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Abstract The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes

programmed chromosome breakage and massive DNA elimination to generate the somatic

genome. Here, we present a complete sequence assembly of the germline genome and analyze

multiple features of its structure and its relationship to the somatic genome, shedding light on the

mechanisms of genome rearrangement as well as the evolutionary history of this remarkable

germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and

ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena

chromosome structure, locally and globally. Non-standard outcomes of rearrangement events,

including the generation of short-lived somatic chromosomes and excision of DNA interrupting

protein-coding regions, may represent novel forms of developmental gene regulation. We also

compare Tetrahymena’s germline/soma differentiation to that of other characterized ciliates,

illustrating the wide diversity of adaptations that have occurred within this phylum.

DOI: 10.7554/eLife.19090.001
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Introduction
The establishment of distinct genomic lineages (cellular or nuclear) in the life cycles of phylogeneti-

cally diverse organisms has allowed the evolution of a wide variety of programmed, somatic lineage-

specific DNA rearrangement mechanisms. Some cases mediate the generation of protein products

specific to a differentiated cell type, such as sigmaK of the Bacillus subtilis mother cell

(Kunkel et al., 1990) or the vast diversity of vertebrate immunoglobulins (Schatz, 2004). Other

cases result in genome-wide chromosome restructuring, as was first recognized by microscopic

observation of parasitic nematodes over 125 years ago (Boveri, 1887) and since documented in sev-

eral eukaryotic branches, including vertebrates (Bachmann-Waldmann et al., 2004; Smith et al.,

2012; Sun et al., 2014; Wang and Davis, 2014). This large-scale phenomenon has been most thor-

oughly studied in the phylum Ciliophora, or ciliates, a deep-branching and diverse group of proto-

zoa (Bracht et al., 2013; Chalker and Yao, 2011; Coyne et al., 2012; Vogt et al., 2013; Yao et al.,

2014). Although unicellular, ciliates carry two distinct nuclei that display a remarkable form of germ-

line/soma differentiation (Figure 1A; Orias et al., 2011); the smaller, diploid, transcriptionally silent

germline nucleus (micronucleus or MIC) contains the genetic material transmitted across sexual gen-

erations, whereas the larger, polyploid, actively expressed somatic nucleus (macronucleus or MAC)

supports all the vegetative functions of the cell. Despite differing in several fundamental features of

eukaryotic nuclei, the MAC is derived from a mitotic sibling of the MIC during sexual reproduction in

a process that involves extensive, genome-wide programmed DNA rearrangements.

The extent and nature of ciliate genome rearrangement vary widely within the phylum, but the

two main events are chromosome fragmentation and DNA elimination (Figure 1B). In the widely

studied model organism, Tetrahymena thermophila, the five MIC chromosomes are fragmented at

sites of the 15 bp Chromosome breakage sequence (Cbs) (Yao et al., 1990) into about 200 MAC

chromosomes (Eisen et al., 2006). Other characterized ciliates also undergo extensive chromosome

fragmentation but do not display a conserved cis-acting breakage signal. It has been suggested that

the evolutionary advantage of chromosome fragmentation may relate to the high ploidy of MACs

(~45N for all but one chromosome in Tetrahymena, ~800 N in Paramecium, ~2000 N in Oxytricha)

and their amitotic division mechanism, which could damage larger chromosomes or be physically

constrained by their entanglement (Coyne et al., 1996). This amitotic mechanism also results in

unequal chromosome segregation, which can lead to the generation of phenotypic diversity among

the vegetative descendants of a single cell (’phenotypic assortment’, documented in Tetrahymena

(Orias and Flacks, 1975). In addition, fragmentation permits differential copy number control

(observed in Tetrahymena (reviewed in Yao et al. [1979]), Oxytricha and other ciliates (Baird and

Klobutcher, 1991; Steinbruck, 1983; Swart et al., 2013).

Concomitantly with fragmentation, thousands of Internal Eliminated Sequences (IESs; first

described in Tetrahymena [Yao et al., 1984]) are spliced from the Tetrahymena MIC genome. In Par-

amecium tetraurelia, a fellow oligohymenophorean ciliate distantly related to Tetrahymena (Baroin-

Tourancheau et al., 1992), partial assembly of the MIC genome has revealed the presence of about

45,000 short, unique copy IESs, many lying within the MIC progenitors of MAC genes (Arnaiz et al.,

2012). The more distantly related spirotrichous ciliate, Oxytricha trifallax undergoes an extreme type

of genome rearrangement. Roughly 16,000 MAC chromosomes (most carrying only a single gene)

(Swart et al., 2013) are derived from a MIC genome ten times the size of the MAC genome, in a

process that also involves extensive ’unscrambling’ of non-contiguous MIC genome sequences

(Chen et al., 2014).

A leitmotif of programmed genome rearrangements in many organisms is the involvement of

mobile DNA elements. In some cases, this involvement is as an agent of the event, through domesti-

cated gene products (e.g. Rag recombinases [Fugmann, 2010; Jones and Gellert, 2004;

Kapitonov and Koonin, 2015], HO endonuclease [Koufopanou and Burt, 2005]); in other cases,

mobile elements are a target of programmed rearrangement events (e.g. the B. subtilis Skin element

that interrupts the sigK gene [Takemaru et al., 1995]). It has long been recognized that many ciliate

IESs contain transposable elements (TEs) and/or their remnants and hypothesized that their elimina-

tion is a form of MAC genome self-defense (Klobutcher and Herrick, 1997). In both Tetrahymena

and Paramecium, IES elimination requires the action of proteins domesticated from piggyBac trans-

posases (Baudry et al., 2009; Cheng et al., 2010; Shieh and Chalker, 2013), as well as proteins

and histone modifications associated with epigenetic TE silencing in other organisms (Chalker et al.,
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2013). In Oxytricha, germline-limited transposons mediate their own excision and also contribute to

other programmed rearrangement events (Nowacki et al., 2009). The evolutionary origins of chro-

mosome fragmentation are less clear, but, at least in Tetrahymena, features of Cbs suggest a possi-

ble link to mobile elements ([Ashlock et al., 2016; Fan and Yao, 2000; Hamilton et al., 2006b] and

Figure 1. Nuclear dualism and genome rearrangement in Tetrahymena. (A) Schematic of two stages of

Tetrahymena life cycle showing major characteristics of micronuclei (MIC; red) and macronuclei (MAC; blue) and

nuclear events of conjugation. (B) Main events of programmed genome rearrangement. A portion of the MIC

genome is shown in red, with internal eliminated sequences (IES) shown as open boxes and the Cbs sequence in

black. The corresponding MAC regions (blue) lack the IESs, with the flanking MAC-destined sequences (MDSs)

joined (represented by^symbols). Breakage and addition of telomeres (orange boxes) has occurred at the former

site of the Cbs.

DOI: 10.7554/eLife.19090.002

The following figure supplement is available for figure 1:

Figure supplement 1. Tiling method used to extend scaffolds into super-assemblies.

DOI: 10.7554/eLife.19090.003
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this study). Thus, the study of programmed DNA rearrangement in ciliates may help shed light on

the delicate evolutionary balance that exists between mobile elements and the genomes they

occupy.

Despite germline sequencing efforts in three model ciliates, Tetrahymena (Fass et al., 2011), Par-

amecium (Arnaiz et al., 2012), and Oxytricha (Chen et al., 2014), there is no complete picture of

the architectural relationship between ciliate germline and somatic genomes. Here, we report the

sequencing, assembly, and analysis of the 157 Mb MIC genome of T. thermophila strain SB210, the

same strain whose 103 Mb MAC genome sequence we have previously characterized (Coyne et al.,

2008; Eisen et al., 2006; Hamilton et al., 2006a). We constructed full-length super-assemblies of

all five MIC chromosomes, providing a unique resource for ciliate genome analysis. By mapping a

set of germline deletions against these super-assemblies, we delimited the locations of the five MIC

centromeres. We mapped 225 instances of the Cbs, which define the ends of all 181 stably main-

tained MAC chromosomes as well as several short-lived, ‘Non-Maintained Chromosomes’ (NMCs),

some of which contain a number of active genes. Additionally, we report multiple cases of short and

long-range Cbs duplications in T. thermophila and the conservation of Cbs sequence and location in

three other Tetrahymena species. We showed that approximately one third (54 Mb) of the MIC

genome is eliminated in the form of around 12,000 IESs, and mapped the precise locations of over

7500, revealing their enrichment at the centers and ends of MIC chromosomes. Our comparative

analysis of MIC-limited TEs shows that the majority are related to DNA (Class 2) transposons from a

variety of families and suggests multiple invasions of the genome and potentially recent transposi-

tional activity. We analyzed IES junctions and excision variability genome-wide, greatly extending

previous reports of their imprecision (e.g. [Austerberry et al., 1989; Li and Pearlman, 1996;

Wells et al., 1994]), and yet we also report a very limited number of unusual, precisely excised IESs

that interrupt protein-coding regions. Our results provide the first genome-wide picture of pro-

grammed DNA rearrangements in T. thermophila, and support a view of the germline genome as a

complex and dynamic entity, on both developmental and evolutionary timescales.

Results and discussion

Germline chromosome structure
MIC genome sequencing and chromosome-length assembly
Shotgun sequencing and assembly of the T. thermophila MIC genome is described in ’Materials and

methods’, and statistics are summarized in Supplementary file 1A. The final assembly is 157 Mb in

length and composed of 1464 scaffolds, whereas the MAC genome assembly is 103 Mb and con-

tains 1158 scaffolds. To fully understand the inter-relationship of the MAC and MIC genomes, it is

essential to join the scaffolds of each separate assembly into complete MAC and MIC chromosomes.

Extensive genome closure and HAPPY mapping efforts have produced super-assemblies of every

MAC chromosome ([Coyne et al., 2008; Hamilton et al., 2006a]; Supplementary file 1B) but con-

siderable uncertainty remains as to scaffold placement and/or orientation on several chromosomes.

Likewise, although genetic mapping can assign some MAC chromosomes/scaffolds to locations on

one of the five MIC chromosomes, their order and orientation can be hard to determine. By a MIC-

MAC cross-alignment ‘tiling’ method (described in Materials and methods and Figure 1—figure

supplement 1), we used each assembly to improve the other. By this process, most of the larger

MIC scaffolds were linked into five chromosome-length super-assemblies that together incorporate

152 Mb of the total 157 Mb MIC assembly (Supplementary file 1C,D; also see ‘MIC-scaff’ and corre-

sponding ‘MAC-scaff’ schematic concatenations in Figure 2). While the super-assemblies are admit-

tedly not perfect, their uncertainties are on a small scale, and thus the maps allow observations of

general trends in MIC chromosome architecture. To our knowledge, these are the first assemblies of

nearly full-length ciliate MIC chromosomes and thus represent novel resources for genomic analyses.

We have incorporated them into a browser (http://www.jcvi.org/jbrowse/?data=tta2mic) that relates

the MIC and MAC genomes and includes many other features described below.

MIC centromeres
Centromeric loci play essential, highly conserved roles in the faithful segregation of chromosomes

during meiosis and mitosis (Bloom, 2014). Recent studies (Plohl et al., 2014; Topp and Dawe,
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Figure 2. MIC chromosome landscapes. For each chromosome, the top panel shows the density of several genomic features, measured as number of

base pairs (span) per 500 kb sliding window (100 kb slide increment). Purple = simple sequence repetitive DNA (note that exclusion of those simple

sequence repeats that overlap with TEs has minimal effect on the distribution pattern). Blue = putative TEs. Green = high-confidence IESs. Orange =

protein-coding sequences. The corresponding chromosome-length super-assembly (Super-Asm) is shown immediately below, each Cbs indicated by a

Figure 2 continued on next page
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2006) have greatly increased understanding of centromere structure and function, but much still

remains unclear. Several biological features of Tetrahymena, as well as its powerful experimental

toolbox, have made this organism a useful model for studies of centromeric heterochromatin

(Cervantes et al., 2006; Cui and Gorovsky, 2006; Papazyan et al., 2014), recombination

(Lukaszewicz et al., 2013; Shodhan et al., 2014), chromosome cohesion (Howard-Till et al., 2013),

and centromere evolution (Elde et al., 2011; Malik and Henikoff, 2002, 2009), all of which would

benefit from better genetic and molecular definition of its centromeres. The full-length chromosomal

super-assemblies described above make this possible.

We demarcated Tetrahymena centromeric regions using germline, mitotically stable, chromo-

somal deletions isolated in a separate study (Cassidy-Hanley et al.; manuscript in preparation). Each

deletion was mapped in relation to chromosome breakage sites along the length of each MIC chro-

mosome ([Figure 2—figure supplement 1]; [Cassidy-Hanley et al., 1994]). We observed that chro-

mosome arm deletions never extend into the central regions of MIC chromosome super-assemblies,

presumably because they are essential for centromere function. Operationally (because of how the

deletions were mapped), two unique Cbs’s flank each putative centromere region (see red hash

marks in Figure 2). Cytologically, all five Tetrahymena MIC chromosomes appear metacentric and,

as expected, the midpoints of the chromosomal super-assembly lie near the centromeric region mid-

points (Table 1). We also note, as described in Supplementary file 1E, that MAC chromosomes

derived from MIC centromeric regions tend to be unusually large. The five putative centromeric

regions range between 5.0 and 10.3 Mb and together comprise 37.8 Mb, or 24.7% of the assembled

MIC genome. These estimates are subject to change in either direction for the following reasons.

The centromere regions of the MIC assembly are highly fragmented (Table 1, column 5; Figure 2);

missing sequence would increase their size. On the other hand, the precise endpoints of the dele-

tions are unknown, and the complete region between flanking Cbs’s may not be required for centro-

mere function.

Figure 2 continued

vertical tick. Red ticks indicate Cbs’s flanking putative centromeres (see main text and Figure 2—figure supplement 1). In the ’MIC-scaff’ schematic,

the scaffolds comprising each MIC chromosome super-assembly are depicted as horizontal lines (alternating in vertical position to delineate each from

its neighbors). The ‘MAC-scaff’ schematic indicates the positions of MAC scaffolds (many of which are complete, fully sequenced MAC chromosomes)

derived from the corresponding regions of the MIC chromosome. Note that, because IESs are absent from MAC scaffolds, their lengths are actually

shorter, but for simplicity of viewing, these lengths have been stretched so that MAC-scaff endpoints line up with their corresponding positions in the

MIC. Chromosomes are stacked so that their centers align vertically.

DOI: 10.7554/eLife.19090.004

The following figure supplement is available for figure 2:

Figure supplement 1. Deletion mapping of Tetrahymena centromeres.

DOI: 10.7554/eLife.19090.005

Table 1. MIC centromere regions and centric MAC chromosomes.

MIC
chromosome

L-Cbs location
(Mb)

R-Cbs location
(Mb)

Cen length
(Mb)

# super-contigs in
Cen

MIC chromosome
length (Mb)

Cen midpoint
(Mb)

Chromosome mid-
point (Mb)

1 13.98 23.24 9.26 87 36.32 18.61 18.16

2 9.81 14.85 5.04 77 25.51 12.33 12.76

3 9.98 20.32 10.34 120 31.52 15.15 15.76

4 12.23 18.34 6.11 74 31.72 15.29 15.86

5 10.37 17.39 7.02 62 27.47 13.88 13.74

Total 37.77 (24.7%) 152.54

L-Cbs and R-Cbs represent the most Cen-proximal Cbs on the left and right chromosome arms, respectively. Centromere locations were established by

deletion mapping (see text for details). For chromosomes 2, 4, and 5, the L-1 and R-1 Cbs flank the putative centromere region. The remaining centro-

meres contain Cbs’s. Cbs 3L-3 and 3R-1 flank the chromosome 3 centromere, while Cbs 1L-6 and Cbs 1R-11 flank the centromere region of chromo-

some 1. Locations in Mb use the far (telomere) end of the left arm as the origin.

DOI: 10.7554/eLife.19090.006
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Centromeric and pericentromeric regions generally contain repetitive sequences, often consisting

of large arrays of tandem repeats interspersed with transposable elements (TEs) (Buscaino et al.,

2010; Hayden and Willard, 2012; López-Flores and Garrido-Ramos, 2012; Plohl et al., 2014). We

plotted the densities along each MIC chromosome of both simple sequence repeats (Figure 2, pur-

ple lines) and putative TEs and their remnants (blue lines; see below for a description of TE charac-

terization) and found that both types of repetitive sequence are more prevalent in the putative

centromeric regions than in the chromosome arms. These observations of large, repeat-rich centro-

meric regions are consistent with the ’meiotic drive’ hypothesis (Elde et al., 2011; Malik and Henik-

off, 2002, 2009)—that in organisms, such as Tetrahymena, that undergo exclusively female meiosis

(in which only one of the four meiotic products becomes a gamete), competition between sister

chromosomes for transmission during meiosis will result in rapid evolution and expansion of centro-

meric sequences.

