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Abstract Overproduced yeast ribosomal protein (RP) Rpl26 fails to assemble into ribosomes and

is degraded in the nucleus/nucleolus by a ubiquitin-proteasome system quality control pathway

comprising the E2 enzymes Ubc4/Ubc5 and the ubiquitin ligase Tom1. tom1 cells show reduced

ubiquitination of multiple RPs, exceptional accumulation of detergent-insoluble proteins including

multiple RPs, and hypersensitivity to imbalances in production of RPs and rRNA, indicative of a

profound perturbation to proteostasis. Tom1 directly ubiquitinates unassembled RPs primarily via

residues that are concealed in mature ribosomes. Together, these data point to an important role

for Tom1 in normal physiology and prompt us to refer to this pathway as ERISQ, for excess

ribosomal protein quality control. A similar pathway, mediated by the Tom1 homolog Huwe1,

restricts accumulation of overexpressed hRpl26 in human cells. We propose that ERISQ is a key

element of the quality control machinery that sustains protein homeostasis and cellular fitness in

eukaryotes.

DOI: 10.7554/eLife.19105.001

Introduction
Protein quality control (PQC) has emerged as a major mechanism for maintaining protein homeosta-

sis and cellular fitness. Defects in the cellular machinery that governs PQC cause multiple human dis-

eases including multisystem proteinopathy (Brandmeir et al., 2008; Watts et al., 2004) and

Amyotrophic Lateral Sclerosis (ALS) (Johnson et al., 2010; Kabashi and Durham, 2006). Other dis-

eases, such as cancer, can exhibit heightened dependency on PQC pathways, which underlies the

hypersensitivity of multiple myeloma cells to proteasome inhibitors (Cenci et al., 2012;

Deshaies, 2014). Therefore, a deeper understanding of PQC will advance our understanding of

both normal physiology and pathological states, and may enable novel approaches to treat multiple

diseases.

Ribosome biogenesis is an intricate process involving many chaperones and assembly factors

(Kressler et al., 2010; Warner, 1999). Ribosomal proteins made in excess over rRNA and other

ribosomal proteins are among the most rapidly degraded proteins in eukaryotic cells

(Abovich et al., 1985; Dephoure et al., 2014; Gorenstein and Warner, 1977; Torres et al., 2010,

2007; Warner, 1977), suggesting that proper coordination of synthesis and assembly is critical.

Newly-synthesized human ribosomal proteins are subject to degradation by the proteasome in the
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nucleolus (Lam et al., 2007), and we recently found that overexpressed yeast ribosomal proteins

that fail to assemble are conjugated with ubiquitin and degraded by the proteasome in the nucleus

(Sung et al., 2016). Insoluble material that accumulates upon transient inhibition of the proteasome

in yeast is strongly enriched for ribosomal proteins (Sung et al., 2016), pointing to PQC of unassem-

bled ribosomal proteins as a major pathway of proteostasis. However, the PQC pathway that medi-

ates ERISQ remains unknown – an important gap in our understanding of PQC that we set out to

address.

Results

Identification of Ubc4/5 and Tom1 as the E2 and E3 for ERISQ
We evaluated 115 mutant yeast strains, each lacking a different non-essential ubiquitin-proteasome

system (UPS) gene, for those that accumulated non-essential ribosomal protein Rpl26a tagged with

a FLAG epitope (Rpl26aFLAG) upon its overexpression from the GAL10 promoter. Accumulation of

Rpl26aFLAG in most mutants was similar to wild type (WT) and well below the level detected in

rpl26aDrpl26bD (Figure 1—figure supplement 1A and B), which accumulated overexpressed

Rpl26aFLAG due to lack of competition from endogenous Rpl26 (Sung et al., 2016). Notably, Rpl26a-
FLAG accumulated to high levels in tom1D and ubc4D cells (Figure 1A and Figure 1—figure supple-

ment 1A and B).

Ubc4 is an ubiquitin-conjugating enzyme (E2) that is paralogous to and functionally redundant

with Ubc5 (Seufert and Jentsch, 1990). Thus, subsequent experiments were performed with

ubc4Dubc5D mutants. To test whether Ubc4/Ubc5 promoted ubiquitination of unassembled ribo-

somal proteins, we examined ubiquitin conjugates of overexpressed Rpl26aFLAG that accumulated in

proteasome-deficient pre9D cells (Sung et al., 2016). Ubiquitinated Rpl26aFLAG was detected in

pre9D but not in ubc4Dubc5Dpre9D cells (Figure 1B), indicating that Ubc4/Ubc5 promote ubiquitina-

tion of excess Rpl26a.

Tom1 is an E3 ubiquitin ligase of the HECT (homologous to E6AP C terminus) family. To investi-

gate Tom1 function, we constructed tom1CA strains in which the endogenous TOM1 locus was

mutated such that the catalytic cysteine3235 was changed to alanine (tom1CA). We also appended a

3�HA epitope sequence to the 5’ end of both TOM1 and tom1CA, and confirmed that the 3xHATom1

and 3xHATom1CA proteins were expressed equivalently (Figure 1—figure supplement 2A) and the

eLife digest Ribosomes are the molecular machines in cells that produce proteins. The

ribosomes themselves are composed of almost 80 different proteins that are held together by

scaffolds made from molecules of RNA. Each protein is present in one copy, and so equal numbers

of all proteins are needed to assemble a ribosome. However, because it takes many steps to

produce a protein and biological processes are inherently imprecise, it is essentially impossible for a

cell to produce exactly the same number of copies of all the proteins in a ribosome. Much research

suggests that, to overcome these issues, a cell will make more of certain ribosomal proteins than it

needs, and then degrade the leftovers that are not used. However, it was not clear how this

happens, nor was it known what are the consequences of failing to degrade the leftovers.

Now, Sung et al. show that yeast cells use an enzyme named Tom1 to attach a protein-marker

called ubiquitin to ribosomal proteins that are made in excess and not assembled into ribosomes.

