Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments

Abstract

Ferritins are ubiquitous proteins that oxidise and store iron within a protein shell to protect cells from oxidative damage. We have characterized the structure and function of a new member of the ferritin superfamily that is sequestered within an encapsulin capsid. We show that this encapsulated ferritin (EncFtn) has two main alpha helices, which assemble in a metal dependent manner to form a ferroxidase center at a dimer interface. EncFtn adopts an open decameric structure that is topologically distinct from other ferritins. While EncFtn acts as a ferroxidase, it cannot mineralize iron. Conversely, the encapsulin shell associates with iron, but is not enzymatically active, and we demonstrate that EncFtn must be housed within the encapsulin for iron storage. This encapsulin nanocompartment is widely distributed in bacteria and archaea and represents a distinct class of iron storage system, where the oxidation and mineralization of iron are distributed between two proteins.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Didi He

    Institute of Quantitative Biology, Biochemistry and Biotechnology, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Sam Hughes

    The School of Chemistry, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Sally Vanden-Hehir

    The School of Chemistry, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Atanas Georgiev

    Institute of Quantitative Biology, Biochemistry and Biotechnology, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Kirsten Altenbach

    Institute of Quantitative Biology, Biochemistry and Biotechnology, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Emma Tarrant

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcasle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. C Logan Mackay

    The School of Chemistry, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Kevin J Waldron

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5577-7357
  9. David J Clarke

    The School of Chemistry, The University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    dave.clarke@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  10. Jon Marles-Wright

    Institute of Quantitative Biology, Biochemistry and Biotechnology, The University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    jon.marles-wright1@ncl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9156-3284

Funding

Royal Society (RG130585)

  • Jon Marles-Wright

China Scholarship Council

  • Didi He

Biotechnology and Biological Sciences Research Council (BB/N005570/1)

  • David J Clarke
  • Jon Marles-Wright

Wellcome Trust (098375/Z/12/Z)

  • Emma Tarrant
  • Kevin J Waldron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,554
    views
  • 924
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Didi He
  2. Sam Hughes
  3. Sally Vanden-Hehir
  4. Atanas Georgiev
  5. Kirsten Altenbach
  6. Emma Tarrant
  7. C Logan Mackay
  8. Kevin J Waldron
  9. David J Clarke
  10. Jon Marles-Wright
(2016)
Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments
eLife 5:e18972.
https://doi.org/10.7554/eLife.18972

Share this article

https://doi.org/10.7554/eLife.18972