During formation of a new MAC in Tetrahymena, the centromeric histone H3 disappears from dif-

ferentiating MACs, suggesting the programmed elimination of Cen-specific sequences

(Cervantes et al., 2006; Cui and Gorovsky, 2006). The close, linear packing of MAC chromosome

precursors along the entire length of MIC chromosomes and the presence of retained, macronu-

clear-destined sequences (MDSs) interspersed throughout the Tetrahymena centromere regions sug-

gests that IES removal is sufficient to account for this centromere loss. In Paramecium, IESs found in

MIC regions that give rise to MAC chromosomes are generally very short and non-repetitive

(Arnaiz et al., 2012), thus not resembling typical centromeric DNA. However, these regions are sep-

arated by large (and as yet unassembled) blocks of repetitive DNA (Arnaiz et al., 2012; Le Mouël

et al., 2003), which seem more likely to represent centromeres. Centromeric histone H3 also disap-

pears during MAC differentiation in Paramecium, and this disappearance is dependent on factors

required for IES excision (Lhuillier-Akakpo et al., 2016), suggesting that the centromeres of both

organisms, despite their apparent dissimilarities, are eliminated as IESs.

Chromosome fragmentation
In contrast to most eukaryotes, programmed somatic chromosome breakage and de novo telomere

addition are part of the normal life cycles of several groups, including ciliates (Coyne et al., 1996)

and certain parasitic nematodes (Müller and Tobler, 2000). Among these organisms, many details

of the process differ markedly (Amar, 1994; Baird and Klobutcher, 1989; Caron, 1992;

Duret et al., 2008; Forney and Blackburn, 1988; Herrick et al., 1987; Le Mouël et al., 2003;

Scott et al., 1993). Tetrahymena carries out chromosome breakage and telomere addition with high

specificity and reliability. In T. thermophila and related species (Coyne and Yao, 1996), these pro-

cesses are driven by the necessary and sufficient cis-acting DNA element, Cbs (Chromosome break-

age sequence), a highly conserved 15-mer (Fan and Yao, 2000; Hamilton et al., 2006b; Yao et al.,

1990). De novo telomere addition by telomerase occurs within a region ~5–25 bp on each side of a

Cbs (Fan and Yao, 1996); the Cbs itself and its immediate flanking sequences are found only in the

MIC. Thanks to our chromosome super-assemblies, we can now investigate chromosome breakage

throughout the entire T. thermophila genome.

The chromosome breakage sequence (Cbs) family
We identified 225 Cbs’s in the MIC genome assembly (Supplementary file 2A), including those

associated with the ends of every MAC chromosome (Supplementary file 2B); thus, the Cbs family

is responsible for all developmentally programmed chromosome breakage in T. thermophila. Posi-

tioning this complete set of breakage signals on the MIC chromosome super-assemblies makes T.

thermophila the first ciliate in which the complete linear relationship between MIC and MAC chro-

mosomes has been defined (see ‘Super-Asm’ schematic in Figure 2). As expected, the majority of

MAC chromosomes are generated by cleavage at Cbs’s that are consecutively spaced along MIC

chromosomes. However, we identified seven complex MAC chromosomes that are generated not

simply by conventional fragmentation, but also by the site-specific joining of non-contiguous seg-

ments of germline DNA. The non-contiguity has been experimentally confirmed for three cases,

eliminating the possibility that they are genome assembly artifacts. The formation of these complex

chromosomes is currently under investigation and will be reported in detail separately. The
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rearrangement events have been accounted for in the MIC/MAC comparative genome browser

described above (http://www.jcvi.org/jbrowse/?data=tta2mic).

Nearly half the 225 Cbs’s have the consensus C-rich strand sequence: 5’-TAAACCAACCTCTTT-

3’, and none has more than two substitutions to this sequence (Table 2). Confirming earlier studies

(Hamilton et al., 2006b), 10 of the 15 nucleotide positions are completely conserved, while five

show limited degeneracy, summarized as follows: 5’-WAAACCAACCYCNHW-3’ (W = A or T; Y = C

or T; H = A, C or T; N = any nucleotide; Figure 3). Cbs’s identified in several related tetrahymenine

species ([Coyne and Yao, 1996]) and below) fall within the same range of variability. All the posi-

tions occupied by T’s in the consensus (found mostly toward the 3’ end), and only these positions,

exhibit some degeneracy. Only at positions 13 and 14 have we observed more than one type of sub-

stitution (13TfiA, C, or G, 14TfiA or C).

The limited Cbs degeneracy may reflect the specificity of the yet to be identified trans-acting fac-

tor(s) that physically interact with the Cbs. Pot2p is the first factor shown to associate specifically

with Cbs regions in vivo, at the time of chromosome breakage (Cranert et al., 2014). Pot2p is a

paralog of Pot1p, which is required for telomere maintenance. Pot2p may recruit factor(s) required

for chromosome breakage and/or de novo telomere addition. As previously noted for the consensus

sequence (Yao et al., 1987), every functional Cbs contains a permuted copy (C2A2C2) of the T. ther-

mophila telomeric repeat C4A2. More generally, the Cbs consensus shares with Tetrahymena telo-

meric repeats a striking C vs. G strand asymmetry; of the 117 non-consensus functional Cbs

sequences, only one contains a substitution on the C-rich strand to a G (at position 13) whereas 27

contain a substitution to C (Table 2). The likelihood of this ratio being due to chance alone is low

(probability of chi square << 0.01). Whether these sequence parallels between Cbs and telomeres

are coincidental or related to Cbs function may be established when the mechanisms of chromo-

some breakage and telomere addition are better understood.

Many innovations in the realm of programmed genome rearrangement have resulted from the

domestication of genes originally associated with mobile DNA elements; examples are found in

Table 2. Variation within the Cbs family. Pink and gray shading: single- and double-substituted variants, respectively.

Cbs designation Count Cbs nucleotide position Number of substitutions Total substitutions per subset

1 11 13 14 15

canonical 109 0 0: 109

1A 53 A 1

11C 8 C 1

13A 7 A 1

13C 2 C 1

14A 9 A 1

14C 4 C 1

15A 10 A 1 1: 93

1A,11C 5 A C 2

1A,13A 2 A A 2

1A,13C 1 A C 2

1A,14C 2 A C 2

1A,15A 8 A A 2

11C,13A 1 C A 2

11C,13G 1 C G 2

11C,14C 1 C C 2

11C,15A 1 C A 2

14A,15A 1 A A 2 2: 23

Total 225 71 17 14 17 20

DOI: 10.7554/eLife.19090.008
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multicellular organisms (Kapitonov and Koonin, 2015) and microbial eukaryotes (Barsoum et al.,

2010; Koufopanou and Burt, 2005; Levin and Moran, 2011; Sinzelle et al., 2009), including cili-

ates (Baudry et al., 2009; Cheng et al., 2010; Vogt et al., 2013). The Cbs resembles the target site

of a homing endonuclease, with its relatively long, non-palindromic sequence and limited degener-

acy (Fan and Yao, 2000; Hamilton et al., 2006b); another superficial resemblance is to transposase

binding sites found at transposon termini. It seems likely that Cbs and the yet unknown protein(s)

that recognize it and initiate breakage had their origins in a mobile DNA element that invaded the

germline genome and was subsequently domesticated.

Conservation of chromosome breakage sites across Tetrahymena species
Cbs-mediated chromosome breakage has only been found in tetrahymenine ciliates. Earlier studies

of this group (Coyne and Yao, 1996) showed strong evolutionary conservation of the Cbs sequence,

but only one or two Cbs’s per species were sequenced. To examine the evolutionary conservation of

Cbs sequences and their locations within the germline genome, we conducted a pilot study of 12

consecutive breakage site locations in T. thermophila and three other Tetrahymena species, using

the strategy described in Materials and methods (a more comprehensive study will be published

separately). Strikingly, MAC chromosome ends were highly conserved in all four species, indicating

strong conservation of breakage sites. Indeed, with just one exception in T. borealis, the location of

every chromosome breakage site in the four species has remained identical since their divergence,

down to the MIC genome interval between the same two consecutive homologous genes

(Supplementary file 2C). The only detected differences are the deletion of DNA sequences sur-

rounding T. borealis Cbs 3L-25 and a novel breakage site in T. malaccensis, between Cbs 3L-24 and

3L-25 (numbered according to T. thermophila). MAC chromosome lengths in this region are also

strongly conserved among all four species (Figure 4A, Supplementary file 2D).

We sequenced the MIC Cbs regions for 22 of the 27 novel species/breakage-site combinations

(see Figure 4B). No previously unidentified Cbs variants were observed in the 26 sequenced Cbs’s

(which include four locally duplicated Cbs’s, see below). Importantly, there was consistency in the

specific Cbs isoform found at a given breakage site in all four species, as expected if they represent

a clade descended from a common ancestral Cbs at that site (see Figure 4C). This conclusion is fur-

ther supported by the observation that Cbs’s at a given homologous breakage site display the same

orientation with respect to MAC-retained flanking regions, with the single exception of T. borealis

Cbs 3L-22 (Figure 4B and C). In contrast to the conservation of the Cbs itself, there is little or no

conservation of the 200 bp of adjacent sequence (not shown). Assuming the most parsimonious

number of mutations to explain the Cbs variants observed at these nine homologous breakage sites,

the rate of fixation of functional Cbs mutations is low; 11 mutations can account for all the Cbs varia-

tion observed at 31 independently sequenced sites (Figure 4C). This represents about 1.4 mutations

Figure 3. Conservation of the 15 bp chromosome breakage sequence. Nucleotide conservation was calculated at every position, as described in

(Hamilton et al., 2006a), for the 225 Cbs’s and their 15 bp flanking sequences, aligned on the C-rich Cbs strand. The Cbs element occupies positions

16 to 30. At any given position in the logo plot, two bits represent maximum conservation (only one nucleotide occupies that position), and 0 bits

corresponds to no conservation (all four nucleotides are equally frequent).

DOI: 10.7554/eLife.19090.007

Hamilton et al. eLife 2016;5:e19090. DOI: 10.7554/eLife.19090 9 of 46

Research article Genes and Chromosomes Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19090.007
http://dx.doi.org/10.7554/eLife.19090


Figure 4. Conservation of chromosome breakage sites and Cbs in four Tetrahymena species. (A) Conservation of MAC chromosome lengths: X-axis:

Cbs 3L-15 to 26 (evenly spaced). Y-axis: Length of the MAC scaffolds in each species whose ends are defined by the flanking Cbs’s. Circle: an extra Cbs

site in T. malaccensis creates two MAC chromosomes in this region; length = sum of the two MAC chromosome lengths. (B) Summary of Cbs sequence

data at nine chromosome breakage sites; filled in box = sequence available; if no text = single, consensus Cbs in same orientation as T. thermophila;

Figure 4 continued on next page
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fixed per breakage site since the divergence of these four species (corrected for eight unsequenced

Cbs’s and counting locally duplicated Cbs copies – see below – only once).

The retention of a functional Cbs sequence at each of the studied sites, in contrast to the diver-

gence of immediately adjacent sequence, provides evidence that Cbs’s, and therefore the position-

ing of chromosome breakage sites, are under purifying selection. In other words, it is functionally

relevant to preserve the lengths and/or contents of specific MAC chromosomes. Further specula-

tions on the possible nature of such selection are presented in the Appendix. The conservation of

Cbs locations, and consequently the lengths of MAC chromosomes, is quite remarkable in contrast

to the extremely variable locations of IESs, even in T. malaccensis, the species most closely related

to T. thermophila (Huvos, 2007).

Duplication of Cbs regions on an evolutionary time scale
Several reports document duplications of Cbs and surrounding sequences in T. thermophila (Cas-

sidy-Hanley et al., 2005; Hamilton et al., 2006b; Yao et al., 1987). The pilot study described

above revealed four Cbs duplications among the 22 sequenced sites in three other Tetrahymena

species (Figure 4B). There are also reported cases of inter-species Cbs inversions (above and

[Coyne and Yao, 1996]). Further analyses of such events may shed light on aspects of Cbs evolution-

ary history. We searched for Cbs-associated germline rearrangements genome-wide and identified a

large number of both local, tandem repeat duplications and long-range duplications/translocations

(Supplementary file 2E; summarized in Table 3). Forty-nine Cbs-containing segments (23% of the

225) have at least one duplicate in the MIC genome. Evidence for an earlier duplication/translocation

of the entire rDNA locus, including flanking Cbs’s, is described in the Appendix. This high frequency

of Cbs-associated germline rearrangements supports the previous suggestion (Coyne and Yao,

1996) that some mechanism increases the likelihood of such events in the vicinity of Cbs, perhaps as

a result of occasional missorting of the chromosome breakage machinery to the germline nucleus.

Tandem repeat duplications appear concentrated within and at the margins of putative centromeres,

perhaps reflecting an increased tendency of that chromatin domain to engage in such illegitimate

recombination events, or a higher tolerance for their consequences.

Tandem duplications often generate predicted MAC chromosomes that are not maintained in the

MAC (see next section). Long-range duplications result in widely separated duplicate Cbs pairs, on

either the same or different MIC chromosomes. Such events would increase the maintained chromo-

some number (unless translocation occurs to the neighborhood of a pre-existing Cbs). As an exam-

ple noted above, a novel breakage site in T. borealis was possibly introduced by long-range

duplication. More complete analysis of MAC synteny among several Tetrahymena species, revealing

genome-wide patterns of chromosome breakage conservation, will be presented separately. Future

availability of MIC genome assemblies of these species will allow greater understanding of the fre-

quency and consequences of long-range Cbs duplications.

The 49 Cbs-containing segment duplicates cluster into 15 sequence similarity groups

(Supplementary file 2E; summarized in Table 3), which we call ‘clades’, to suggest that all members

of each group were derived by successive duplications of an ancestral Cbs-containing segment.

Some of these events probably occurred fairly recently, judging by the high-sequence identity of the

Cbs-flanking regions. Within 14 out of 15 clades, members either have the same Cbs isoform (seven

clades) or differ by a single substitution (seven clades). At least two mutations are required to

explain the variation within the remaining clade. The doubly substituted 11C,13A Cbs is a relatively

rare isoform found in more than one clade, suggesting they may form a ‘super-clade’. Further obser-

vations on Cbs duplication, including evidence for at least one, and possibly two, super-clades, and

a model of Cbs-mediated chromosome breakage evolution are presented in the Appendix. By back-

Figure 4 continued

Cbs sequence variants, duplications (DUP) and inversion (INV) indicated; final column = possible last common ancestor (LCA) Cbs, requiring a minimum

number of mutations in the clade. (C) Inferred possible descent from Cbs of LCA at each of the nine chromosome breakage sites. Branch tips: Cbs

consensus (Cns) or variant in T.the, T.mal., T.ell., and T.bor, in that order (colors consistent with parts A and B; missing branch = unsequenced Cbs).

Terminally split branch = local Cbs duplication. Dots indicate minimal number of mutational events; placed in the longest branches when there is a

choice. Reverse arrow (T. bor. 3L-22) indicates Cbs inversion.

DOI: 10.7554/eLife.19090.009
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extrapolation, the identification of clades and possible superclades supports the suggestion that all

current Cbs’s are derived from one, or a few, founder copies present in a tetrahymenine ancestor.

As described above, this founding event may have resulted from the invasion of the germline

genome by a mobile element, followed by the domestication of an element-encoded gene to take

over the mechanism of chromosome breakage from a pre-existing, less precise mechanism, such as

that which persists in Paramecium.

Non-maintained MAC chromosomes
Our previous studies (Cassidy-Hanley et al., 2005) identified two NMCs present in early sexual

progeny (at 20 fissions after conjugation) but absent by ~120 fissions. A number of developmental

events occur during this interval, including programmed genome rearrangement, the establishment

of MAC chromosome copy number (Doerder and DeBault, 1978), and the transition from sexual

immaturity to maturity (Bleyman and Simon, 1967; Rogers and Karrer, 1985). Because NMCs may

play a role in these events, or serve as a model for their study, we undertook a genome-wide survey

to identify more candidate NMCs and examine their properties. Using our MIC chromosome super-

Table 3. Summary of salient features of T. thermophila Cbs clades.