The ubiquitin serves as a tag that marks proteins for degradation, and yeast cell that lack Tom1 fail

to degrade any excess ribosomal proteins. Consequently, the mutant yeast become sensitive to any

factors that alter the balance of the protein and RNA building blocks used to assemble ribosomes.

The human equivalent of Tom1 is known as Huwe1, and the data of Sung et al. suggest that this

enzyme acts in a similar pathway. Further experiments are now needed to explore the role of Huwe1

in greater depth, and investigate if problems with this enzyme are associated with any human

diseases. Finally, working out the exactly how Tom1 recognizes unassembled ribosomal proteins will

be another important challenge for future studies.

DOI: 10.7554/eLife.19105.002
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Figure 1. Ubc4/5 and Tom1 are the E2 and E3 enzymes responsible for ERISQ. (A) Rpl26aFLAG accumulates in tom1D and ubc4D. Accumulation of

Rpl26aFLAG upon galactose induction in WT, tom1D and ubc4D cells was evaluated by SDS-PAGE and immunoblotting with the indicated antibodies. n

= 3 biological replicates. (B) Rpl26aFLAG ubiquitination depends on Ubc4/Ubc5. Rpl26aFLAG was induced in cells of the indicated genotypes and cell

lysates were prepared and subjected to pull-down with UBA domain resin. Input and bound proteins were evaluated as in (A). n = 3 biological

Figure 1 continued on next page
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3xHATom1 was functional (Figure 1—figure supplements 2B–D). Using these strains, we established

that Tom1 E3 activity was required for repression (Figure 1C) and ubiquitination (Figure 1D and Fig-

ure 1—figure supplement 3A) of overexpressed Rpl26aFLAG. Rpl26aFLAG was co-immunoprecipi-

tated with 3�HATom1 (Figure 1E). Upon addition of an ubiquitination cocktail, immunoprecipitations

of wild type but not mutant 3�HATom1 ubiquitinated co-precipitated Rpl26aFLAG (Figure 1—figure

supplement 3B). Importantly, the activity defect of the 3�HATom1CA immunoprecipitate was comple-

mented by adding 3�HATom1 but not 3�HATom1CA prior to the ubiquitination reaction (Figure 1F

and Figure 1—figure supplement 3C).

To identify the population of Rpl26aFLAG targeted by Tom1, we performed sucrose gradient frac-

tionation. Mutant tom1CA cells, like cells treated with the proteasome inhibitor bortezomib

(Sung et al., 2016), accumulated unassembled Rpl26aFLAG that co-fractionated with 3�HATom1CA

(Figure 2A; note that 3�HATom1 and 3�HATom1CA fractionated similarly). Co-immunoprecipitation of
3�HATom1 or 3�HATom1CA with Rpl26aFLAG was only detected in these low MW fractions

(Figure 2B). Moreover, ubiquitinated Rpl26aFLAG detected in low MW fractions from bortezomib-

treated cells was almost entirely lost from tom1CA cells (Figure 2B). Consistent with the reported

localization of Tom1 (Huh et al., 2003), Rpl26aFLAG or Rpl26aGFP that accumulated upon their tran-

sient overexpression in tom1CA cells were found in the nucleus and nucleolus (Figure 2C). Taken

together, these data provide strong evidence that overexpressed Rpl26a failed to assemble into

ribosomes and was directly bound and ubiquitinated by Tom1 in the nuclear/nucleolar

compartments.

Tom1 targets a broad range of ribosomal proteins
To address whether Tom1 might have a broader role in promoting degradation of excess ribosomal

proteins other than Rpl26a, we evaluated accumulation of a set of eight ectopically overexpressed

ribosomal proteins in tom1D and WT cells. Similar to what we observed with bortezomib

(Sung et al., 2016), deletion of TOM1 enabled increased accumulation of at least seven of them

(Figure 3—figure supplement 1A). We next sought to test whether Tom1 promoted degradation of

unassembled ribosomal proteins in cells in which they were not deliberately overexpressed. We rea-

soned that if this is the case, Tom1 should directly associate with ribosomal proteins. Mass spec-

trometry of 3xHATom1 immunoprecipitates from bortezomib-treated cells revealed enrichment for

several ribosomal proteins, including Rpl26b (Figure 3—figure supplement 1B and

Supplementary file 3A).

Ribosomal proteins are commonly identified in purified ubiquitin conjugates (Mayor et al., 2007,

2005; Peng et al., 2003) or in ubiquitination site mapping experiments that rely on purification of

the GlyGly dipeptide that remains attached to a lysine side chain following digestion of an ubiquitin

conjugate with trypsin (Kim et al., 2011; Lesmantavicius et al., 2014; Porras-Yakushi and Hess,

2014; Porras-Yakushi et al., 2015; Sarraf et al., 2013; Swaney et al., 2013; Udeshi et al., 2013b;

Wagner et al., 2011). Thus, we reasoned that if Tom1 plays a broad role in PQC of unassembled

Figure 1 continued

replicates. (C) Rpl26aFLAG accumulates in tom1CA cells. As in (A) except that the Tom1 ligase-dead (tom1CA) mutant was used. n = 3 biological

replicates. (D) Rpl26aFLAG ubiquitination depends on Tom1. As in (B) except that cells expressing WT Tom1 or Tom1CA were treated with bortezomib

for 45 min after addition of galactose. n = 3 biological replicates. (E) Rpl26aFLAG binds 3xHATom1. Anti-HA immunoprecipitates from cells expressing
3�HATom1 and Rpl26aFLAG were immunoblotted with antibodies to HA, FLAG, and hexokinase. n = 3 biological replicates. (F) In vitro ubiquitination of

Rpl26aFLAG by Tom1. Rpl26aFLAG retrieved in 3xHATom1CA immunoprecipitates was supplemented or not with E1/E2/ubiquitin/ATP (Ubi) and Tom1

retrieved from untagged (NT), 3xHATOM1 (WT), or 3xHATOM1CA (CA) cells, as indicated. See detailed methods in Material and methods. n = 3 biological

replicates.

