1. Neuroscience
Download icon

Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia

  1. Kaycey Pearce
  2. Diancai Cai
  3. Adam C Roberts
  4. David L Glanzman  Is a corresponding author
  1. Univeristy of California, Los Angeles, United States
Research Article
  • Cited 30
  • Views 2,049
  • Annotations
Cite this article as: eLife 2017;6:e18299 doi: 10.7554/eLife.18299

Abstract

Previously, we reported that long-term memory (LTM) in Aplysia can be reinstated by truncated (partial) training following its disruption by reconsolidation blockade and inhibition of PKM (Chen et al., 2014). Here, we report thatLTM can be induced by partial training after disruption of original consolidation by protein synthesis inhibition (PSI) begun shortly after training. But when PSI occurs during training, partial training cannot subsequently establish LTM. Furthermore, we find that inhibition of DNA methyltransferase (DNMT), whether during training or shortly afterwards, blocks consolidation of LTM and prevents its subsequent induction by truncated training; moreover, later inhibition of DNMT eliminates consolidated LTM. Thus, the consolidation of LTM depends on two functionally distinct phases of protein synthesis: an early phase that appears to prime LTM; and a later phase whose successful completion is necessary for the normal expression of LTM. Both the consolidation and maintenance of LTM depend on DNA methylation.

Article and author information

Author details

  1. Kaycey Pearce

    Department of Integrative Biology and Physiology, Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Diancai Cai

    Department of Integrative Biology and Physiology, Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Adam C Roberts

    Department of Integrative Biology and Physiology, Univeristy of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David L Glanzman

    Department of Integrative Biology and Physiology, Univeristy of California, Los Angeles, Los Angeles, United States
    For correspondence
    glanzman@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5479-0245

Funding

National Institute of Neurological Disorders and Stroke (NIH R01 NS029563)

  • David L Glanzman

National Institute of Mental Health (NIH R01 MH096120)

  • David L Glanzman

National Science Foundation (IOS 1121690)

  • David L Glanzman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Publication history

  1. Received: June 1, 2016
  2. Accepted: January 7, 2017
  3. Accepted Manuscript published: January 9, 2017 (version 1)
  4. Accepted Manuscript updated: January 10, 2017 (version 2)
  5. Version of Record published: February 15, 2017 (version 3)

Copyright

© 2017, Pearce et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,049
    Page views
  • 443
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Polona Jager et al.
    Research Article Updated

    The ubiquitous presence of inhibitory interneurons in the thalamus of primates contrasts with the sparsity of interneurons reported in mice. Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus, where all thalamic interneurons can be traced back to two developmental programmes: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamocortical nuclei depending on their origin: the abundant, midbrain-derived class populates the first and higher order sensory thalamus while the rarer, forebrain-generated class is restricted to some higher order associative regions. We also observe that markers for the midbrain-born class are abundantly expressed throughout the thalamus of the New World monkey marmoset. These data therefore reveal that, despite the broad variability in interneuron density across mammalian species, the blueprint of the ontogenetic organisation of thalamic interneurons of larger-brained mammals exists and can be studied in mice.

    1. Medicine
    2. Neuroscience
    Ekemini AU Riley, Randy Schekman
    Feature Article

    The Aligning Science Across Parkinson’s (ASAP) initiative was set up to improve understanding of the biology underlying the onset and progression of Parkinson’s disease. With an emphasis on open science and collaboration, we have assembled a research network led by nearly 100 investigators to explore the pathology of Parkinson’s disease, and this network will soon expand to include researchers working on relevant (dys)-functional neural circuits. We have also contributed to large-scale genetics and patient cohort initiatives related to the disease. We hope that these actions, and others planned for the future, will deepen our knowledge of the molecular mechanisms underlying the origin and evolution of Parkinson’s disease and, ultimately, contribute to the development of novel therapies.