Cbs
clade Cbs Members 1

Expect value
range

Tandem duplications (repeat
size) Number of NMCs 2

Inter-chromosomal
duplications

1L-1 1L-1 to 1L-5 E-22 to E-48 3 144 bp 4 4

1L-16 1L-16, 4R-24 E-47 0 1L-4R 5

1L-17 1L-17, 1L-18, 1L-19, 4R-25 E-18 to E-46 3 45 bp 2 6 1L-4R 5

1L-20 7 1L-20, 3L-14 E-14 0 1L-3L

1L-28 1L-28, 1L-29 E-18 530 bp 1

1R-1 1R-1 to 1R-7, 2L-2, XX-1, XX-3 E-21 to E-178 13.6 Kb At least 8 1R-2L

1R-35 8 1R-35, 1R-36 E-139 469 bp 1

1R-37 8 1R-37, 1R-38 E-18 796 bp 1

2R-1 2R-1, 2R-2 E-66 605 bp 1

3L-3 3L-3, 3L-29 E-175 0

3L-4 3L-4, 4L-2, 4L-3 E-48 to E-85 3.8 Kb 1 next to 3L-4,
1 between 4L-2 and 4L-
3

3L-4L

4R-3 4R-3 to 4R-7, 4R-38, XX-2,
XX-4

E-49 to E-171 17.5 Kb At least 6

5L-9 5L-9, 5L-10, 5L-11 E-58 to E-76 10.4 Kb 2

5R-5 5R-5, 5R-6 E-22 3 53 bp 1 6

5R-14 7 5R-14, 5R-15 E-14 84 bp 1 6

All clades are described in greater detail in Supplementary file 2E.
1 Exact MIC supercontig locations of each Cbs are given in Supplementary file 2A.
2 The number of predicted non-maintained chromosomes (NMCs) is one less than the number of repeat units.
3 Shorter query length – expected values are potentially higher than for most alignments, which are based on a query length of 415 bp, for the same

degree of sequence conservation.
4 Average repeat unit length is artificially increased because an additional repeat unit containing a mutationally disabled Cbs between Cbs 1L-4 and

Cbs 1L-5.
5 Simultaneous duplication event; see Supplementary file 2E.
6 These NMCs may be too short to be telomerized after chromosome breakage.
7 Support for these clades is weaker than for the others; see Supplementary file 2E.
8 This pair of adjacent clades may be a single clade.

DOI: 10.7554/eLife.19090.010

Source data 1. MIC DNA sequences surrounding Cbs sites.
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assemblies, we identified a total of 33 NMCs (Supplementary file 2F), operationally defined as MIC

DNA segments delimited by two consecutive Cbs’s and absent from the MAC genome assembly.

To determine whether NMCs might contain genes that could function during conjugation or early

post-conjugational development, we performed gene annotation on all NMCs greater than 1 kb in

length. We identified 47 predicted genes, distributed among 10 NMCs (Supplementary file 2G).

Some of them are homologous to genes found in the MIC-limited TEs REP and Tlr (Fillingham et al.,

2004; Wuitschick et al., 2002), and others were annotated as transposases; therefore, the regions

bearing these genes are likely recognized by the mechanism for IES removal and may, in fact, be

processed as such, even though their flanking regions are not retained in the mature MAC. Nonethe-

less, RNA-seq evidence suggests that some NMC genes are expressed (see Supplementary file 2G)

and may give rise to protein products that function during late conjugation and/or subsequent vege-

tative multiplication, until the NMCs are lost. For example, the five predicted genes with annotated

transposase domains (one a piggyBac transposase, related to the domesticated transposase

required for IES excision) may be involved in programmed somatic genome rearrangement (see

below). The existence of expressed genes in transiently maintained NMCs may provide a novel

mechanism for developmental gene regulation.

The mechanism(s) by which NMCs are lost from the MAC genome are of interest from the per-

spective of MAC chromosome maintenance, a poorly understood process involving DNA replication

initiation and copy number control. We demonstrated that, in exconjugants at 24 hr post-mixing, all

20 NMCs longer than 1 kb have acquired telomeres (data not shown). Thus, telomere addition is not

sufficient to fully stabilize these chromosomes. Moreover, whole genome sequencing data (not

shown) from 24 hr exconjugants shows that all of the 13 largest NMCs (the only ones with sufficient

read density for this determination) undergo developmental DNA endoduplication in concert with

maintained MAC chromosomes, but it is currently unknown how rapidly NMC copy numbers

decrease subsequently. The eventual loss of NMCs may result from the wide spacing of replication

origins in the Tetrahymena genome. A recent study (Gao et al., 2013) identified roughly 7000 DNA

segments that likely represent MAC DNA replication origins, an average of one per 15 kb, which

corresponds to about 22.5 kb in the MIC genome, after adjusting for the average genome-wide IES

fraction; only three NMCs are larger than this size. By contrast, in spirotrichous ciliates, a run-away

evolutionary process, consistent with in silico predictions (Morgens et al., 2013), has led to extreme

MAC chromosome fragmentation – down to gene-sized ‘nanochromosomes’. This outcome was

enabled by the evolution of independent DNA replication origins in association with nearly every

gene in these ciliates. A lower origin density may have precluded such extreme chromosome frag-

mentation in Tetrahymena.

How do NMCs arise? Recent Cbs duplication appears to be intimately connected to the evolu-

tionary origin of most currently observed NMCs; roughly 80% (26/33) of NMCs have Cbs’s from the

same clade on both sides (Supplementary file 2F). More than a third (13/33) of NMCs are short (1

kb or less) and contain no predicted genes; they likely have transient evolutionary existence, as their

flanking, tandemly repeated Cbs’s are functionally redundant and mutations are statistically almost

certain to eventually inactivate one of the flanking Cbs’s without penalty. However, it is possible that

some very short NMCs could be maintained by selection if a defective Cbs near a newly broken end

interfered with de novo telomere addition. Potentially, more interesting from an evolutionary per-

spective are the longer NMCs. A duplicated and translocated Cbs would have split a MAC chromo-

some into two fragments. The smaller one would become an NMC if it lacked cis-acting elements

required for normal MAC chromosome maintenance. The resulting progeny would be viable if the

NMC carried no genes essential for long-term vegetative multiplication. Over time, some of these

developmentally short-lived MAC genes could undergo neo-functionalization for roles limited to

post-zygotic and/or early post-conjugational development. Such NMC’s likely would have greater

longevity on an evolutionary time scale.

Programmed DNA elimination
Identification of IESs
Comparison of the Tetrahymena MIC genome assembly (157 Mb) to that of the MAC (103 Mb) indi-

cates that about one third of the MIC genome is eliminated during MAC differentiation, consider-

ably more than the 10–20% previously estimated by reassociation kinetic studies (Yao and
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Gorovsky, 1974). We used three complementary methods to identify and map IESs, as described in

’Materials and methods’ and Figure 5—figure supplement 1. We estimate the total number of IESs

to be about 12,000, twice the estimate derived by extrapolation from a limited subset (Yao et al.,

1984) or lower coverage MIC genome sequencing (Fass et al., 2011). The total DNA content within

all identified IESs is around 46 Mb, accounting for 85% of the difference (54 Mb) between the MIC

and MAC genome assemblies. This suggests that we have identified the majority of Tetrahymena

IESs and that most MIC-limited regions are in the form of IESs.

As described in ’Materials and methods’, the large sizes and repetitive nature of Tetrahymena

IESs, along with inherent difficulties in assembling IES/MDS junctions, make it challenging to compile

a list of IESs that is both comprehensive and precise in terms of deletion endpoints. To allow analy-

ses of elements with precisely defined endpoints, we built a ’high confidence’ set of 7551 IESs

(Supplementary file 3A). These IESs correspond to 28.6 Mb of MIC DNA and range in length from

136 bp to 43.4 kb, with about 85% between 1 and 10 kb in length (Figure 5—figure supplement 2;

mean = 3.78 kb; median = 2.78 kb). We rely on this high confidence set for all the following analyses

Many IESs are related to transposable elements
Sequence similarity reveals little about the origins of many well-studied Tetrahymena IESs, but others

show clear relatedness to TEs (Chalker and Yao, 2011). The MIC-limited regions of other ciliates

also contain many TEs and TE-related sequences, supporting the hypothesis that programmed DNA

elimination acts as a form of self-defense against genomic parasites (Coyne et al., 2012;

Klobutcher and Herrick, 1997; Vogt et al., 2013). Thus, we analyzed our MIC genome assembly to

determine the extent to which IESs are related to TEs and the nature of these relationships. This

annotation revealed that putative TEs and their remnants make up approximately 18.6 Mb (12.6%)

of the total MIC genome assembly, and 10.9 Mb (41.7%) of the high-confidence IES set (Figure 6A,

Figure 6—source data 1, 2 and 3, Supplementary files 3B, 3C). It is likely that an even higher pro-

portion of IES sequences are ancestrally related to TEs, but have diverged too greatly for this relat-

edness to be detected using our criteria. Although 95% of putative TE sequences are removed

through IES excision during the development of the new MAC, about 1 Mb of putative TE sequen-

ces appear to be retained in the MAC (Figure 6A; Supplementary file 3C). In some instances, we

noticed a retention bias toward the terminal regions of the consensus of manually curated TE

sequences (Figure 6—figure supplement 1). This suggests that sometimes the removal of TE

sequences by IES excision is incomplete, leaving terminal sequences in the MAC.

Among all classified putative TEs, the vast majority corresponds to class 2 (DNA) transposons,

which represent 48.7% of the repeated DNA in the MIC (Figure 6B; Supplementary file 3C). They

belong to ‘cut-and-paste’ (3.6% of the MIC genome), Helitron (fragmented copies), and ‘self-synthe-

sizing’ Maverick/Tlr (1.9% of the MIC genome) families (Supplementary Figure 6;

Supplementary file 3C). Retrotransposons appear to be infrequent in Tetrahymena. Indeed, a small

number (4.75% of the repeated DNA in the MIC) of non-LTR elements (mostly long interspersed

nuclear elements, LINEs) was identified, but we found no evidence for the presence of any LTR retro-

transposons. While retrotransposons are the predominant TE class in most eukaryotic genomes

examined (mostly of plants, fungi, and animals; [Huang et al., 2012; Levin and Moran, 2011]), there

are several other examples of eukaryotic genomes dominated by DNA TEs, including Caenorhabditis

elegans, Danio rerio, and Apis mellifera (http://www.repeatmasker.org/genomicDatasets/RMGeno-

micDatasets.html).

Despite TEs being restricted to the transcriptionally silent MIC (Chalker et al., 2013;

Coyne et al., 2012; Schoeberl and Mochizuki, 2011), we found evidence of very recent amplifica-

tions for the most abundant DNA cut-and-paste transposon superfamilies, based on the nearly iden-

tical sequences of some copies, as well as the presence of intact open-reading frames and terminal

inverted repeats (see Materials and methods; Figure 6C; Figure 6—figure supplement 2). This sug-

gests the recent transpositional activity of multiple DNA transposon families within the MIC

genome.

IESs show uneven spatial distribution, both locally and globally
As previously reported for individual IESs (Austerberry et al., 1989; Li and Pearlman, 1996;

Wells et al., 1994) and more fully analyzed below, nearly all Tetrahymena IESs excise imprecisely.
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Figure 5. Summary of IES structural features. Red lines = MIC DNA. Blue lines = MAC DNA. A representative IES is indicated by the open red box. IESs

were identified as described in Figure 5—figure supplement 1. Their size distribution is shown in Figure 5—figure supplement 2. The excision

endpoint found in the SB210 MAC genome is indicated by the slanted lines converging to the right. Sequences from a large progeny pool representing

multiple, independent excision events show most progeny share the parental endpoint, but variation within a limited range is common, as shown in

detail in Figure 5—figure supplement 3. The left terminal junction sequences is shown blown up below and to the left. Short Terminal Direct Repeats

(TDRs) are often found; they are generally very AT-rich and have a slight sequence pattern bias. A 4 bp TDR sequence logo is shown as an example.

More detailed characterization of endpoint TDRs is presented in Figure 5—figure supplement 4.

DOI: 10.7554/eLife.19090.012

The following figure supplements are available for figure 5:

Figure supplement 1. Read alignment methods used for IES dentification.

DOI: 10.7554/eLife.19090.013

Figure supplement 2. Size distribution of 7551 high-confidence IESs.

DOI: 10.7554/eLife.19090.014

Figure supplement 3. IES excision variability.

DOI: 10.7554/eLife.19090.015

Figure supplement 4. IES/MDS junctions.

DOI: 10.7554/eLife.19090.016

Hamilton et al. eLife 2016;5:e19090. DOI: 10.7554/eLife.19090 15 of 46

Research article Genes and Chromosomes Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19090.012
http://dx.doi.org/10.7554/eLife.19090.013
http://dx.doi.org/10.7554/eLife.19090.014
http://dx.doi.org/10.7554/eLife.19090.015
http://dx.doi.org/10.7554/eLife.19090.016
http://dx.doi.org/10.7554/eLife.19090


Figure 6. Transposable element landscape. (A) Proportion of DNA annotated as TEs (black) or unannotated

(white) using RepeatMasker (Smit et al., 2015) and a custom putative TE library (see text). MAC putative TE

content is about 1 Mb, potentially corresponding to a mixture of TE sequences retained in the MAC assembly and

repeats not corresponding to TEs still in the library. (B) Proportion of putative TEs by class for MIC (ALL and high-

confidence IESs) and MAC. In MIC(ALL), the most abundant elements (besides unclassified) correspond to DNA

TEs (‘cut-and-paste’, Mavericks and Tlr elements). More than half of the MIC(ALL) non-LTR elements could be

annotated as LINE1 elements. (C) Evolutionary view of putative TEs in the MIC. For each class, amounts of DNA

are shown as a function of the percentage of divergence to the consensus (by bins of 1%), as a proxy for age: the

older the TE invasion, the more copies will have accumulated mutations (higher percentage of divergence, right of

the graph). Conversely, sequences corresponding to youngest elements show little divergence (left of the graph).

DOI: 10.7554/eLife.19090.017

The following source data and figure supplements are available for figure 6:

Source data 1. Tetrahymena putative TE library.

DOI: 10.7554/eLife.19090.018

Source data 2. Details of putative TEs contribution to the MIC chromosome super-assemblies.

DOI: 10.7554/eLife.19090.019

Source data 3. Putative TE annotation of high-confidence 7551 IESs.

DOI: 10.7554/eLife.19090.020

Figure supplement 1. MAC retention of TE termini.

DOI: 10.7554/eLife.19090.021

Figure supplement 2. Landscape details of DNA TEs.

DOI: 10.7554/eLife.19090.022
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Therefore, unlike in some ciliates, Tetrahymena IESs are rarely found in MIC locations that give rise

to MAC protein coding sequences; Fass et al. (2011) identified the only reported exceptions. To

confirm these cases, search for others, and characterize IESs within introns, we first reannotated the

protein-coding genes of the MAC genome. The improved gene models were then mapped onto the

MIC genome sequence. As expected, virtually all the high-confidence IESs are removed from pre-

dicted intergenic (6182, 82%) and intronic (1168, 16%) regions, where imprecise excision would not

cripple gene function. The remaining 2% mapped within putatively protein-coding gene sequences,

but on closer inspection, most of these cases represent apparent annotation errors. We identified six

solid cases of coding region IESs, described further below.

When the densities of IESs and putative TEs are plotted along the length of each MIC chromo-

some (Figure 2; green and blue lines, respectively), we observe a pronounced elevation in the cen-

tral and terminal regions (accompanied by a corresponding depression in the density of predicted

genes; Figure 2 orange lines). We observe the reverse pattern on chromosome arms (although for

unknown reasons, Chromosome 2 arms display higher IES density and correspondingly lower gene

density than the other four). These results are consistent with the fact that shorter MIC scaffolds pre-

dominate at the middle and the ends of the MIC chromosomes, presumably because repetitive

sequences in these regions make them difficult to assemble. The central regions, spanning approxi-

mately 7 to 12 Mb or about one quarter to one third of the chromosome lengths, share essentially

the same range as the repeat-rich putative centromeric regions identified above. Thus, although Tet-

rahymena germline chromosomes are transcriptionally silent and carry dispersed elements destined

for programmed elimination from the somatic genome, the general abundance of repetitive sequen-

ces and scarcity of genes in pericentromeric and sub-telomeric regions is similar to that observed in

other eukaryotes (Plohl et al., 2014; Pryde et al., 1997).