DOI: 10.7554/eLife.19105.003

The following figure supplements are available for figure 1:

Figure supplement 1. Identification of ERISQ defect in tom1D and ubc4D.

DOI: 10.7554/eLife.19105.004

Figure supplement 2. Characterization of tagged and ligase-dead Tom1.

DOI: 10.7554/eLife.19105.005

Figure supplement 3. Tom1 mediates ubiquitination of overexpressed Rpl26a.

DOI: 10.7554/eLife.19105.006
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#1 #2 #3

Figure 2. Tom1 functions in non-ribosomal fractions. (A) Sucrose gradient fractionation behavior of 3xHATom1 and Rpl26aFLAG upon galactose induction

of Rpl26aFLAG in 3�HATOM1 or 3�HATOM1CA cells. T indicates total extract. n = 2 biological replicates. (B) Tom1 is required for ubiquitination of

unassembled Rpl26aFLAG. Left: experimental scheme. Right: cells were treated with bortezomib for 30 min after induction of Rpl26aFLAG with galactose

and then lysed and fractionated as in panel A prior to being processed as depicted in panel B. n = 2 biological replicates. (C) Rpl26a accumulates in

Figure 2 continued on next page
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ribosomal proteins as suggested by the experiments shown in Figure 3—figure supplement 1A

and B, perhaps it accounts for the frequent recovery of ribosomal proteins in prior global ubiquitin

conjugate profiling efforts. To address this possibility, we performed quantitative GlyGly profiling of

tom1D and TOM1 cells using SILAC (Figure 3—figure supplement 1C) to identify changes in the

level of ubiquitination of specific lysines that occur upon loss of Tom1. Analysis of three biological

replicates (Figure 3A and Figure 3—figure supplement 2A and Supplementary file 3B) revealed

1980 unique ubiquitination sites in 920 distinct proteins, of which 972 unique sites in 532 proteins

were quantified. All three tom1D biological replicates exhibited lower overall ubiquitination than

wild type, suggesting a major role for Tom1 in PQC. Of the 141 sites that exhibited a �two-fold

decrease in ubiquitination in tom1D, 51 (36%) were in ribosomal proteins (Figure 3—figure supple-

ment 2B). Moreover, of the ubiquitinated peptides derived from ribosomal proteins, >50% (51 of

101) decreased in abundance in tom1D. By comparison, of 837 non-ribosomal sites identified, only

11% decreased in abundance in tom1D. SILAC analysis of the unfractionated cell lysates indicated

that the reduction in ribosomal ubiquitin conjugates in tom1D was not due to reduction in total ribo-

somal protein levels (Figure 3B). Gene ontology analysis of the GlyGly profiling data confirmed that

ubiquitination of ribosomal proteins (Figure 3C), particularly those of the large (60S) subunit

(Figure 3D), was disproportionately impacted by loss of Tom1. These trends are clearly evident from

a plot of the top 25 Tom1-dependent modification sites within all proteins (Figure 3—figure supple-

ment 2C) or just ribosomal proteins (Figure 3E). To address whether the strong effects on ribosomal

protein ubiquitination seen in tom1D cells were due specifically to loss of Tom1’s E3 activity, the

GlyGly SILAC analysis was repeated with WT and tom1CA cells. Quantitative analysis of the data con-

firmed a disproportionate loss of ribosomal protein ubiquitination (Figure 3—figure supplement

2D).

Endogenous ribosomal proteins aggregate in tom1D mutants
If Tom1 mediates degradation of unassembled ribosomal proteins in unperturbed cells, there should

not only be a decrease in ribosomal ubiquitin conjugates in tom1 mutants, but a commensurate

increase in unassembled ribosomal proteins that fail to be degraded. Since preliminary sucrose gra-

dient fractionations did not reveal high levels of unassembled ribosomal proteins in tom1D cells

(data not shown), we reasoned that over time, undegraded excess ribosomal proteins might aggre-

gate and collect in insoluble deposits. To investigate this matter, we prepared detergent-insoluble

fractions from WT cells treated with or without bortezomib (btz) and tom1D cells, and evaluated

them for their content of ribosomal proteins. Detergent-insoluble proteins, including Rpl1 and Rpl3,

were greatly increased in tom1D cells compared to WT cells (Figure 3F, Pellet). High accumulation

of insoluble proteins in tom1D cells was evident regardless of the method or buffer employed for

cell lysis (Figure 3—figure supplement 3A). This observation was confirmed and extended by mass

spectrometry coupled with label-free absolute quantification using iBAQ (intensity-Based Absolute

Quantification) (Geiger et al., 2012). The insoluble proteins that exhibited the largest increase in

tom1D cells were ribosomal proteins including Rpl1 and Rpl3 (Figure 3G, Figure 3—figure supple-

ment 3B, and Supplementary file 3C). Gene ontology analysis (Figure 3H) and a plot of the top 20

detergent-insoluble proteins (Figure 3—figure supplement 3C) indicated that ribosomal proteins,

including those of both the 60S and 40S subunits (Figure 3—figure supplement 3D) comprise the

major class of aggregating proteins in tom1D cells.

Tom1 works through residues that are normally inaccessible in the
structure of the mature ribosome
GlyGly profiling and analysis of insoluble proteins in tom1 mutants both pointed to a broad role of

Tom1 in ubiquitinating and degrading excess, unassembled ribosomal proteins. This raised a critical

question that is common to all PQC pathways yet is poorly understood: how does Tom1 ubiquitinate

Figure 2 continued

the nucleus of tom1CA cells. Left: Subcellular fractionation of Rpl26aFLAG induced in WT and tom1CA cells. Histone H3 and Hexokinase were used as

nuclear and cytoplasmic markers, respectively. CA refers to Tom1-Cys3235Ala. Right: Fluorescence microscopy of Rpl26aGFP induced in WT and tom1CA

cells. Nop56-RFP marks nucleoli. Shown at far right is the percentage of GFP positive cells. n = 2 biological replicates.

