry B, Roozendaal B, McGaugh JL. 1999b. Basolateral amygdala noradrenergic influences on memory storage
are mediated by an interaction between beta- and alpha1-adrenoceptors. Journal of Neuroscience 19:5119–
5123. PMID: 10366644

Festing MF, Altman DG. 2002. Guidelines for the design and statistical analysis of experiments using laboratory
animals. ILAR Journal 43:244–258. doi: 10.1093/ilar.43.4.244, PMID: 12391400

Galvez R, Mesches MH, McGaugh JL. 1996. Norepinephrine release in the amygdala in response to footshock
stimulation. Neurobiology of Learning and Memory 66:253–257. doi: 10.1006/nlme.1996.0067, PMID: 8946419

Garrido Zinn C, Clairis N, Silva Cavalcante LE, Furini CR, de Carvalho Myskiw J, Izquierdo I, Zinn CG. 2016. Major
neurotransmitter systems in dorsal Hippocampus and basolateral amygdala control social recognition memory.
PNAS 113:E4914–E4919. doi: 10.1073/pnas.1609883113, PMID: 27482097

Gore F, Schwartz EC, Brangers BC, Aladi S, Stujenske JM, Likhtik E, Russo MJ, Gordon JA, Salzman CD, Axel R.
2015. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned
responses. Cell 162:134–145. doi: 10.1016/j.cell.2015.06.027, PMID: 26140594

Grissom NM, Bhatnagar S. 2011. The basolateral amygdala regulates adaptation to stress via b-adrenergic
receptor-mediated reductions in phosphorylated extracellular signal-regulated kinase. Neuroscience 178:108–
122. doi: 10.1016/j.neuroscience.2010.12.049, PMID: 21256934

Hatfield T, Spanis C, McGaugh JL. 1999. Response of amygdalar norepinephrine to footshock and GABAergic
drugs using in vivo microdialysis and HPLC. Brain Research 835:340–345. doi: 10.1016/S0006-8993(99)01566-8,
PMID: 10415392

Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway
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