The genomic distribution of IESs also bears on the regulation of programmed DNA elimination.

IES excision in Tetrahymena relies on an RNAi-related mechanism, in which scnRNAs guide the epi-

genetic identification and targeting of IESs (Mochizuki and Gorovsky, 2004; Vogt and Mochizuki,

2014). We previously reported (Noto et al., 2015; Schoeberl et al., 2012) the existence of two dis-

tinct classes of scnRNAs, present at different stages of Tetrahymena conjugation. Early-scnRNAs rec-

ognize not just the IESs they stem from, but other IESs in trans. Early-scnRNAs also induce the

production of Late-scnRNAs, and both types are cooperatively involved in DNA elimination

(Noto et al., 2015). Early-scnRNAs are produced primarily from shorter MIC scaffolds, whereas

Late-scnRNAs originate from both large and small MIC scaffolds, but the locations of these scaffolds

on MIC chromosomes was previously unknown. We found that, whereas Late-scnRNAs originate

from locations throughout the MIC chromosomes (Figure 7B), Early-scnRNA primarily map to the

middle and end regions (Figure 7A). The increased number of IESs in these regions (Figure 2) does

not fully explain this phenomenon, because many IESs are located within chromosomal arm regions,

but most do not give rise to Early-scnRNAs. We conclude some yet unknown mechanism restricts

production of Early-scnRNAs to the central and terminal chromosome regions.

In contrast with the wide and normally distributed size range of Tetrahymena IESs that we

observe (Figure 5—figure supplement 2), Paramecium IESs in the MAC/MIC colinear portions of

the genome are highly skewed toward shorter lengths (Arnaiz et al., 2012), and evidence suggests

that progressive shortening occurs with age. Despite this shortening, there are relatively few docu-

mented cases of IES loss in Paramecium (Arnaiz et al., 2012; Catania et al., 2013). In contrast, in

the few cases studied, Tetrahymena IES positions appear to be highly variable between species,

even those most closely related (Huvos, 1995, 2007). We hypothesize that Tetrahymena IESs prolif-

erate in the MIC genome by TE movement (which our results suggest to be an ongoing process

fueled by multiple invasions of diverse TEs), selectively constrained by the imprecise IES excision

mechanism to intergenic and intronic positions. Unlike in Paramecium, there is not strong selection

for a reduction in IES size. As Tetrahymena TE sequences gradually degenerate (and in the absence

of both a precise excision mechanism and selective constraint on the precision of excision), the

boundaries of IES removal shift, giving rise to the observed inter-species variability. Still, the small-

RNA-mediated trans recognition network we have previously described and further refined above

ensures that the overall pattern of IES excision is robust and reproducible from one sexual genera-

tion to the next. Because of the whole genome MIC/MAC comparison step in DNA elimination, this

robustness is most likely necessary to avoid a complete breakdown in reproducibility, an event that

might lead to reproductive isolation and speciation.
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New insights into Tetrahymena IES excision mechanism
Biochemical studies suggest that Tetrahymena IES excision occurs by a transposase-related mecha-

nism initiated by a staggered, double-strand break (Saveliev and Cox, 1996, 2001). Previous small-

scale studies have shown that breakpoints do not share a strong consensus sequence and display

frequent heterogeneity (Austerberry et al., 1989; Li and Pearlman, 1996). In some cases, IESs have

short terminal direct repeats (TDRs) at their ends, one repeat remaining in the MAC following exci-

sion. The domesticated piggyBac transposase Tpb2p, required in vivo for IES excision, can introduce

breaks in vitro of the expected geometry, and with a relaxed sequence preference (Cheng et al.,

2010). To shed further light on this process, we examined thousands of additional IES junctions and

conducted a genome-wide study of excision variability (Figure 5).

To investigate the range of variability in excision endpoints genome-wide, we purified and

sequenced MAC DNA from a large pool of progeny from a mating between strains SB210 and

SB1969, both belonging to the same inbred strain; MAC DNA from both parental strains served as

controls. We aligned the sequencing reads to SB210 MIC scaffolds (as in Figure 5—figure supple-

ment 1) to identify excision endpoints from multiple independent rearrangement events. Quantify-

ing the degree of endpoint variation in a progeny pool depends on the experimental setup as well

as the choice of validation criteria (as described in Figure 5—figure supplement 3 legend), making

Figure 7. Densities of early (A) and late (B) scnRNAs on MIC chromosomes. X-axis = position on MIC chromosome super-assembly; all graphs

normalized to the same length. Early-scnRNAs were co-purified with Twi1p at three hpm and Late-scnRNAs with Twi11p at 10.5 hpm. Normalized

numbers (Reads per kb per million reads [RPKM] in 50 kb bins) of sequenced 26–32-nt RNAs that uniquely map to the MIC genome are shown. A few

locations on the chromosomal arms where Early- or Late-scnRNAs were extensively mapped (e.g. ~20.6 Mb on Chr2 for Early-scnRNA and ~7.8 Mb on

Chr4 for Late-scnRNAs) were examined in detail, but we have failed to detect any obvious unusual sequence features at these loci to account for the

observed enrichment.

DOI: 10.7554/eLife.19090.023
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it hard to assign precise values. Nevertheless, even using conservative validation criteria, the great

majority of IES sites exhibited variability, with up to 14 different junctions per site (Figure 5—figure

supplement 3A). Even for IESs that at first appeared to have no, or exceptionally low, variability,

closer visual inspection of alignment data revealed that nearly all exhibited some endpoint variabil-

ity. The scnRNA-mediated genome rearrangement mechanism involves whole genome comparison

of the parental and newly developing MACs, with the state of the pre-rearranged parental genome

influencing events in the progeny in a locus-specific manner (Mochizuki and Gorovsky, 2004;

Yao and Chao, 2005). Therefore, we examined the relationship of progeny to parental IES excision

endpoints. Progeny endpoints were most often identical to those of the parent (26.6%), with most

variations (83.3%) falling within 20 bp of the parental position (Figure 5—figure supplement 3B).

This observation is consistent with the proposal that cis-acting ‘boundary elements’ act to prevent

the spread of chromatin marks specific to MIC-limited sequences (Chalker et al., 1999;

Godiska et al., 1993; Li and Pearlman, 1996; Patil and Karrer, 2000). The progeny endpoint distri-

bution shows a small spike at a distance of 4 bp from the parental endpoint. This would be consis-

tent with the use of the same breakpoint, followed by differential repair of the four base overhang

generated by Tpb2p, using either the ’right’ or ’left’ overhang as template.

The greatest number of IES junction sites (28%) displayed no TDRs, and another 47% displayed

TDRs of between 1 and 4 bp (Figure 5—figure supplement 4A). These TDRs are more AT-rich than

immediately adjacent regions (Figure 5—figure supplement 4B), but include a wide diversity of

sequences, with minimal bias (Figure 5—figure supplement 4C). Paramecium also initiates IES exci-

sion by the action of a domesticated piggyBac transposase thought to be monophyletic with Tpb2.

However, in contrast to the junctional diversity observed in Tetrahymena, the TA dinucleotide central

to the four nucleotide overhang is invariant (Arnaiz et al., 2012; Gratias and Bétermier, 2003) and

excision endpoint variability is extremely low. These features have allowed Paramecium IESs to fre-

quently occupy protein-coding regions, whereas the imprecision of Tpb2p and the near total

absence of IESs in Tetrahymena protein-coding regions have most likely co-evolved to result in a

strikingly different MIC genome landscape.

As mentioned above, we identified six Tetrahymena IESs that do fall within protein-coding

regions, including three previously identified cases (Fass et al., 2011) (Figure 8A). These six IESs

share four features that set them apart from the vast majority of other IESs. First, all six are flanked

by TTAA terminal direct repeats (TDRs), one copy of which is retained in the MAC; this sequence

feature is shared by only 2% of all Tetrahymena IESs. Second, these six IESs have a distinctive termi-

nal inverted repeat (TIR), internal to the TTAA direct repeat, with a consensus of 5’- CACTTT-3’

(Figure 8B, Supplementary file 3D). This TIR resembles that of PiggyBac TEs of several species (as

found in RepBase: http://www.girinst.org/repbase/index.html and (Xu et al., 2006), and also the

two full-length piggyBac consensus sequences annotated in the Tetrahymena MIC genome (Fig-

ure 6—source datas 1; 5’-CCCT(A/T)T-3’ for Contig[0117] and 5’-CCC(A/T)(C/T)T-3’ for R = 3481).

Third, the six coding region IESs are all exceptionally short; in fact, they include the three shortest

IESs we identified (136, 188 and 194 bp, Supplementary file 3D). Apart from their size and terminal

sequences, no other conserved sequence features were detected, either within or flanking the IESs.

Finally, these six IESs share the feature of exceptionally precise excision (as determined in the study

of excision variability described above), as would be expected in order to maintain correct protein-

coding capacity.

It has been reported that Tpb2p exhibits very little sequence specificity and wide variability

(Cheng et al., 2010; Vogt and Mochizuki, 2013), so how does one explain the conserved junctions

and precise excision of these few elements? We propose three testable hypotheses: first, this partic-

ular terminal sequence may allow these IESs to be processed by Tpb2p with unusually high fidelity.

Second, an additional trans-acting factor may increase Tpb2p’s specificity for these IES junctions.

Finally, precise excision of these IESs may rely on one of the other piggyBac transposase homologs

identified in the Tetrahymena genome (Cheng et al., 2010), one of which we have shown resides on

a NMC (see above) and is expressed during conjugation.

A remaining question is why, as long as a mechanism exists for precise excision of Tetrahymena

coding region IESs, is their occurrence so exceedingly uncommon, especially in comparison with Par-

amecium, which employs a related piggyBac transposase mechanism for precise excision initiation,

or conversely why has any precise excision at all persisted in Tetrahymena? It was suggested, in the

case of the LIA2 coding region IES (Fass et al., 2011), that its excision may represent a novel form
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of gene regulation, turning on or off expression or allowing the expression of different protein prod-

ucts before and after rearrangement. We note that the five genes containing coding region IESs

share certain intriguing features, suggesting that such regulation could serve relevant function(s)

(Figure 8A). The expression of all five is conjugation-specific (Miao et al., 2009; Xiong et al., 2012),

peaking at approximately the same time point (8–10 hr post-mixing; http://tfgd.ihb.ac.cn/), near the

time of IES excision. In addition, the predicted protein sequences contain functional domains of

potential relevance to the regulation of gene function and/or MAC development, including zinc fin-

ger, bromodomain, and DEAD-DEAH helicase (Lia2p). Perhaps, the emergence of an efficient yet

imprecise excision mechanism in Tetrahymena, based primarily on the epigenetic scnRNA mecha-

nism to identify IESs and determine their boundaries, has driven selection against almost all coding

region IESs that existed in a common ancestor of Tetrahymena and Paramecium, with the few

Figure 8. Coding region IESs. (A) MIC structures of the five genes containing coding region IESs (thick black

boxes). Predicted protein-coding regions indicated by thinner boxes, conserved coding sequence domains by

colored boxes, and introns by thin lines. Three coding region IESs previously identified (Arnaiz et al., 2012) are

indicated as IESB, IES1, and IES2. (B) Sequence logo generated from the 12 IES/MDS junctions of the six IESs

depicted in part A (interior of IES to the right). See also Supplementary file 3D.

DOI: 10.7554/eLife.19090.024
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remaining Tetrahymena cases persisting for gene regulatory purposes. Future studies of these five

genes and six IESs will test this hypothesis.

Conclusions and future directions
The assembly and analysis of the germline genome of Tetrahymena thermophila provides many new

insights into the architectural differences between this genome and the remodeled somatic genome,

the evolutionary history that shaped these genomes, and the developmental rearrangement mecha-

nisms through which the somatic genome matures. Consistent with the deep evolutionary branching

of the phylum (Baroin-Tourancheau et al., 1992), comparisons between Tetrahymena, Paramecium,

and Oxytricha reveals the extraordinary diversity and adaptability of ciliate germline/soma nuclear

differentiation. Further comparative germline genomic analyses, including additional species closely

related to the model organisms T. thermophila, P. tetraurelia, and O. trifallax, will help elucidate fur-

ther details of this remarkable process. Because genome-wide DNA elimination occurs in phyloge-

netically diverse eukaryotes and is mechanistically related to nearly universal chromosomal functions

mediated by small RNAs, the implications of this area of research are expected to be wide-ranging.

The genome sequence, super-assemblies, and analyses presented here provide valuable information

and resources for future investigations of programmed genome rearrangement and the relationship

between chromosome structure and function in germline and somatic nuclei.

Materials and methods

Genomic library construction and sequencing
T. thermophila strains undergo occasional chromosome loss in their silent germline nucleus. To con-

firm that the sequenced SB210 strain (RRID:TSC_SD01539) isolate had all five micronuclear chromo-

somes intact, whole cell genomic DNA was isolated and germline-specific sequences on both arms

of each chromosome were mapped (Cassidy-Hanley et al., 1994). From such a validated isolate

(available from the Tetrahymena stock center; https://tetrahymena.vet.cornell.edu), micronuclei were

purified and genomic DNA prepared according to published procedures (Gorovsky et al., 1975).

By microscopic counting of purified nuclei (taking into account the relative nuclear ploidy), we esti-

mate that contamination with macronuclear genomic DNA was less than 2%.

The T. thermophila germline genome is highly AT-rich (MAC assembly 77.7% and MIC assembly

77.9%) and contains abundant repetitive sequence elements, two factors that can complicate

genome sequencing and assembly. To avoid PCR-based bias in sequence representation, we gener-

ated Illumina fragment sequencing libraries using a PCR-free protocol. Two Illumina whole genome

shotgun PCR-free fragment libraries were generated following published procedures, using the

‘with-bead’ approach (Fisher et al., 2011; Kozarewa et al., 2009). Five microgram of genomic DNA

was sheared to 150–300 bp using a Covaris LE220 instrument with the following parameters: tem-

perature: 7–9˚C; duty cycle: 20%; intensity: 5; cycles per burst: 200; time: 90 s; shearing tubes:

Crimp-Cap microtubes with AFA fibers (Covaris Inc., Woburn, MA). Following DNA fragment end-

repair and A-tailing, fragments were ligated on both ends with PCR-free-enabled TruSeq adapters

(Illumina FC-121–2001) following manufacturer’s recommendations (Illumina Inc., San Diego, CA).

No PCR amplification was performed and resulting libraries were size-selected to contain inserts of

180 bp ± 10% with a Sage Pippin Prep using a 2% cassette following manufacturer’s recommenda-

tions (Sage Science, Beverly, MA).

To maximize scaffold lengths, we added to the fragment reads an approximately equal number

of mate-paired reads from six ’jumping’ libraries. Six mate-pair jumping libraries were generated

using Illumina’s Mate Pair Library Preparation Kit v1 following the manufacturer’s recommendations

with the following modifications. Twenty microgram of genomic DNA was sheared to approximately

2–10 kb in size using a HydroShear (Digilab, Marlborough, MA) with the following conditions: cycles:

22; speed: 16; assembly: 0.002”; total volume: 200 ml 1x low TE buffer (10 mM Tris pH 8.0, 0.1 mM

EDTA). Following end repair and biotin labeling, DNA fragments were separated on a 0.6% agarose

gel and size fractions collected in the following approximate ranges (number of resulting libraries in

parentheses): 2–4 kb (2), 4–5 kb (2), 5–6 kb (1), and 7–9 kb (1). Each fraction was processed individu-

ally, using indexed adapters, rather than standard paired-end Illumina sequencing adapters, to

enable library pooling during sequencing.
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The two PCR-free fragment and six jumping libraries were sequenced with 101 base paired-end

reads using an Illumina HiSeq2000 instrument following manufacturer’s recommendations. Sequenc-

ing generated a total of approximately 125 Gb of data.

De novo genome assembly
The MIC genome was assembled with 169-fold sequence coverage using roughly an equal mix of

fragment and mate-pair read data. Assemblies were generated with the ALLPATHS-LG assembler

(Gnerre et al., 2011) (RRID:SCR_010742; version 38019) using default parameters. Assemblies were

screened to remove single contig scaffolds smaller than 1 kb and contigs less than 200 bp in length.