DOI: 10.7554/eLife.19105.007
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Figure 3. Diminished ubiquitination and accumulation of insoluble ribosomal proteins in tom1 cells. (A) Diminished ubiquitination of ribosomal proteins

in tom1D. Scatter plot of the SILAC ratios (tom1D/WT) for GlyGly-modified peptides identified in biological replicate 1 versus 2. Sites with the largest

decrease in ubiquitination are annotated. The other pairwise comparisons are in Figure 3—figure supplement 2A. n = 3 biological replicates. (B)

Column scatter plot representing the distribution of ratios (tom1D/WT) for proteins of the large (circles) and small (square) ribosome subunits. A red bar

Figure 3 continued on next page
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so many different ribosomal proteins, yet manage to maintain some level of specificity for unassem-

bled forms? To begin to address this question, we constructed a mutant Rpl26a that did not bind to

rRNA. Two positively-charged clusters in Rpl26 – RRKARK (amino acids 12–17) and a patch formed

by R27, R28, R51, and R52 – mediate binding to 5.8S rRNA and assembly into ribosomes

(Babiano et al., 2012) (Figure 4A). We mutated various combinations of these residues to glutamate

and observed that some mutants exhibited even less accumulation than overexpressed WT Rpl26a-
FLAG (Figure 4B).

Unlike WT Rpl26aFLAG, Rpl26-4EFLAG(R12E, R13E, R16E, K17E) did not accumulate or assemble

into ribosomes in rpl26aDrpl26bD cells (Figure 4C, top panels). However, upon inhibition of the pro-

teasome with MG132 or bortezomib, Rpl26a-4EFLAG accumulated (Figure 4—figure supplement

1A) and was detected in the low MW fractions of a sucrose gradient (Figure 4C, bottom panels),

where it was ubiquitinated, albeit to a lesser extent than unassembled WT Rpl26aFLAG (Figure 4D).

Strikingly, Rpl26a-4EFLAG exhibited poor association with 3xHATom1 (Figure 4E) and showed only

very weak accumulation in tom1D (Figure 4F), suggesting that it is not primarily a Tom1 substrate

but is re-directed to another QC pathway. Consistent with this idea, Rpl26a-4EFLAG accumulated in

doa10 mutants (Figure 4—figure supplement 1B). The failure of Rpl26a-4EFLAG to be targeted by

Tom1 was not due to a defect in its nuclear localization (Figure 4G and Figure 4—figure supple-

ment 1C). We suggest that upon its import into the nucleus, Rpl26a-4E becomes a substrate for

Doa10 that is localized to the inner nuclear membrane (Deng and Hochstrasser, 2006). Taken

together, our results suggest that residues of Rpl26a that mediate interactions with rRNA and are

buried when incorporated into the ribosome are also required for ubiquitination by Tom1 when

Rpl26a fails to assemble.

To pursue this observation further and probe its potential generality, we focused on Rpl4,

because assembly of Rpl4 has been studied in some depth (Stelter et al., 2015). Upon its synthesis,

Rpl4 binds the dedicated chaperone Acl4. The Rpl4–Acl4 then recruits the karyopherin Kap104, for

import into the nucleus. Importantly, a crystal structure is available for Rpl4–Acl4 (F.H. and A.H., sub-

mitted), and the binding site of Kap104 on the complex has been mapped ([Stelter et al., 2015]; F.

H. and A.H., submitted). In our GlyGly profiling efforts, measurements were obtained for three ubiq-

uitination sites on Rpl4: K55, K308, and K338 (10-, 8-, and 1.6-fold decrease in tom1D, respectively)

(Supplementary file 3B). The crystal structure of the ribosome indicates that K55 and K308, whose

ubiquitinations exhibited the strongest dependence on Tom1, contact rRNA and are not accessible

for modification in the mature ribosome (Ben-Shem et al., 2011). Interestingly, the crystal structure

of the Acl4–Rpl4 complex revealed that Acl4 conceals K55, and a structural model of Kap104 docked

Figure 3 continued

indicates the mean. (C) Violin plot of gene ontology analysis of ubiquitinated proteins that had one or more ubiquitination site that decreased by � 2-

fold. The most strongly affected categories are shown. The number in parentheses refers to the disproportionate enrichment for the category in the top

10% of identifications and is the Benjamini and Hochberg corrected p-value from a Fisher Exact test. (D) Violin plot representing the distribution of

ubiquitin site occupancy ratios (tom1D/WT) for the large (blue) and small (green) ribosome subunits, and non-ribosomal proteins (red). (E) The 25

ribosomal ubiquitination sites with the largest decrease in ubiquitin occupancy in tom1D. +++p<0.001; ++p<0.01; +p<0.05. Each site was observed in

at least two of the three biological replicates. The error bars represent 95% confidence intervals. Note that ubiquitination at K37 and K69 in Rpl26b was

decreased by 2.4-fold and 1.6-fold in tom1D, respectively (Supplementary file 3B). (F, G) Insoluble ribosomal proteins accumulate in tom1D. (F)

Detergent-insoluble pellet fractions isolated from lysate (Total) of indicated cells were analyzed by SDS-PAGE and staining with Coomassie blue or

immunoblotting with the indicated antibodies. The pellet fraction is overloaded 20-fold compared to the total and supernatant fractions. n = 2

biological replicates. (G) Scatter plot representing DiBAQ of biological replicate B vs. A for insoluble proteins in tom1D mutants. Ribosomal proteins

with the largest increase in the pellet fraction upon TOM1 deletion, and Rpl1 and Rpl3 are annotated. Pearson’s r-value is indicated on top of the plot.

The other pairwise comparisons are in Figure 3—figure supplement 3B. n = 3 biological replicates. (H) Gene ontology analysis of proteins exhibiting

increased insolubility in tom1D. Analysis is the same as for panel C.

DOI: 10.7554/eLife.19105.008

The following figure supplements are available for figure 3:

Figure supplement 1. Tom1 targets a broad range of overexpressed and endogenous ribosomal proteins.

DOI: 10.7554/eLife.19105.009

Figure supplement 2. Quantitative GlyGly proteomic analyses of tom1 mutants.