Assemblies were screened against the complete T. thermophila mitochondrial genome sequence

using nucmer (from the Mummer package v3.23 64 bit package run with default parameters; RRID:

SCR_001200) to identify and remove any mitochondrial contigs. MIC telomeres, which have a distinc-

tive terminal repeat sequence as well as sub-telomeric repeats (Kirk and Blackburn, 1995), were not

detected in the MIC genome scaffolds, suggesting that their repetitive nature prevented assembly.

RNA-Seq library construction and sequencing
Total RNA was prepared from three Tetrahymena thermophila cell populations: strain CU428 (RRID:

TSC_SD00178) in mid-log phase growth, the same strain in starvation medium (10 mM Tris-HCl, pH

7.4) at time t = 0 hr, and a mixture of conjugating pairs of CU427 (RRID:TSC_SD00715) and CU428

at times t = 3, 6, and 9 hr post-mixing. In each case, 5 � 106 cells were resuspended in 600 ml Trizol

Reagent (Life Technologies-Thermo Fisher Scientific, Waltham, MA) and processed according to

manufacturer’s recommendations. Precipitates were resuspended in nuclease-free water and treated

with TURBO DNase (Ambion-Thermo Fisher Scientific, Waltham, MA). Samples were then ethanol

precipitated and resuspended in nuclease-free water and pooled.

An Illumina (Illumina, Inc., San Diego CA) RNA-seq library was prepared using the dUTP second-

strand method (Levin et al., 2010) with the following modifications. Twelve microgram of total RNA

was subjected to poly(A)+ isolation using two rounds of purification with the Dynabeads mRNA puri-

fication kit (Invitrogen-Thermo Fisher Scientific, Waltham, MA). Poly(A)+ RNA was treated with Turbo

DNase (Ambion) according to the manufacturer’s recommendations and shown to be free of resid-

ual, detectable genomic DNA based on a qPCR assay (data not shown). The resulting 135 ng of poly

(A)+ RNA was then fragmented in 1x RNA fragmentation buffer (New England Biolabs, Ipswich, MA)

at 85˚C for 4 min. Following first strand cDNA synthesis, cDNA was purified with 1.8x RNAClean

SPRI beads following manufacturer’s recommendations (Beckman Coulter Genomics, Danvers, MA).

Index Illumina sequencing adapters were used in place of standard paired-end adapters to enable

library pooling during sequencing. Following adapter ligation, smaller library fragments were

removed with two 0.7x AMPure XP SPRI bead purifications following manufacturer’s recommenda-

tions (Beckman Coulter Genomics). PCR amplification was performed with Phusion High-Fidelity PCR

Master Mix with GC Buffer (New England Biolabs) and 2 M betaine using the following cycling condi-

tions: 30 s at 98˚C; 9 cycles of 98˚C for 10 s, 65˚C for 30 s, and 72˚C for 30 s; 5 min at 72˚C. RNA-

Seq libraries were sequenced with 101 base paired-end reads using an Illumina HiSeq2000 following

the manufacturer’s recommendations (Illumina). Sequencing generated a total of approximately

150M paired-end reads.

Joining MIC scaffolds into chromosome-length super-assemblies by
tiling method
All MAC and MIC scaffolds were aligned to one another using nucmer (criteria: percent identity >95,

alignment length >1000 bp; Mummer package RRID:SCR_001200) and blastn (criteria: percent

identity �98, alignment length �100 bp; RRID:SCR_001598) to identify regions of common origin

between the two genome assemblies. Contiguous blocks of alignment (interrupted by IESs) to single

MAC scaffolds were used to place MIC scaffolds in their natural order and orientation. To extend

these contiguous blocks and join adjacent MIC or MAC scaffolds, we used a ‘tiling’ method, illus-

trated and described in Figure 1—figure supplement 1. We constructed ’best approximation’

super-assemblies of all five MIC chromosomes by combining the scaffold alignment overlap data

with HAPPY mapping results. We also incorporated findings on seven cases of programmed DNA

rearrangement events that join non-contiguous MIC genome regions into MAC chromosomes (see
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above). We found evidence suggesting a number of cases of MIC scaffold mis-assembly

(Supplementary file 1D), but only two cases of MAC scaffold mis-assembly. This difference likely

results from three factors: (1) the MIC genome contains many more repetitive sequences, (2) the

MAC genome was assembled using long-read Sanger technology (Eisen et al., 2006), and (3) the

MAC assembly underwent extensive finishing (Coyne et al., 2008). Scaffolds with ambiguous align-

ment placement patterns, due to repetitive sequences, were omitted from the resulting chromo-

some super-assemblies. When overlapping alignments were not available to bridge an intra-scaffold

gap, HAPPY mapping data [(Hamilton et al., 2006a) and Supplementary file 1B] were used to

place adjacent scaffolds in the best possible order.

The super-assemblies are summarized in Supplementary file 1C and are also available in a

JBrowse format at: http://www.jcvi.org/jbrowse/?data=tta2mic (RRID:SCR_001004) and fasta format

at: http://datacommons.cyverse.org/browse/iplant/home/rcoyne/public/tetrahymena/MIC. The five

chromosome super-assemblies incorporate 765 of the 1464 total MIC scaffolds, but because most of

the unincorporated scaffolds are small (83% < 10 kb; Supplementary file 1C), the super-assemblies

account for 152 Mb of the 157 Mb total MIC assembly length. Over 60% of the unincorporated scaf-

folds have no significant matches to the MAC assembly. The rest have only very short (<200 bp)

matches, suggestive of repetitive sequences, or else can be incorporated within larger MIC scaffolds,

suggesting mis-assembly. Thus, it appears all or nearly all the unincorporated scaffolds are entirely

MIC-specific.

Identifying Cbs’s
Previously identified Cbs’s (Hamilton et al., 2005, 2006) were confirmed and searches for additional

Cbs’s were done by two independent methods. First, we searched for Cbs family members in the

MIC neighborhood that aligns with MAC chromosome telomere-addition sites. Second, we searched

for Cbs’s directly in MIC supercontigs using a Perl script and the following regular expression for the

Cbs family: ‘WAAACCAACCYCNHW’, where W = A or T, Y = C or T, N = any nucleotide and H = A,

C or T (Hamilton et al., 2006a).

Detecting and clustering duplications of Cbs’s and their adjacent
sequence
To detect duplications of Cbs-containing regions, we used 415 bp DNA segments containing each

Cbs at the center and 200 bp of adjacent sequence on each side, referred to as ‘Cbs segments’

(Table 3—source data 1). In four cases, the segments contained two or three Cbs’s, as adjacent Cbs

were less than 400 bp apart. In such cases, we used a region that contained all such Cbs plus 200 bp

flanking the outer Cbs’s. We used two independent methods to align and cluster Cbs segments. In

method 1, the 225 segments were aligned with one another in all pairwise combinations using the

‘Align two sequences’ option of NCBI Blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi; RRID:SCR_

004870). Default parameters were used with the following exceptions: word size = 7, low complexity

filter = OFF, and expect value threshold = 1E-15 Word size was set to seven because every func-

tional Cbs has nine consecutive, absolutely conserved nucleotides. This choice ensured catching

every alignment, and thus all segmental duplications that included the Cbs. The low complexity filter

was set to OFF because non-genic portions of the T. thermophila genome are highly A+T-biased

(the entire set of Cbs-flanking 400 bp segments is 86.6% A+T). Setting the low complexity filter to

ON generally reduced the alignment to a small number of nucleotides on either side of the Cbs

sequence and increased by one order of magnitude the exponent of the expected value of the best

alignments. The 1E-15 threshold was empirically chosen by comparing expect values for alignments

of the set of 225 Cbs segments with each other and with sets of randomized sequences; using this

expect value threshold reduced spurious alignments between real and randomized sequences to a

modest number. Randomized sequences were obtained as follows. For each Cbs segment, the Cbs

was kept intact, but the 200 bp of flanking sequence on each side were randomized, while retaining

the nucleotide frequency of the original sequence. Three independent randomized sets were gener-

ated. The center Cbs was kept intact to make the simulation equivalent to the real analysis. This was

necessary because inclusion of a 15 bp highly conserved Cbs sequence results in a spurious decrease

in the expect value of the alignment between any pair of Cbs segments.
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The entire set of 225 sequences was used as the ‘subject’ database for all-by-all alignment.

Smaller groups of the same sequences were used as ‘query’. We confirmed that the expect value of

the alignment of a given Cbs region was not affected by how many Cbs segments were simulta-

neously used as query. Since we were interested in duplications that include the Cbs, alignments

were considered only if Cbs’s aligned with one another. In a minority of cases (involving 11 Cbs’s),

consecutive Cbs are less than 400 bp apart. Because of sequence overlaps in the 415 bp segments

centered on such closely-spaced Cbs’s, the resulting self-matches would spuriously inflate the statis-

tical significance of certain alignments and could lead to meaningless clusters. To deal with this

issue, the individual Cbs-containing repeat units of closely-spaced-Cbs segments were split into non-

overlapping pieces based on preliminary alignments and aligned with the 225 Cbs segments. As a

consequence, some of the Cbs segments were significantly shorter than 415 bp, which raises the

minimum expect values of their alignments. Cbs segments that aligned with at least one other seg-

ment with expect value equal or less than 1E-18 were clustered. We chose this threshold to exclude

most false positives, based on the distribution of expect values for all-by-all alignments of the real

sequences to the corresponding distribution for randomized vs. real sequences.

Method two started with an all-by-all Blastn alignment of the 225 Cbs segments also with low

complexity filter = OFF. The expect value threshold was set at E-07. This threshold was obtained

empirically by inspecting the clusters and alignments as described below, with a goal of having the

largest clusters that still were conservative enough to generate good multiple sequence alignment.

The Blastn matches were clustered using the mcl algorithm (http://micans.org/mcl/index.html?sec_

thesisetc) (Van Dongen, 2000) with the pairwise scores set to the ratio of the bit score divided by

the bit score of the sequence matched against itself (as is done in the IMG system

[Markowitz et al., 2006]). The sequences in each cluster were then aligned using MUSCLE

(Edgar, 2004) (RRID:SCR_011812).

Midpoint-rooted maximum likelihood phylogenetic trees for each cluster were generated using

PhyML version 20120412 (Guindon and Gascuel, 2003) (RRID:SCR_014629). The GTR (Tavaré, 1986)

nucleotide evolutionary model was used with a 4-category discrete gamma model of rates across

sites. One hundred parametric bootstrap replicates were performed for each tree to measure

robustness of the topology.

Identifying Cbs’s in other species
T. thermophila strain SB210, T. malaccensis strain 23b (RRID:TSC_SD01730), T. elliotti strain 4EA

(RRID:TSC_SD01607), T. borealis strain X4H2 (RRID:TSC_SD01609; all strains available at the Tetra-

hymena Stock Center; https://tetrahymena.vet.cornell.edu) were grown in 2% PPYS. Whole-cell DNA

was prepared by proteinase K digestion, phenol-chloroform extraction, and ethanol precipitation

(Bannon et al., 1983). RNaseA treatment was either included with the proteinase K treatment or

performed separately on purified DNA. Primers used for PCR amplification were obtained from Inte-

grated DNA Technologies, Inc. (Coralville, IA). DNA sequencing was done by MCLAB (South San

Francisco, CA).

The following strategy was used to identify Cbs’s in T. malaccensis, T. elliotti, and T. borealis (for

discussion of the relatedness of these species, see Chantangsi et al. [2007]). First, we chose a well

assembled 3.4 Mb T. thermophila germline DNA segment, composed of contiguous MIC supercon-

tigs 2.6 and 2.11. All but one of the 11 MAC chromosomes derived from this region initially assem-

bled from telomere to telomere, and therefore, the region is unlikely to contain many repetitive

sequences. This region is located on MIC chromosome 3 and contains 12 consecutive Cbs (3L-26 to

3L-15). To locate the chromosome breakage sites and identify the T. thermophila MAC chromosome

scaffolds derived from this region, the MAC scaffold database at the NCBI T. thermophila Nucleo-

tide Blast page (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&PROG_DEF=

blastn&BLAST_PROG_DEF=megaBlast&BLAST_SPEC=OGP__5911__12563) was searched with the

two MIC supercontigs. Homologous MAC supercontigs from T. malaccensis, T. elliotti, and T. borea-

lis were identified by using blastn (RRID:SCR_001598) to search their genome assemblies (Accession

numbers: T. malaccensis (PRJNA51577), T. elliotti (PRJNA51573), and T. borealis (PRJNA51575)

using 20–25 kb segments from the ends of each T. thermophila MAC chromosome identified above.

Next, guided by the T. thermophila MIC chromosome 3 super-assembly, we constructed pseudo-

assemblies of the homologous MIC chromosome segments for each of the other three species

(called pseudoassemblies because they lack IES’s, whose absence does not affect the connectivity of
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the MAC-destined sequences). Based on the assumption that these pseudoassemblies are colinear

with the T. thermophila super-assemblies, we predicted the location of MIC Cbs. A more complete

analysis of synteny between these and other Tetrahymena species will be presented in a later paper.

To establish whether Cbs’s are indeed present at the predicted sites, we followed the general

Cbs sequencing strategy of Hamilton et al. (2005). The MIC-specific region, expected to contain a

Cbs, was PCR amplified from whole cell DNA using primers from the ends of each pair of MAC chro-

mosomes predicted to be adjacent in the MIC. The amplified product was sequenced directly (with-

out cloning), either after reaction cleanup or, if necessary, gel purification (Qiagen, Valencia, CA).

With one exception, PCR products were sequenced from both strands or from reactions with differ-

ent primer combinations. The sequence was then aligned with a short concatenated sequence from

neighboring MAC chromosomes (telomeres or Ns deleted) to verify that the correct product was

obtained and to delineate the MIC-specific segment. For alignments, we used LALIGN (http://www.

ch.embnet.org/software/LALIGN_form.html; RRID:SCR_011819) and Needle (http://mobyle.pasteur.

fr/cgi-bin/portal.py#forms::needle; RRID:SCR_008493), most often with default settings, although in

some cases the gap start penalty was decreased. A Cbs, presumably functional (Hamilton et al.,

2006b), was found in the middle of the MIC-specific segment of every genuine PCR product.

T. elliotti supercontigs 14, 30, and 46 presented special problems in the assembly; these super-

contigs appear to be concatenates of homologs of several T. thermophila MAC chromosomes linked

by blocks of N’s at the sites where MAC chromosome ends are predicted. To determine whether

these long supercontigs truly represent a single chromosome or were due to misassembly problems,

we amplified regions of presumed fusion events with primers on both sides of the Ns. Amplification

products were sequenced at locations homologous to 3L-26, 3L-21, 3L-20, and 3L-16; all four were

found to contain known Cbs sequences.

To prove that the Cbs sequences are functional, we set out to find telomeres at the ends of MAC

chromosomes that flank each Cbs identified in the three relatives of T. thermophila. This was done in

one of the following ways: (1) Many of the MAC supercontigs had assembled telomere sequence

(CCCCAA or its reverse complement) at one or both ends; (2) At ends where telomere sequence

repeats did not assemble, or adjacent to blocks of Ns in T. elliotti, we were sometimes able to iden-

tify telomere repeat-containing sequence reads from the Sequence Read Archive (www.ncbi.nlm.nih.

gov/sra) that aligned with the incomplete MAC supercontig assembly; (3) In other cases, a telomere

was experimentally identified by PCR amplification using a primer specific to the terminal DNA

sequence paired with a generic telomere sequence primer, as described by Hamilton et al.

(Hamilton et al., 2005). The presence of a single (or major) PCR product, consistent with the pre-

dicted product size, was taken as evidence for the presence of telomeres at that chromosome end.

For confirmation, some of these telomere-containing PCR products were cloned into the PCR2.1

vector using the Invitrogen TA cloning kit (Thermo Fisher Scientific, Waltham, MA) and sequenced.

Several clones were sequenced in each case —as in T. thermophila, microheterogeneity in the telo-

mere addition site was observed (Fan and Yao, 1996; Hamilton et al., 2006b); (4) A supercontig

containing two MAC chromosomes separated by a block of N’s was revealed in the case of the T.

elliotti homolog of Cbs 3L-26; two bands were seen after hybridization to Southern blots of pulsed-

field gels of T. elliotti DNA (data not shown). Using the same method, we indirectly confirmed the

existence of Cbs 3L-21 by confirming the length of the MAC chromosome that flanked the Cbs.