DOI: 10.7554/eLife.19105.010

Figure supplement 3. Endogenous ribosomal proteins accumulate as insoluble species in tom1D mutants.

DOI: 10.7554/eLife.19105.011
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Figure 4. A short stretch of positively-charged residues in Rpl26a that mediates rRNA binding promotes association with Tom1. (A) Top: The first 54

amino acids of Rpl26a. Sequences adjacent to rRNA are boxed. Arginine residues targeted for mutation are in red. Bottom: Relative positions of

arginines and rRNA based on the atomic model of the yeast 80S ribosome (PDB files 3U5D and 3U5E). Orange and pink ribbons correspond to 25S and

5.8S rRNA, respectively. Blue ribbon corresponds to Rpl26. Predicted regions (#1 and #2) for rRNA binding are highlighted in yellow and boxed. (B)

Figure 4 continued on next page
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to Acl4–Rpl4 indicates that it protects K308 and K338. Upon import of Rpl4–Acl4–Kap104 into the

nucleus, Kap104 is dissociated through the action of Ran-GTP (Kressler et al., 2012)(F. H. and A. H.,

submitted). To test if this exposes the C-terminal region of Rpl4 to Tom1 (as would be the case if

assembly of Rpl4 was delayed following nuclear import and release of Kap104), we performed an in

vitro ubiquitination assay with purified substrates. 3xHATom1 immunoprecipitates readily ubiquiti-

nated Rpl4 in binary Acl4–Rpl4 complexes but not in ternary Acl4–Rpl4–ctKap104 complexes,

despite the fact that at least eight lysines of Rpl4 should remain exposed in the ternary complex (red

circle, Figure 5A). Ubiquitination of Rpl4 within the binary complex required its extended C-terminus

because it was eliminated when the C-terminal region was truncated at residue 276 (Figure 5B).

These data, along with those on Rpl26a, suggest that Tom1 selectively recognizes and ubiquitinates

ribosomal proteins via residues that are only accessible in the unassembled state. Notably, pulse-

chase labeling of yeast cells revealed that Rpl4D63–87, which lacks the loop region that binds Acl4,

transiently associates with Tom1 (see Figure 3B of Stelter et al., 2015). However, it is unclear if loss

of Tom1 during the chase was due to degradation or incorporation of Rpl4D63–87 molecules into

ribosomes.

To assess more generally if Tom1 targets lysines that are inaccessible in the mature ribosome

(pdb 4V88), we examined the disposition of the major Tom1-dependent ubiquitination sites on large

subunit proteins reported in Figure 3E. For this analysis, we used the structure of the HECT domain

of Rsp5 covalently conjugated to both a donor ubiquitin and a substrate acceptor (pdb 4LCD). We

asked whether the epsilon amino group of a given lysine within the mature large subunit could con-

ceivably make contact with the active site cysteine of Rsp5. Of the 18 lysines that could be observed

in the 4V88 structure, 13 in the free 60S and 15 in the assembled 80S were not accessible to the

probe (Figure 5C). Taken together, our data suggest strongly that Tom1-dependent ubiquitination

events generally occur on ribosomal proteins prior to their assembly into the ribosome, on residues

that normally are either buried in the ribosome, engage in salt bridges, or are otherwise shielded

from contact.

Tom1 is required for maintaining cellular homeostasis of ribosomal
proteins
We next turned our attention to the phenotypic effects of Tom1 deficiency. If a limited capacity to

degrade excess ribosomal proteins contributes to the temperature-sensitive growth defect of tom1

mutants (Utsugi et al., 1999) (Figure 1—figure supplement 2C and D), we reasoned that condi-

tions that foster imbalances in the production of ribosome components should exacerbate this

defect. To test this, we performed three different perturbations. First, tom1CA cells (but not WT

cells) were extremely sensitive to constitutive overexpression of RPL26A (Figure 6A) but not

RPL26A-4E (Figure 6—figure supplement 1A) from the GAL10 promoter. Second, we created a sit-

uation in which ribosomal proteins as a group are made in excess of rRNA via depletion (using the

auxin-inducible degron (AID) [Morawska and Ulrich, 2013]) of proteins involved in rRNA synthesis

including Rrn3 (transcription factor for RNA polymerase I), Rpa190 (RNA polymerase I largest sub-

unit) and Hmo1 (regulator of transcription by RNA polymerase I). Each of these depletions caused a

Figure 4 continued

Differential accumulation of WT and mutant Rpl26aFLAG upon galactose induction. n = 2 biological replicates. (C) Top: Ribosome assembly of WT

Rpl26aFLAG or Rpl26a-4EFLAG induced in rpl26aDrpl26bD cells. Bottom: Same as above except that MG132 was added 30 min after addition of

galactose. T indicates total extract. n = 2 biological replicates. (D) Polyubiquitination of Rpl26a-4EFLAG. Assay was performed as described for

Figure 1D. Samples in ‘+’ lanes were treated with deubiquitinating enzyme Usp2 prior to processing for SDS-PAGE, to demonstrate that high MW

species were modified with ubiquitin. n = 2 biological replicates. (E) The Rpl26-4E mutation disrupts binding to Tom1. Lysates from cells of the

indicated genotypes were subjected to pull-down with anti-HA followed by SDS-PAGE and immunoblotting for the indicated proteins. n = 2 biological

replicates. (F) Protein level of Rpl26aFLAG mutants upon galactose induction in WT and tom1D cells. n = 2 biological replicates. (G) Fluorescence images

of Rpl26a4E-GFP induced in WT cells. Nop56-RFP marks nucleoli. Dashed circles indicate nuclear region as judged by DAPI staining. n = 2 biological

replicates.

DOI: 10.7554/eLife.19105.012

The following figure supplement is available for figure 4:

Figure supplement 1. Rpl26a-4E mutant is unstable and degraded by Doa10 in the nucleus/nucleolus.