Using these methods, a telomere-capped MAC end was identified on at least one side of every Cbs

studied, confirming Cbs functionality.

In order to verify at higher resolution the location of putative homologous Cbs’s in the four spe-

cies, we looked for homology of predicted protein-coding sequences flanking every one of the 12

identified or predicted Cbs’s in the three species to the corresponding gene models in T. thermo-

phila. This was done by aligning 2500–5000 bp of DNA sequence adjacent to each end of every

MAC supercontig in the other species to the T. thermophila protein database at TGD using blastx

(RRID:SCR_001653). This was done to circumvent any potential gene annotation errors in the three

other species. For each of the 72 cases, we recorded whether or not the closest matching T. thermo-

phila gene(s) were also the terminal Tel-adjacent gene(s) of the corresponding T. thermophila

scaffold.
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Identification of tandem repeats
The location and characterization of tandem repeats were done using Tandem Repeats Finder (Ben-

son, 1999) with default parameters, as follow: Match = 2, Mismatch = 7, Delta = 7, PM = 80,

PI = 10, Minscore = 50, MaxPeriod = 500 (i.e. tandem repeats up to 500 nt can be found), with the

option –h to obtain text file outputs. Tandem repeats of only two copies were not considered. To

obtain an accurate amount of DNA covered by the tandem repeats, we used bedtools merge

(Quinlan and Hall, 2010) (RRID: SCR_006646). By these criteria, we identified 29,794 simple repeats

(constituting 2.9 Mb, or 1.9% of the MIC scaffold sequence, excluding Ns). However, this number is

likely an underestimate of the overall MIC genome repeat content. Because of the numerous gaps in

the MIC genome assembly, approximately 6.4% (constituting 10.0 Mb) consists of Ns. Because

repeat-rich sequences are difficult to assemble, the unassembled parts of the genome are likely to

contain many more repeats. By comparison, the MAC genome assembly, which is much more com-

plete, contains far fewer Ns. Using the same Tandem Repeat Finder parameters as for the MIC, we

identified 22,216 simple sequence repeats (constituting 3.5 Mb, or 3.4% of the MAC assembly,

excluding Ns). Although the number of repeats is lower in the MAC than the MIC, there were many

longer repeats. Thus, as first described by Eisen et al. (2006), there is a significant retention of

repetitive sequences in the MAC, but it is not possible to say what portion of these sequences are

eliminated from the MIC genome.

Identification and confirmation of IESs
As stated in the main text, the generally large size and repetitive nature of Tetrahymena IESs, along

with inherent difficulties in assembling IES/MDS junctions (described below) make it challenging to

compile a list of IESs that is both comprehensive and precise in terms of IES endpoints. We used

three complementary methods to identify and map IESs.

1. MAC read alignment to MIC (Figure 5—figure supplement 1A). The previously generated
Sanger sequencing reads from MAC genomic DNA libraries (Eisen et al., 2006) were mapped
onto the entire MIC genome assembly using BWA (Li and Durbin, 2010) (RRID:SCR_010910).
These mappings were used to detect ’split reads’, adjacent parts of which mapped (in the
same orientation) to two separate locations on the same MIC scaffold, putatively due to the
presence of an IES in the region spanned by the read. To reduce false positive identifications,
we required that every ’high confidence’ IES be supported by at least three spanning reads,
that the IES have low MAC read coverage (<1X, compared with overall average of 9.3X for
MAC-destined regions; low coverage may occur due to MIC contamination of the original
MAC libraries), and that the IES not begin or end with a sequencing gap.

2. MIC read alignment to MAC (Figure 5—figure supplement 1B and C). MIC genomic reads
from this study were mapped to the MAC genome assembly using BWA (Li and Durbin, 2010)
(RRID:SCR_010910). Duplicate reads due to PCR artifacts were removed using samtools-rmdup
(http://samtools.sourceforge.net/samtools.shtml; RRID:SCR_002105). We identified reads
whose alignment of stops before their ends (putatively because such reads contain IES
sequence at their ends). At least six such ’broken’ reads were required to validate a ’residual’
IES site in the MAC genome. Also, we required that at least one broken read must face the
residual site from each direction, with alignment breakpoints within 10 bp of each other. Most
breakpoints from the ’left’ or ’right’ read direction were either adjacent or overlapped slightly,
indicating a short direct repeat at the IES junction (Figure 5—figure supplement 1C).

3. MIC-MAC cross-assembly alignment. All MAC and MIC scaffolds were aligned to one another
using nucmer (criteria: percent identity > 95, alignment length > 1000 bp; Mummer package
RRID:SCR_001200). The presence of a putative IES was deduced by a larger gap (>100 bp dif-
ference) in adjacent alignment endpoints in the MIC genome than the corresponding endpoint
gap in the MAC genome.

Applying stringent criteria, the first method identified 7757 putative IESs; nearly all were corrobo-

rated by one or both of the other two methods. Following manual curation, a final ’high confidence’

set of 7551 IESs remained (Supplementary file 3A). An important criterion for inclusion in the high-

confidence set is that the precise junction positions must be identified; internal assembly gaps are

permitted, but gaps at IES/MDS junctions are not. In contrast to IES mapping method number one

above, the other two mapping methods frequently identified putative IESs with terminal assembly

gaps or, in many cases, consisting entirely of gap regions. These gaps are likely the result of two
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factors: (1) repetitive sequences within the IESs and (2) minor contamination of the MIC sequencing

libraries with MAC DNA (the resulting mixture of inconsistent short reads at IES/MDS junctions caus-

ing the assembly algorithm to introduce ’breaks’). Nevertheless, manual curation indicates that IESs

likely exist at the great majority of these sites. Each of the latter two methods identified about

12,000 IESs in total, twice the number previously estimated based on extrapolation from a highly

limited subset (Yao et al., 1984) or low-coverage MIC genome sequencing (Fass et al., 2011).

To confirm the validity of exceptionally short (<250 bp) or long (>25 kb) IESs, the read alignments

were visually inspected using a JBrowse instance. IESs < 250 bp in length and three slightly larger

coding region IESs were also confirmed by PCR amplification from a SB210 MIC genomic DNA sam-

ple with flanking primers using Q5 DNA polymerase (New England Biolabs, Ipswich, MA) or Platinum

Taq HiFi DNA polymerase (Life Technologies-Thermo Fisher Scientific, Waltham, MA) according to

manufacturer’s recommendations. Expected sizes of MIC and MAC (from minor contamination of

the template) amplification products were confirmed by gel electrophoresis. In one case where an

exonic IES was within a sequencing gap, the MIC PCR product was cloned into the pCR4-TOPO vec-

tor (Life Technologies, Inc.) and sequenced on both strands.

Repeat analysis
A library of repeats for the T. thermophila MIC genome was built by combining known transposable

elements (Jurka et al., 2005), all previously described TE families in Tetrahymena (Fillingham et al.,

2004; Tsao et al., 1992; Wells et al., 1994), and repeats identified de novo (Supplementary Dataset

1). To build the latter, we used RepeatScout (Price et al., 2005) (RRID:SCR_014653) with default

parameters (>3 copies) to generate consensus repeat sequences. Those with greater than 90%

sequence identity and a minimum overlap of 100 bp were assembled using Sequencher (v 4.07;

RRID:SCR_001528). Repeats were classified into TE families using multiple lines of evidence, includ-

ing detection of conserved TE protein domains (Marchler-Bauer et al., 2011), homology to known

elements, presence of Terminal Inverted Repeats (TIRs), and detection of Target Site Duplications

(TSDs). Homology-based evidence was obtained using RepeatMasker Protein Mask (Smit et al.,

2015) (RRID:SCR_012954), as well as the homology module of the TE classifying tool RepClass

(Feschotte et al., 2009) (RRID:SCR_014654). Repclass was also used to identify some of the signa-

tures of transposable elements (TIRs, TSDs). We then eliminated non-TE repeats (simple repeats or

gene families). First, consensus sequences were labeled as simple repeats or low complexity if 80%

of their length could be annotated as such by RepeatMasker (masking of the library with the option

–noint; RRID:SCR_012954). Next, consensus sequences were interrogated against protozoan refseq

mRNAs (release 58) with tblastx (Altschul et al., 1990) (RRID:SCR_011823), and considered as non-

TEs when: 1) evalue of the hit was lower than 1E-10; 2) the consensus sequence was not annotated

as a TE; and 3) the hit was not annotated as a transposase. To facilitate this step, we used custom

perl scripts available at https://github.com/4ureliek/ReannTE.

A selected subset of 32 of the 1674 resulting repeats was manually verified and consensus

sequences were curated. Two non-exclusive criteria were used to select sequences for manual anno-

tation: highest genome coverage or lowest divergence between copies (e.g. potentially recently

active elements), based on a preliminary repeat annotation of the genome with RepeatMasker. Pre-

sumably, because of the large size and complex structure of Maverick/Tlr elements (Pritham et al.,

2007), we could not identify any complete elements in the MIC assembly (the only copy that we

could annotate within a unique scaffold was lacking some internal domains). Lastly, we further classi-

fied the remaining unclassified repeats (1480/1674), using a k-mer-based method and were able to

assign classification for an additional 161 repeats. The use of this k-mer based tool (Flygare et al.,

2016) (RRID:SCR_014655; available at https://github.com/Yandell-Lab/taxonomer_0.5) allowed us to

test whether each copy of all unclassified repeats (query) could be classified as any copies of any

classified repeats (database). The query’s classification was updated to reflect the classification of

the majority of its copies with significant scores. Repeats that showed inconsistent classification

(such as DNA or LINE1 depending on copies) remained unclassified. Most repeats (1319) remain

unclassified and may correspond to either TEs or to non-TE repeats: therefore, we refer to this cus-

tom library as putative TEs.

The Tetrahymena MIC and MAC genome assemblies were masked with RepeatMasker

(Smit et al., 2015) using the refined repeat library (options –s and –nolow). Data presented in text

and figures were obtained by parsing the RepeatMasker output file with custom perl scripts
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(parseRM.pl and parseRM_GetLandscape.pl, https://github.com/4ureliek/Parsing-RepeatMasker-

Outputs; Figure 6—source datas 2 and 3).

Annotation of protein-coding genes
Structural annotation of MAC protein-coding genes was carried out independently at the Broad

Institute and JCVI using an overlapping set of procedures. Differences in the results were resolved at

JCVI. The strand-specific RNAseq data described above and non-strand-specific RNAseq data gen-

erated previously (Xiong et al., 2012) were assembled using Inchworm (Grabherr et al., 2011) (Trin-

ity package, RRID:SCR_013048). These assemblies were aligned to the MAC genome using PASA

(Haas et al., 2003) (RRID:SCR_014656). The gene structures of about 2700 inchworm assemblies

with long open-reading frames (ORFs) and full-length gene structure support (i.e. a complete start-

to-stop ORF preceded by an in-frame stop) were extracted and randomly split in half; one set was

used for ab initio gene finder training while the other set was used to evaluate gene finder perfor-

mance. Based on our previous experience with annotation of oligohymenophoran ciliate genomes

(Coyne et al., 2008, 2011; Eisen et al., 2006), we focused on the gene finders Genezilla

(Majoros et al., 2004, 2005) (RRID:SCR_014657) and Augustus (Stanke and Morgenstern, 2005)

(RRID:SCR_008417). Parameters were iteratively modified by automated implementation of algorith-

mic scripts to optimize sensitivity and specificity of gene finder performance. We also searched the

full genome assembly for protein homology and identifiable protein domains using the Analysis and

Annotation Tool (AAT) package (Huang et al., 1997) (RRID:SCR_014658) against in-house, curated

databases of non-redundant protein sequences (allgroup) and PFAM domains (TIGRFAM; RRID:

SCR_005493). EVidence Modeler (EVM) (Haas et al., 2008) (RRID:SCR_014659) was used to com-

bine RNAseq evidence, ab initio gene predictions and similarity evidence into initial gene model pre-

dictions. Gene models were updated using PASA and the RNAseq assemblies described above as

well as approximately 60,000 previously generated, Sanger ESTs (Coyne et al., 2008). Omissions

and structural differences between the three models (the new and previous [Coyne et al., 2008]

JCVI annotations and the Broad Institute annotation) were assessed using GSAC (Gene Structure

Annotation Comparison, unpublished), a JCVI in-house tool that evaluates coordinate differences

between two gff3 (generic feature format version 3) files. Models present in either of the latter two

annotations, but absent from the the new JCVI annotation, were evaluated and included in the final

set if they met either of the following criteria: significant homology to a predicted gene in NCBI’s

non-redundant protein database (nr) or microarray evidence of transcription (Miao et al., 2009).

Manual annotation steps were performed to correct cases of gene model overlap on the same or

opposite strand, to edit or add genes curated on TGD (www.ciliate.org), and to correct translation

of genes encoding selenocysteine-containing proteins (Coyne et al., 2008). Ab initio models that

were fewer than 50 codons in length and lacked support from transcriptomic, protein homology or

domain evidence were deleted. Functional gene product names were assigned by implementation

of a JCVI pipeline designed to weigh multiple sources of sequence evidence, select the best sup-

ported names, and homogenize nomenclature within paralogous families.

To evaluate the protein-coding potential of MIC-limited genomic regions, we applied similar

methods to the set of 5625 fully sequenced IESs and 21 NMCs > 500 bp in length. Gene-finding

algorithms Augustus and Genezilla, trained on MAC genome data as described above, were applied

to generate ab initio gene predictions. Unfortunately, the available RNAseq reads were often unable

to validate and improve these predictions. In a separate study, Gao et al. (unpublished) used RNA-

seq evidence from a specific time point during conjugation to model a number of MIC-limited genes

located within both IES and NMC regions. Full characterization of the IES transcripts will be pre-

sented in a later paper. For this study, genes within NMCs were hand-curated for maximum reliabil-

ity. Many of these NMC models also had RNAseq support within our available evidence (see

Supplementary file 2G).

Small RNA analyses
Small RNA purification, co-immunoprecipitation, and analyses by denaturing gel electrophoresis

were performed as previously described (Noto et al., 2010). Construction of small RNA cDNA librar-

ies, high-throughput sequencing, and data processing were performed as previously described

(Mochizuki and Kurth, 2013; Noto et al., 2014; Schoeberl et al., 2012). The data for Twi1p- and
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Twi11p-bound small RNAs have been deposited at the NCBI Gene Expression Omnibus (www.ncbi.

nlm.nih.gov/geo/) as GSE79849 and GSM1672144, respectively.

IES excision variability
To assess the degree of variability in IES excision endpoints, we sequenced genomic DNA from a

pool of MACs derived from independent differentiation events. We mated the sequenced reference

strain SB210 to SB1969 (RRID:TSC_SD00701). Both are whole-genome homozygous cell lines of T.

thermophila inbred strain B (Allen and Gibson, 1973). Many fissions after they last conjugated, both

strains were subcloned from a single cell, ensuring that essentially every MAC locus has become

homozygous through phenotypic assortment, eliminating parental MAC IES excision endpoint varia-

tion; our sequence analysis verified this prediction. Mating exconjugants were selected for resistance

to cycloheximide (the allele for which is found in the MIC genome of SB1969 and only expressed in

true progeny) in 96-well plates at a dilution that limited the number of independent resistant prog-

eny pairs in each well to an average of two. After 3 days growth in cycloheximide, resistant cells

from 330 wells were pooled. This pool contained the vegetative descendants of about 660 mating

pairs, or 1320 individual progeny. In each progeny cell, two MACs develop and undergo pro-

grammed genome rearrangement; thus, the pool represents about 2640 independently derived

MACs, but given that IES excision occurs when the MAC ploidy is about 8˚C, the diversity of excision

endpoints is potentially even greater. To expand the cell population for MAC DNA purification, the

pooled cells were grown for approximately eight cell divisions in a large volume of medium to mini-

mize competition. MACs from the progeny pool, as well as both parental strains, were purified by

standard procedures (Gorovsky et al., 1975) and DNA prepared from the nuclei. Illumina (San

Diego, CA) sequencing libraries, with a fragment size of about 600 bp, were prepared from each

DNA sample and sequenced (2 � 100 base paired-end reads) using an Illumina HiSeq2000 instru-

ment following manufacturer’s recommendations. MAC genome coverage of each sample was:

SB210 = 27X, SB1969 = 66X, Progeny Pool = 156X. These MAC reads were mapped to the SB210

MIC genome scaffolds to identify ’split reads’, as described above.

Data deposition and reagent availability
The sequenced strain is available from the Tetrahymena Stock Center (https://tetrahymena.vet.cor-

nell.edu/; Stock ID SD01539). All Illumina RNA and DNA sequence data were submitted to the NCBI

Short Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) and can be retrieved using the following

accession numbers: DNA BioProject PRJNA51571, RNA BioProject PRJNA177770. Micronuclear

genome assembly sequences has been deposited at DDBJ/ENA/GenBank under the accession

AFSS00000000. The version described in this paper is version AFSS02000000. The macronuclear

whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession

AAGF00000000. The macronuclear genome annotation update described in this paper is version

AAGF03000000. The information presented in this paper is also available at http://datacommons.

cyverse.org/browse/iplant/home/rcoyne/public/tetrahymena/MIC and in a browser (JBrowse format

at http://www.jcvi.org/jbrowse/?data=tta2mic). The browser ‘Golden Path’ shows each MIC chromo-

some super-assembly and its relationship to Cbs’s, IESs, MAC genes, MAC scaffolds, MIC specific

gaps, and NMC genes.
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piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia.
Genes & Development 23:2478–2483. doi: 10.1101/gad.547309, PMID: 19884254

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27:573–
580. doi: 10.1093/nar/27.2.573, PMID: 9862982

Bleyman LK, Simon EM. 1967. Genetic control of maturity in Tetrahymena pyriformis. Genetical Research 10:
319–321. doi: 10.1017/S0016672300011083, PMID: 5587947

Bloom KS. 2014. Centromeric heterochromatin: the primordial segregation machine. Annual Review of Genetics
48:457–484. doi: 10.1146/annurev-genet-120213-092033, PMID: 25251850

Boveri T. 1887. Uber Differenzierung der Zellkerne wahrend der Furchung des Eies von Ascaris megalocephalis.
Anatomischer Anzeiger 22:685–882.

Bracht JR, Fang W, Goldman AD, Dolzhenko E, Stein EM, Landweber LF. 2013. Genomes on the edge:
programmed genome instability in ciliates. Cell 152:406–416. doi: 10.1016/j.cell.2013.01.005, PMID: 23374338

Bridier-Nahmias A, Lesage P. 2012. Two large-scale analyses of Ty1 LTR-retrotransposon de novo insertion
events indicate that Ty1 targets nucleosomal DNA near the H2A/H2B interface. Mobile DNA 3:22. doi: 10.
1186/1759-8753-3-22, PMID: 23244340

Bukrinsky M. 2004. A hard way to the nucleus. Molecular Medicine 10:1–5. PMID: 15502876
Buscaino A, Allshire R, Pidoux A. 2010. Building centromeres: home sweet home or a nomadic existence?
Current Opinion in Genetics & Development 20:118–126. doi: 10.1016/j.gde.2010.01.006, PMID: 20206496

Butler DK, Yasuda LE, Yao MC. 1995. An intramolecular recombination mechanism for the formation of the rRNA
gene palindrome of Tetrahymena thermophila. Molecular and Cellular Biology 15:7117–7126. doi: 10.1128/
MCB.15.12.7117, PMID: 8524279

Caron F. 1992. A high degree of macronuclear chromosome polymorphism is generated by variable DNA
rearrangements in Paramecium primaurelia during macronuclear differentiation. Journal of Molecular Biology
225:661–678. doi: 10.1016/0022-2836(92)90393-X, PMID: 1602477

Cassidy-Hanley D, Bisharyan Y, Fridman V, Gerber J, Lin C, Orias E, Orias JD, Ryder H, Vong L, Hamilton EP.
2005. Genome-wide characterization of Tetrahymena thermophila chromosome breakage sites. II. Physical and
genetic mapping. Genetics 170:1623–1631. doi: 10.1534/genetics.104.031435, PMID: 15956676

Cassidy-Hanley D, Yao MC, Bruns PJ. 1994. A method for mapping germ line sequences in Tetrahymena
thermophila using the polymerase chain reaction. Genetics 137:95–106. PMID: 8056326

Catania F, McGrath CL, Doak TG, Lynch M. 2013. Spliced DNA sequences in the Paramecium germline: their
properties and evolutionary potential. Genome Biology and Evolution 5:1200–1211. doi: 10.1093/gbe/evt087,
PMID: 23737328

Cervantes MD, Xi X, Vermaak D, Yao MC, Malik HS. 2006. The CNA1 histone of the ciliate Tetrahymena
thermophila is essential for chromosome segregation in the germline micronucleus. Molecular Biology of the
Cell 17:485–497. doi: 10.1091/mbc.E05-07-0698, PMID: 16251352

Chalker DL, La Terza A, Wilson A, Kroenke CD, Yao MC. 1999. Flanking regulatory sequences of the
Tetrahymena R deletion element determine the boundaries of DNA rearrangement. Molecular and Cellular
Biology 19:5631–5641. doi: 10.1128/MCB.19.8.5631, PMID: 10409752

Chalker DL, Meyer E, Mochizuki K. 2013. Epigenetics of ciliates. Cold Spring Harbor Perspectives in Biology 5:
a017764. doi: 10.1101/cshperspect.a017764, PMID: 24296171

Chalker DL, Yao MC. 2011. Dna elimination in ciliates: transposon domestication and genome surveillance.
Annual Review of Genetics 45:227–246. doi: 10.1146/annurev-genet-110410-132432, PMID: 21910632

Chantangsi C, Lynn DH, Brandl MT, Cole JC, Hetrick N, Ikonomi P. 2007. Barcoding ciliates: a comprehensive
study of 75 isolates of the genus Tetrahymena. International Journal of Systematic and Evolutionary
Microbiology 57:2412–2425. doi: 10.1099/ijs.0.64865-0, PMID: 17911319

Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM, Swart EC, Perlman DH, Doak TG, Stuart A, Amemiya
CT, Sebra RP, Landweber LF. 2014. The architecture of a scrambled genome reveals massive levels of genomic
rearrangement during development. Cell 158:1187–1198. doi: 10.1016/j.cell.2014.07.034, PMID: 25171416

Cheng CY, Vogt A, Mochizuki K, Yao MC. 2010. A domesticated piggyBac transposase plays key roles in
heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila.
Molecular Biology of the Cell 21:1753–1762. doi: 10.1091/mbc.E09-12-1079, PMID: 20357003

Coyne RS, Chalker DL, Yao MC. 1996. Genome downsizing during ciliate development: nuclear division of labor
through chromosome restructuring. Annual Review of Genetics 30:557–578. doi: 10.1146/annurev.genet.30.1.
557, PMID: 8982465

Coyne RS, Hannick L, Shanmugam D, Hostetler JB, Brami D, Joardar VS, Johnson J, Radune D, Singh I, Badger
JH, Kumar U, Saier M, Wang Y, Cai H, Gu J, Mather MW, Vaidya AB, Wilkes DE, Rajagopalan V, Asai DJ, et al.
2011. Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a
host species provide insights into adoption of a parasitic lifestyle and prospects for disease control. Genome
Biology 12:R100. doi: 10.1186/gb-2011-12-10-r100, PMID: 22004680

Coyne RS, Lhuillier-Akakpo M, Duharcourt S. 2012. RNA-guided DNA rearrangements in ciliates: is the best
genome defence a good offence? Biology of the Cell 104:309–325. doi: 10.1111/boc.201100057,
PMID: 22352444

Coyne RS, Thiagarajan M, Jones KM, Wortman JR, Tallon LJ, Haas BJ, Cassidy-Hanley DM, Wiley EA, Smith JJ,
Collins K, Lee SR, Couvillion MT, Liu Y, Garg J, Pearlman RE, Hamilton EP, Orias E, Eisen JA, Methé BA. 2008.
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Lhuillier-Akakpo M, Guérin F, Frapporti A, Duharcourt S. 2016. DNA deletion as a mechanism for
developmentally programmed centromere loss. Nucleic Acids Research 44:1553–1565. doi: 10.1093/nar/
gkv1110, PMID: 26503246

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:
589–595. doi: 10.1093/bioinformatics/btp698, PMID: 20080505

Li J, Pearlman RE. 1996. Programmed DNA rearrangement from an intron during nuclear development in
Tetrahymena thermophila: molecular analysis and identification of potential cis-acting sequences. Nucleic Acids
Research 24:1943–1949. doi: 10.1093/nar/24.10.1943, PMID: 8657578

Lukaszewicz A, Howard-Till RA, Loidl J. 2013. Mus81 nuclease and Sgs1 helicase are essential for meiotic
recombination in a protist lacking a synaptonemal complex. Nucleic Acids Research 41:9296–9309. doi: 10.
1093/nar/gkt703, PMID: 23935123
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Plohl M, Meštrović N, Mravinac B. 2014. Centromere identity from the DNA point of view. Chromosoma 123:
313–325. doi: 10.1007/s00412-014-0462-0, PMID: 24763964

Price AL, Jones NC, Pevzner PA. 2005. De novo identification of repeat families in large genomes. Bioinformatics
21:i351–358. doi: 10.1093/bioinformatics/bti1018, PMID: 15961478

Pritham EJ, Putliwala T, Feschotte C. 2007. Mavericks, a novel class of giant transposable elements widespread
in eukaryotes and related to DNA viruses. Gene 390:3–17. doi: 10.1016/j.gene.2006.08.008, PMID: 17034960

Pryde FE, Gorham HC, Louis EJ. 1997. Chromosome ends: all the same under their caps. Current Opinion in
Genetics & Development 7:822–828. doi: 10.1016/S0959-437X(97)80046-9, PMID: 9468793

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics
26:841–842. doi: 10.1093/bioinformatics/btq033, PMID: 20110278

Rogers MB, Karrer KM. 1985. Adolescence in Tetrahymena thermophila. PNAS 82:436–439. doi: 10.1073/pnas.
82.2.436, PMID: 3855562

Saveliev SV, Cox MM. 1996. Developmentally programmed DNA deletion in Tetrahymena thermophila by a
transposition-like reaction pathway. The EMBO Journal 15:2858–2869. PMID: 8654384

Saveliev SV, Cox MM. 2001. Product analysis illuminates the final steps of IES deletion in Tetrahymena
thermophila. The EMBO Journal 20:3251–3261. doi: 10.1093/emboj/20.12.3251, PMID: 11406601

Schatz DG. 2004. V(D)J recombination. Immunological Reviews 200:5–11. doi: 10.1111/j.0105-2896.2004.00173.
x, PMID: 15242391

Schoeberl UE, Kurth HM, Noto T, Mochizuki K. 2012. Biased transcription and selective degradation of small
RNAs shape the pattern of DNA elimination in Tetrahymena. Genes & Development 26:1729–1742. doi: 10.
1101/gad.196493.112, PMID: 22855833

Schoeberl UE, Mochizuki K. 2011. Keeping the soma free of transposons: programmed DNA elimination in
ciliates. Journal of Biological Chemistry 286:37045–37052. doi: 10.1074/jbc.R111.276964, PMID: 21914793

Scott J, Leeck C, Forney J. 1993. Molecular and genetic analyses of the B type surface protein gene from
Paramecium tetraurelia. Genetics 134:189–198. PMID: 8514127

Shieh AW, Chalker DL. 2013. LIA5 is required for nuclear reorganization and programmed DNA rearrangements
occurring during tetrahymena macronuclear differentiation. PLoS One 8:e75337. doi: 10.1371/journal.pone.
0075337, PMID: 24069402

Shodhan A, Lukaszewicz A, Novatchkova M, Loidl J. 2014. Msh4 and Msh5 function in SC-independent chiasma
formation during the streamlined meiosis of Tetrahymena. Genetics 198:983–993. doi: 10.1534/genetics.114.
169698, PMID: 25217051

Sinzelle L, Izsvák Z, Ivics Z. 2009. Molecular domestication of transposable elements: from detrimental parasites
to useful host genes. Cellular and Molecular Life Sciences 66:1073–1093. doi: 10.1007/s00018-009-8376-3,
PMID: 19132291

Smit AFA, Hubley R, Green P. 2015. RepeatMasker Open-4.0. http://www.repeatmasker.org
Smith JJ, Baker C, Eichler EE, Amemiya CT. 2012. Genetic consequences of programmed genome
rearrangement. Current Biology 22:1524–1529. doi: 10.1016/j.cub.2012.06.028, PMID: 22818913

Stanke M, Morgenstern B. 2005. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-
defined constraints. Nucleic Acids Research 33:W465–467. doi: 10.1093/nar/gki458, PMID: 15980513

Steinbruck G. 1983. Overamplification of genes in macronuclei of hypotrichous ciliates. Chromosoma 88:156–
163. doi: 10.1007/BF00327337

Sun C, Wyngaard G, Walton DB, Wichman HA, Mueller RL. 2014. Billions of basepairs of recently expanded,
repetitive sequences are eliminated from the somatic genome during copepod development. BMC Genomics
15:186. doi: 10.1186/1471-2164-15-186, PMID: 24618421

Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD, Nowacki M, Schotanus K,
Jung S, Fulton RS, Ly A, McGrath S, Haub K, Wiggins JL, Storton D, Matese JC, Parsons L, Chang WJ, et al.
2013. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny
chromosomes. PLoS Biology 11:e1001473. doi: 10.1371/journal.pbio.1001473, PMID: 23382650

Takemaru K, Mizuno M, Sato T, Takeuchi M, Kobayashi Y. 1995. Complete nucleotide sequence of a skin
element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141:323–327.
doi: 10.1099/13500872-141-2-323, PMID: 7704261
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Appendix 1. Observations and hypotheses relevant to Cbs
duplication and evolution in tetrahymenine ciliates

Cbs duplication clades: three case histories
Based on a statistically significant degree of sequence similarity, at least 15 Cbs segment clades

have been identified in the T. thermophila MIC genome, as described in the main text,

Table 3, and Supplementary file 2E, above. Below we consider in more detail three such

clades, which collectively illustrate important features of the duplication process that

generates Cbs clades. The case histories are parsimonious in that they minimize the number

of distinct genetic events required to explain the diversity observed; they are only meant to

illustrate the type of events most likely involved.

The Cbs 1 L-1 clade: a tandem Cbs repeat clade with short repeat
periodicity
This clade occupies a continuous 726 bp MIC DNA segment and consists of six tandemly

repeated copies of ~120 bp sequence that contains a Cbs (sequence and alignment shown

in Supplementary file 4, section A1; alignment statistics in Appendix 1—table 1). A

phylogenetic tree of the six repeat units, obtained as described under Materials and

methods, is shown in Appendix 1—figure 1. A plausible, simple sequence of duplications

and Cbs mutations, consistent with both the phylogenetic tree of the repeats and their

order along the MIC chromosome, is illustrated in Appendix 1—figure 2. Some comments

on this case history follow.

Appendix 1—table 1. Match statistics of all-by-all Blastn alignments of Cbs 1L-1 clade members.

Cbs Len* 1L-1 1L-2 1L-3 1L-4 1L-AAC 1L-5

1L-1 94 �48 �29 �22 �23 �29 �25

1L-2 120 83:74%,0% �62 �45 �43 �43 �40

1L-3 122 96:80%,5% 122:89%,3% �63 �49 �45 �41

1L-4 118 82:69%,0% 118:89%,0% 122:92%,3% �61 �40 �39

1L-AAC 121 93:80%,4% 119:89%,2% 123:89%,5% 119:87%,2% �62 �49

1L-5 118 90:84%,1% 116:88%,0% 120:88%,3% 116:87%,0% 121:93%,2% �61

* Len = length; 1L-AAC - non-functional Cbs variant with AAC insertion.

Main diagonal: Self-match E-values (highlighted yellow). Cells above main diagonal:

Expected value of non-self matches. Cells below main diagonal: match length: % sequence

identity, % gaps.

DOI: 10.7554/eLife.19090.029

Appendix 1—figure 1. Phylogenetic tree of the 1L-1 clade. Phylogenetic tree of the 1L-1

clade. The branches show significant statistical support, as indicated by bootstrap

percentages.
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Appendix 1—figure 2. A possible history of the Cbs 1L-1 clade. Cbs 1L-+ represents the

nonfunctional variant with an internal trinucleotide insertion. Line 1: the putative ancestral

Cbs and adjacent sequence. Line 10: final (current) state of the 1L-1 clade. Divergent pair

of arrows: repeat unit duplication. Crossed arrows: circular permutation of two repeat

units. Vertical single arrow: Cbs mutation. Generation of duplications and the circular

permutation by unequal crossing-over is diagrammed in Appendix 1—figure 3.