DOI: 10.7554/eLife.19105.013
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Figure 5. Tom1 acts through residues that are normally inaccessible in the structure of the mature ribosome. (A) Structure of Rpl4 within the mature

ribosome (PDB ID 4V88). Lysine residues are colored blue, with K55, K308, and K338 colored red. Areas involved in binding Acl4 and ctKap104 are

indicated. The exact boundaries of the Kap104 binding site are not known. The globular central domain, which is fully exposed in the ternary Acl4–

Rpl4–Kap104 complex but is not ubiquitinated, is circled in red. (B) Ubiquitination of Acl4–Rpl4 by 3xHATom1. Anti-HA immunoprecipitates from

untagged (NT), 3xHATOM1 (WT), and 3xHAtom1CA (CA) cells were supplemented or not with E1/E2/ubiquitin/ATP (Ubi) and purified Acl4–FLAGRpl4,

Acl4-FLAGRpl4Dext and Acl4–FLAGRpl4–ctKap104 proteins. Samples were analyzed by SDS-PAGE and staining with Coomassie blue or immunoblotting

with the indicated antibodies. WT, D, and K refer to Acl4–FLAGRpl4, Acl4-FLAGRpl4Dext and Acl4–FLAGRpl4–ctKap104, respectively. See detailed methods

in Material and methods. n = 3 biological replicates. (C) Tom1 preferentially targets lysines that are inaccessible in mature ribosomes. Lysine residues

shown are those from large subunit ribosomal proteins in Figure 3E that are incorporated in the model for the structure of the yeast ribosome (pdb

4V88). The structure of a HECT domain–donor ubiquitin complex (pdb 4LCD) predicts that a gap of radius 25 Å must be present for Tom1 to access a

lysine for ubiquitination. Two of the sites (Rpl10 K30 and Rpl24 K69) are accessible in the 60S large subunit but become inaccessible upon formation of

the 80S ribosome.

DOI: 10.7554/eLife.19105.014
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synthetic growth defect when combined with tom1CA (Figure 6—figure supplement 1B). The effect

of combining hmo1D and tom1CA mutations was even more severe (Figure 6B). Third, we manipu-

lated cells such that assembly of a single ribosomal protein was impaired, via deletion of the Rpl4-

selective chaperone Acl4 (Stelter et al., 2015). Inactivation of TOM1 in an acl4D background caused

a substantial synthetic growth defect (Figure 6C).

If the synthetic growth defects described above arose from a catastrophic failure of proteostasis,

we reasoned that this might manifest itself in the detergent-insoluble fractions of double mutant

cells. Strikingly, there was a massive increase in detergent-insoluble proteins when RNA Pol I

Figure 6. Defective ribosome assembly homeostasis and proteostatic collapse in tom1 mutant cells. (A–C) Hypersensitivity of tom1CA cells to

imbalances in ribosome components. (A) Cells of the indicated genotypes were spotted in serial 10-fold dilutions on glucose or galactose medium and

incubated at 30˚C for 2 days. ev refers to empty vector. n = 2 biological replicates. (B, C) As in (A) except that cells of the indicated genotypes were

spotted on YPD. n = 2 biological replicates. (D–G) Massive accumulation of insoluble proteins in tom1 mutant cells. Cells of the indicated genotypes

were lysed and fractionated into detergent-soluble and insoluble fractions, which were separated by SDS-PAGE and stained with Coomassie Blue. The

pellet fraction is overloaded 20-fold compared to the total and supernatant fractions. n = 2 biological replicates.

DOI: 10.7554/eLife.19105.015

The following figure supplement is available for figure 6:

Figure supplement 1. Tom1 is required for maintaining proteostasis.

DOI: 10.7554/eLife.19105.016
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transcription was diminished (hmo1Dtom1CA; Figure 6D) or Rpl4 assembly was perturbed

(acl4Dtom1CA; Figure 6E) in a tom1CA background.

Identification of Tom1 as a key mediator of ERISQ may rationalize numerous genetic interactions

that have been reported for tom1D. In addition to suppressors that map to stress response/chaper-

one pathways and genes involved in ribosome protein expression (PKA pathway), deletions in 36 dif-

ferent genes encoding ribosomal proteins exhibit synthetic negative genetic interaction with tom1D

(Costanzo et al., 2010) (Figure 6—figure supplement 1C). Based on the effects of the acl4D mutant

(Figures 6C,E), deletions of one copy of duplicated ribosomal protein genes are predicted to create

an imbalance in ribosomal proteins resulting in severe growth and proteostasis defects in a tom1

background. Consistent with this prediction, deletion of one of the two copies of RPS29 led to a syn-

thetic growth defect (Figure 6—figure supplement 1D) and enormous accumulation of insoluble

proteins in a tom1D mutant (Figure 6F).

Given the major role of ribosome production in the cellular economy, we evaluated the relative

impact of the Tom1-dependent ERISQ pathway on overall proteostasis by comparing the amount of

insoluble proteins in well-characterized PQC mutants including doa10D and hrd1D (ERAD; ER-associ-

ated degradation; [Vembar and Brodsky, 2008]), ltn1D (RQC; ribosome bound QC; [Bengtson and

Joazeiro, 2010; Brandman et al., 2012; Defenouillere et al., 2013; Verma et al., 2013]), san1D

(nuclear PQC; [Gardner et al., 2005]) and ubr1D (ERAD and cytoplasmic PQC; [Eisele and Wolf,

2008; Heck et al., 2010]). Under unperturbed conditions, tom1D cells contained significantly greater

amounts of insoluble proteins compared to these other PQC mutants (Figure 6G, Pellet), suggesting

that ERISQ is a major player in maintaining proteostasis in yeast.

ERISQ pathway is conserved
A prior study in human cells demonstrated that a significant fraction of newly-synthesized ribosomal

proteins imported into the nucleus is degraded by the UPS (Lam et al., 2007), suggesting that a

PQC mechanism for unassembled ribosomal proteins is conserved in higher eukaryotes. To test this

possibility, we evaluated transient expression of human Rpl26FLAG (hRpl26FLAG) in T-REx-293 cells

treated with or without MG132 or bortezomib. Cells treated with these proteasome inhibitors accu-

mulated greater amounts of overexpressed hRpl26FLAG (Figure 7A, Figure 7—source data 1), con-

sistent with the existence of a UPS pathway that degrades overexpressed ribosomal proteins. The

closest human homolog of Tom1 is Huwe1. Knockdown of Huwe1 by shRNA (Thompson et al.,

2014) in both T-REx-293 and HeLa cells (Figure 7B, Figure 7—source data 2) and knockout of

HUWE1 in HEK293T cells (Choe et al., 2016) (Figure 7C, Figure 7—source data 3) enabled tran-

sient overexpression of hRpl26FLAG. Importantly, a cycloheximide chase experiment indicated that

hRpl26FLAG overexpressed in HUWE1 knockout cells was stable (Figure 7D, Figure 7—source data

4).

To test if Huwe1 was required for ubiquitination of transiently overexpressed hRpl26FLAG, control

or Huwe1-depleted T-REx cells were co-transfected with plasmids encoding hRpl26FLAG and HAubi-

quitin and then treated with MG132 to induce accumulation of ubiquitin conjugates. IP/Western blot

analysis performed under denaturing conditions revealed that hRpl26FLAG was modified by HAubiqui-

tin in control but not Huwe1-depleted cells (Figure 7E). Consistent with this result, prior analysis of

Huwe1-deficient cells by GlyGly profiling revealed reductions in the ubiquitination of multiple ribo-

somal proteins (Thompson et al., 2014).

Discussion
Nearly 40 years ago Jonathan Warner and colleagues showed that multiple ribosomal proteins are

rapidly degraded in both yeast and HeLa cells when ribosomal RNA synthesis is inhibited

(Gorenstein and Warner, 1977; Warner, 1977). They and others went on to show that individual

ribosomal proteins cannot be overexpressed from plasmids in yeast because the excess protein is

rapidly degraded (Abovich et al., 1985; Warner et al., 1985). Essentially no progress was made

towards understanding the underlying mechanism, until it was shown that ribosomal proteins are

among the most abundant ubiquitin conjugates that accumulate in yeast cells with reduced protea-

some activity (Mayor et al., 2007, 2005), and that newly-synthesized ribosomal proteins are

degraded by the proteasome in human nucleoli (Lam et al., 2007). More recently, we have shown

that ribosome proteins produced in excess are ubiquitinated and then degraded in a proteasome-

Sung et al. eLife 2016;5:e19105. DOI: 10.7554/eLife.19105 13 of 28

Research article Biochemistry Cell Biology

http://dx.doi.org/10.7554/eLife.19105


Figure 7. ERISQ is conserved in human cells. (A) Proteasome inhibition enables overexpression of human Rpl26. Left: transiently expressed hRpl26FLAG

in T-REx-293 cells treated with 10 mM MG132 or 1 mM bortezomib (btz) for 3 hr. Right: quantification of blots. Values are the mean of three independent

experiments and error bars indicate standard deviations. Asterisks indicate significant differences (two-tailed student’s t-test, ***p<0.0001, compared

with DMSO treatment). n = 3 biological replicates. Source data are available in Figure 7—source data 1. (B) Depletion of HUWE1 enables

Figure 7 continued on next page
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dependent manner (Sung et al., 2016). In the work reported here, we shed additional light on this

old puzzle by showing that the ubiquitin ligase Tom1 collaborates with the E2 enzymes Ubc4 and

Ubc5 to broadly mediate degradation of unassembled ribosomal proteins in yeast. We refer to this

pathway as ERISQ, for Excess Ribosomal protein Quality control.

How are substrates recognized by the ERISQ pathway?
For ERISQ to work, two major challenges must be met. First, Tom1 has to detect many different

ribosomal proteins. Second, it has to be able to distinguish their assembled versus unassembled

forms. Although the exact structural basis for this discrimination remains to be determined, our anal-

ysis reveals that for Tom1 to act upon ribosomal proteins, residues that are normally concealed in

the mature ribosome must be accessible. This was shown in vivo for the model substrate Rpl26 and

in vitro for Rpl4. In addition, mapping of the major Tom1-dependent ubiquitination sites on the

structure of the ribosome large subunit revealed that nearly 83% (15 of 18) of the sites on 12 differ-

ent ribosomal proteins are no longer available to Tom1 following incorporation into the 80S ribo-

some. This suggests a very simple kinetic competition between Tom1 and rRNA for binding to

ribosomal proteins newly arrived in the nucleolus. If the kinetic parameters for this race normally

favor rRNA, the correct outcome would dominate and only those proteins that fail to assemble

would be targeted.

Tom1 has also been implicated in the degradation of unassembled histones (Singh et al., 2009),

in which case a similar kinetic competition could apply. Although the domain employed by Tom1 to

bind its substrates remains unknown, we note that the previously-described Tom1 substrates Dia2

(Kim and Koepp, 2012), Hht2 (Singh et al., 2009) and Yra1 (Iglesias et al., 2010) have pI values

ranging from 9.3–12. Thus, Tom1, which is overall acidic (pI 4.8) may have a negatively-charged

region that interacts electrostatically with basic substrates.