DOI: 10.7554/eLife.19090.031

a. The relative ease with which duplications, deletions, circular permutations and gene

conversions can occur in tandem repeats suggests that the duplication history in any

tandem repeat clade is likely to be complex. Thus, only a minimum, representative number

of events can be inferred from the current state of the repeats.

b. The generation of the first two tandem repeats, containing a substantial length of

repeated sequence, is likely the rate-limiting step in the expansion because the first

duplication likely depends on microhomology-dependent non-homologous end joining.

Additional duplications (and deletions) of tandem repeat units are likely to follow with

higher frequency due to unequal crossing-over, i.e., non-allelic homologous recombination,

greatly facilitated by the presence of neighboring repeat copies that can align out of

register with one another (see Appendix 1—figure 3). These events must occur in the

MIC, either during meiosis or as a result of DNA damage repair during vegetative

multiplication.

c. Because unequal crossover generates a pair of reciprocal products, representing

duplication and deletion, the number of repeats in a clade is elastic during evolutionary

time. Thus, the current number of repeats may be but a snapshot of a dynamic process

and the history shown in Appendix 1—figure 3 may represent just one among many

possibilities.

d. Duplications are generated as immediately adjacent pairs in the simplest unequal cross-

over model (Appendix 1—figure 3A). The order of forks in the phylogenetic tree

(Appendix 1—figure 1) leaves the repeats in scrambled order, 1,2,4,3,+,5 instead of

1,2,3,4,+,5, differing by a circular permutation of repeats 3 and 4. Appendix 1—figure 3B
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shows how a series of duplications/deletions caused by unequal crossovers can generate

the circular permutation. On the other hand, the branching of the tree may be incorrect, as

the bootstrap values are not very high. Furthermore, the recombination junctions in

successive unequal crossover events need not occur at equivalent nucleotide locations; this

may decrease statistical support for the phylogenetic tree and blur its relationship to the

physical order of the repeats.

e. Two distinct mutation events – the minimum number required to generate the three

functional Cbs variants observed in this clade – are invoked (Appendix 1—figure 2). The

clade ancestor is assumed to have had the Cbs 11C variant as that is the possibility most

simply consistent with the repeat history embodied in the phylogenetic tree. These

mutations become convenient markers for the repeats.

f. Interestingly, the Cbs in the fifth repeat copy has mutated to a variant having an AAC

insertion between Cbs positions 7 and 8. The Cbs is almost certainly non-functional, as the

two positions are invariant among nearly 200 functional Cbs’s that define the ends of the

maintained MAC chromosomes. The 2R-1 clade is a tandem repeat containing three repeat

units, averaging 311 bp per repeat unit. Every Cbs shares the 14A substitution. Similar to

the 1L-1 clade, the middle repeat contains a presumably nonfunctional Cbs with a 9T

substitution. Thus, Cbs’s are subject to ‘birth’ (duplication) and ‘death’ (mutation to a non-

functional variant) evolutionary events.

g. Because the predicted MAC chromosomes defined by these Cbs’s are non-maintained

(NMCs; Supplementary file 2F, main text), none of these duplication events would have

affected the number of maintained chromosomes in the MAC genome. Furthermore, the

repeat length is very short and there are no predicted genes within these repeats. This

raises the question of why this clade contains five Cbs’s that have retained functionality

when just one would suffice. The simplest answer would be that the duplication events

occurred very recently, a conclusion supported by the high degree of Cbs-flanking

sequence conservation observed (see alignment in Supplementary file 4, section A1).
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Appendix 1—figure 3. Examples of unequal crossing over. (A) Repeat unit duplication. (B)

Circular permutation of two adjacent repeats. X: unequal crossing over by non-allelic

homologous recombination; only the recombinant product of interest is shown. The

circular permutation shown involves a series of two independent unequal cross-overs, one

of which is a double cross-over; the latter step could alternatively be replaced with two

serial single cross-overs (not shown). Another alternative, starting with the original 4-repeat

sequence, is a unimolecular unequal cross-over that excises a circle containing the two

middle repeats (not shown). Immediate re-insertion of the circle by unequal crossing over

at the circle location diametrically opposed to that of the excision site, would accomplish

the identical circular permutation more economically.

DOI: 10.7554/eLife.19090.032

The Cbs 1R-35 and 1R-37 clades: members of a putative
superclade
These two clades are consecutive, and each contains two members (see Supplementary file 4,

section A2 for sequences and alignments). A possible evolutionary history of the four Cbs’s

that explains the known features of these four Cbs’s segments is shown in Appendix 1—

figure 4. The putative superclade founder Cbs is proposed to be the 1A,11C variant

because that requires the minimum number of Cbs mutational events within the entire

proposed superclade: a 1A,11C to 1A mutation. The final duplications created two

predicted NMCs and thus would not have changed the number of maintained MAC

chromosomes.
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Appendix 1—figure 4. A putative superclade encompassing the Cbs 1R-35 and 1R-37 clades.

The Cbs in these two clades are consecutive (bottom line). The top line represents the

putative ancestral Cbs. The lengths of the alignments are 512 bp (blue shading) and 150

bp (green shading) for Cbs 1R-35/36 and Cbs 1R-37/38, respectively.

DOI: 10.7554/eLife.19090.033

These considerations suggest the existence of additional superclades, whose relationship

has been erased by the accumulation of random mutations in Cbs-adjacent regions during

evolutionary time.

The Cbs 1L-16 and 1L-17 clades: Evidence for a simultaneous
duplication/translocation of the rDNA chromosome sequence and
flanking Cbs’s
The 3’ end of the ~11 kb nascent rDNA MAC chromosome in T. thermophila is defined by a

single Cbs, 1L-16, whereas three closely spaced, tandemly repeated Cbs’s – 1L-17, 18 and

19 – define its 5’ end, with Cbs 1L-17 being the rDNA-proximal Cbs (Appendix 1—figure

5). These Cbs’s were the first to be identified (Yao et al., 1985). The MIC sequence

corresponding to the 5’end of the nascent rDNA chromosome contains an inverted pair of

identical 42 bp repeats, the M-repeats, separated by a 28 bp single-copy non-palindromic

DNA sequence (Yao et al., 1985) (Appendix 1—figure 5). The nascent rDNA MAC

chromosome is rearranged by a programmed, unimolecular, homologous recombination

and repair event that generates a ~21 kb palindrome – the mature form of the rDNA

chromosome (Butler et al., 1995) (see Appendix 1—figure 5). The inverted M-repeats are

required for palindrome formation (Yasuda and Yao, 1991). The palindromic configuration

of the mature MAC rDNA and the M-repeat sequence are conserved in every examined

species of genus Tetrahymena, whereas – with the exception of two closely related species

(Coyne and Yao, 1996; Engberg, 1983) – the sequence of the non-palindromic segment

separating the M-repeats is not conserved. Interestingly, at least in T. thermophila, the

specific sequence of the M-repeats is not required for rDNA palindrome formation; they

retain their function when replaced with inverted repeats of unrelated sequence

(Yasuda and Yao, 1991).
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Appendix 1—figure 5. Cbs in the 1L-16 and 17 clades flank the MIC rDNA chromosome-des-

tined DNA. (A) The ~11 Kb MIC form of the rDNA MAC chromosome-destined DNA. 5’and 3’

ends, as defined with respect to the rRNA coding region, are on the right and left,

respectively. Rectangles: flanking Cbs; orange arrows: inverted 42 bp M-repeats; green

segment: 28 bp M-repeat non-palindromic spacer. Diagonal slashes: rDNA segments,

including the rRNA gene, not shown. (B) The mature, palindromic MAC rDNA

chromosome. Black rectangles: Telomeres. Long black arrows in both panels indicate the

5’ to 3’ direction of the coding strand of the rRNA gene.

DOI: 10.7554/eLife.19090.034

Our super-assembly of chromosome 4 revealed strong evidence for a duplication of the

MIC region containing Cbs 1L-17 to 19 and its inter-chromosomal translocation to MIC

chromosome 4R. The matching segment in chromosome 4R includes one functional Cbs,

4R-25, as well as 381 bp which matches a segment at the 5’ end of the MAC rDNA,

including the 112 bp region containing the M-repeat copies and their non-palindromic

spacer (see alignment and sequences in Supplementary file 4, section A3). The

duplicated/translocated sequence most likely had only 2 Cbs’s at this end, as the expected

value of a chance BlastN alignment further decreases by at least 4 orders of magnitude if

the 45 bp 1L-17 repeat unit is deleted (data not shown). Given the nearly complete

sequence identity of the Cbs 1L-17 and 18 repeat units, it seems likely that they were

generated by a more recent duplication than the 1L-4R duplication/translocation event.

Cbs 4R-25 is probably homologous to Cbs 1L-19 because both share a 13A substitution.

The 13A substitution is not seen in Cbs 1L-18 or the degenerate (non-functional) Cbs that

occupies the corresponding location on 4R (compare the MIC sequences of the 5’ rDNA

region and the region including Cbs 4R-24 and 25). Remarkably, the sequence adjacent to

the Cbs at the other (3’) end of the rDNA sequence, Cbs 1L-16, matches the sequence

adjacent to Cbs 4R-24, the nearest neighbor of Cbs 4R-25, separated from it by only 656

bp (see alignment of Cbs 4R-24 and 3’ rDNA end and their sequences in

Supplementary file 4, section A3). The matching sequence includes 129 bp of sequence

similar to the non-transcribed segment at the 3’ end of the rRNA gene.

It is very likely that the entire MIC rDNA chromosome sequence and flanking Cbs’s were

translocated in a single event. As can be seen in the sequence (Supplementary file 4,

section A3), the segments that match the rDNA 5’ (dark gray) and 3’ (light gray) ends are

only 27 bp apart. If the duplication/translocation went from 1L to 4R, the probability of two

independent duplications/translocations ending up 27 bp apart in a >150 Mb genome are

remote. Conversely, if independent duplication/translocations went from 4R to 1L, and

given that the M-repeats sequence is dispensable for the cell but their inverted

deployment is required for rDNA palindrome formation, it is not easy to explain why both

segments were in 4R, unless they already flanked a complete, functional copy of the rDNA.

Consistent with the single translocation hypothesis, the homologous Cbs’s have the same

orientation with respect to one another and Cbs duplication-and-translocations to a

different chromosome tend to be rarer than to the same chromosome (main text,

Supplementary file 2E).
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These considerations lead us to conclude that the entire ~11 kb rDNA segment, including

the flanking Cbs’s, was duplicated and translocated from MIC chromosome 1R to 4R (or

vice versa). Subsequently, an internal segment, representing most of the rDNA, was

deleted from the 4R copy. The excision site can be pinpointed to the 27 bp gap between

the 5’ and 3’ matching segments in the sequence interval between Cbs’s 4R-24 and 25 (see

sequence in Supplementary file 4, section A3). Since MAC rDNA palindrome copy

number is regulated at nearly 10,000 copies per cell (Pearlman et al., 1979), neither the

putative rDNA gene duplication nor its subsequent deletion need have affected final rDNA

copy number in the MAC. Furthermore, since a naturally occurring mutation can cause

differential replication/maintenance of one allelic form and complete replacement of the

other form in heterozygotes (Pan et al., 1982), a redundant copy could readily become

entirely superfluous.

The simplest sequence of duplication/ translocation and Cbs mutation events that accounts

for the current organization at both MIC chromosomes is shown in Appendix 1—figure 6.

MIC DNA sequencing of additional tetrahymenine species should illuminate the interesting

questions of eukaryotic chromosome and genome evolution raised by our observations.

Appendix 1—figure 6. Cbs 1L-16 and 17 Clade: Simplest duplication, translocation and Cbs

mutation history. Crossed rectangle labeled NF: Non-functional mutant Cbs; other symbols as

in Appendix 1—figure 5. The top line is the putative ancestral rDNA region, in either

chromosome 1L or 4R. The bottom line represents the current state of the duplicated/

translocated sequences.

DOI: 10.7554/eLife.19090.035

Interestingly, in the tetrahymenine species Colpidium campylum and Glaucoma chattoni,

the Cbs at the 3’end of the rDNA has opposite orientation to that of 1L-16, the

corresponding Cbs in T. thermophila (Coyne and Yao, 1996). It follows that this difference

must have arisen after these two species lineages diverged from the T. thermophila

lineage. The same must be true for the 1R-4R rDNA duplication described above, as Cbs

4R-24 shows the same orientation with respect to the remnants of the flanking rDNA

homologous DNA sequence. Not enough MIC sequence is available from the two other

species to determine if the resulting inversion was an ‘in situ’ inversion or whether some

other duplicated Cbs was translocated to the sequence adjoining the rDNA 3’end. Partial

MIC sequences, adjacent to the 5’ end of the rRNA gene, are available for two

Tetrahymena species (T. pigmentosa and T. hegewischi) (Coyne and Yao, 1996); no

evidence of sequence similarity is observed in this region between these species and
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thermophila. By analogy to the 3’ end Cbs, it seems very likely that the Cbs tandem repeat

duplication in thermophila occurred after its divergence from the pigmentosa and

hegewischi lineages.

On the evolution of Cbs-mediated chromosome
breakage in tetrahymenine ciliates
Although ciliate chromosome breakage is universally conserved, the tetrahymenine Cbs-

mediated mechanism has not been found in any other ciliate group studied. Furthermore,

there has been little divergence in the Cbs sequence itself within the tetrahymenine

lineage (Coyne and Yao, 1996 and this study). It is therefore likely that the Cbs-mediated

mechanism for chromosome breakage was introduced fairly recently into the

tetrahymenine lineage, after its divergence from that of ciliates in closely related groups,

such as Paramecium. Additional lines of evidence consistent with this view have been

presented in main text. How could the Cbs-mediated mechanism have taken over an

ancestral mechanism of chromosome breakage?

As discussed in main text, there are strong reasons to believe that preservation of both the

extent and locations of chromosome breakage in tetrahymenine ciliates are under purifying

selective pressure. The tetrahymenine branch diverged from ciliates that already had highly

evolved MAC biology, including programmed chromosome breakage, and by inference, an

ancestral chromosome breakage system already optimized by natural selection. This

suggests that the spread of Cbs’s may have been largely restricted to pre-existing

breakage sites. In any case, rampant spread of breakage sites in the germline would

certainly be deleterious to progeny survival. Transposons often display adaptations that

avoid damaging host fitness; for example, the yeast Ty1 transposon inserts almost

exclusively at "safe" sites upstream of promoters for RNA polymerase III-transcribed

genes, by virtue of its targeting through association with a subunit of that enzyme (Bridier-

Nahmias and Lesage, 2012). It is conceivable that the invading Cbs mobile element was

targeted to preexisting sites of chromosome breakage by association of its transposase

with one of the recognition factors involved in that ancestral process. Of course, in order to

be heritable, this targeting would need to occur in the germline, where breakage does not

normally occur, but perhaps the putative association drew the complex from its normal site

of action, in the macronuclear anlage, into the germline nucleus, much as an HIV pre-

integration complex can traverse the interphase nuclear membrane (Bukrinsky, 2004).

Once in the micronucleus, mobile element integration at multiple pre-existing chromosome

breakage sites might proceed (without resulting in germline chromosome breakage). In

time, the Cbs endonuclease would be domesticated and all traces of the original mobile

element, with the exception of the 15 bp Cbs, would degenerate by random mutation.

Presuming a selective advantage for the highly precise and reliable Cbs-mediated

breakage mechanism over the ancestral state, the new state would become fixed in the

population.

Ultimately, validation or rejection of this speculative model will rest on the discovery of the

endonuclease complex responsible for Cbs-mediated chromosome breakage. It is notable

that a homolog of a telomerase subunit, Pot2, was recently found to associate with

chromosome breakage sites in T. thermophila (Cranert et al., 2014). It may take part in

the telomerase-dependent healing of the newly broken ends. Perhaps it may serve as the

bait by which other components of the breakage complex may be identified. Alternatively,

screening of homing endonuclease- and transposase-related genes in the Tetrahymena

genome may trigger discovery of an association with programmed chromosome breakage.

Hamilton et al. eLife 2016;5:e19090. DOI: 10.7554/eLife.19090 46 of 46

Research article Genes and Chromosomes Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19090