Conservation of the Tom1 eRISQ pathway in humans
Seminal studies from Warner indicated that human cells, like yeast, are unable to accumulate ribo-

somal proteins made in excess over rRNA due to rapid turnover (Warner, 1977), and subsequent

proteomic studies revealed that a substantial fraction of newly-synthesized human ribosomal pro-

teins are rapidly degraded by the proteasome (Lam et al., 2007). To test whether the mechanism

we described in yeast also operates in human cells, we first demonstrated that the human ortholog

(hRpl26) of yeast Rpl26 fails to accumulate upon transient overexpression, and then established that

both ubiquitination and degradation of excess hRpl26 require Huwe1, which is the closest human

Figure 7 continued

overexpression of human Rpl26. As in (A) except that T-REx-293 (left) and HeLa (right) cells were induced with doxycycline for 3 days to express stably

integrated shControl or shHUWE1. The relative ratio of hRpl26FLAG/GAPDH is shown below each lane. n = 3 biological replicates. Source data are

available in Figure 7—source data 2. (C) Knockout of HUWE1 enables overexpression of human Rpl26. Upper: as in (A) except that wild type and

HUWE1 knockout HEK293T cells were used. Bottom: quantification of blots. Values are the mean of three independent experiments and error bars

indicate standard deviations. Asterisks indicate significant differences (two-tailed student’s t-test, ***p<0.0001, compared with WT cells). n = 3

biological replicates. Source data are available in Figure 7—source data 3. (D) Overexpressed human Rpl26 is stable in HUWE1 knockout cells. Upper:

wild type and HUWE1 knockout HEK293T cells transiently expressing hRpl26FLAG were treated with 10 mg/ml cycloheximide (CHX). Bottom:

quantification of blot. n = 1 biological replicate. Source data are available in Figure 7—source data 4. (E) HUWE1 promotes ubiquitination of

overexpressed human Rpl26. As in (B) except that HAubiquitin was co-expressed with Rpl26FLAG and MG132 was added 3 hr prior to cell lysis. Total cell

extract prepared under denaturing condition was adsorbed to FLAG resin and the bound fraction was immunoblotted with antibodies against FLAG

and HA. n = 2 biological replicates.

DOI: 10.7554/eLife.19105.017

The following source data is available for figure 7:

Source data 1. Quantification of hRpl26-FLAG and GAPDH levels from three biological replicates.

DOI: 10.7554/eLife.19105.018

Source data 2. Quantification of hRpl26-FLAG and GAPDH levels from one biological replicate.

DOI: 10.7554/eLife.19105.019

Source data 3. Quantification of hRpl26-FLAG and GAPDH levels from three biological replicates.

DOI: 10.7554/eLife.19105.020

Source data 4. Quantification of hRpl26-FLAG and GAPDH levels from one biological replicate.

DOI: 10.7554/eLife.19105.021
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homolog of Tom1. A recent proteome-wide profiling of ubiquitination sites that exhibit diminished

occupancy upon depletion of Huwe1 revealed that, excluding Huwe1 itself, six of the top ten

affected sites and seventeen of fifty-six that exhibited �two-fold decreased occupancy were from

ribosomal proteins (Thompson et al., 2014). These data point to a very general role for Huwe1 in

ubiquitination of ribosomal proteins, similar to what we show here for yeast Tom1.

Physiological significance of Tom1/Huwe1 and ERISQ
Cells lacking Tom1 exhibit a variety of phenotypes besides ERISQ including cell cycle arrest, nucleo-

lar fragmentation, defective mRNA export from the nucleus, reduced Ngg1/Ada3-dependent tran-

scription, reduced polysomes, reduced rate of rRNA processing/maturation (Duncan et al., 2000;

Saleh et al., 1998; Tabb et al., 2001; Utsugi et al., 1999), and sensitivity to paromomycin (Fig-

ure 6—figure supplement 1E). On the one hand it is possible that all but one of these phenotypes

are mainly secondary consequences of the primary defect. On the other hand, they may all arise

independently from stabilization of different substrates. We can rule out that ERISQ is an indirect

consequence of cell cycle arrest, nucleolar fragmentation, defective mRNA export, or a reduced rate

of rRNA processing, because the defect in ERISQ is observed at temperatures that are permissive

for growth of tom1 mutants, whereas the other defects are only seen (or in the case of rRNA proc-

essing rate, is strongly enhanced) at the non-permissive temperature and thus are more likely to

arise indirectly from exacerbation of a primary defect upon imposition of heat stress. It remains

unclear to what extent a defect in ERISQ, when coupled to heat stress, might underlie these other

phenotypes.

Some of the tom1 phenotypes noted above are suggestive of a potential positive role for Tom1

in the assembly of functional ribosomes. However, this does not conflict with our observation that

Tom1 plays a direct role in ubiquitinating and promoting the degradation of ribosome proteins that

are overexpressed relative to their assembly partners. A speculative possibility is that Tom1 ubiquiti-

nates a broad range of ribosomal proteins to promote their assembly (much as fusion to ubiquitin

promotes assembly of Rps31; [Finley et al., 1989]), but if they fail to assemble within a given time

interval, the ubiquitin conjugated by Tom1 serves to initiate degradation. However, the observation

that genetic reductions of protein kinase A activity (which are predicted to diminish synthesis of ribo-

some proteins) suppress tom1D (Figure 6—figure supplement 1C) seems inconsistent with the idea

that Tom1 plays a direct positive role in ribosome assembly.

A phenotype of tom1CA cells that we describe here that is particularly notable is that they are

exquisitely sensitive to perturbations that alter the balance between production of individual ribo-

somal proteins or total ribosomal proteins and rRNAs. Specifically, tom1CA mutants are unable to

sustain growth upon overexpression of RPL26, are sensitive to loss of the Rpl4-specific chaperone

Acl4 (Stelter et al., 2015), are sensitive to reduction in expression (through deletion of one of two

alleles) of a single ribosomal protein, and are hypersensitive to reduction of function in three differ-

ent proteins involved in transcription by RNA polymerase I. Moreover, tom1 mutants accumulate

high levels of insoluble ribosomal proteins (which is consistent with their inability to degrade excess

ribosomal proteins that may exist at any given point in time), and combining tom1 with a mutation

that causes an imbalance in ribosome production (e.g. tom1CA acl4D) leads to an enormous increase

in insoluble protein, suggestive of a collapse in cellular proteostasis. Notably, even the tom1D single

mutant accumulates more insoluble protein than any other PQC mutant that we examined, including

the ERAD mutants doa10D and hrd1D (Vembar and Brodsky, 2008), the ribosome QC mutant ltn1D

(Bengtson and Joazeiro, 2010; Brandman et al., 2012; Defenouillere et al., 2013; Verma et al.,

2013), the nuclear QC mutant san1D (Gardner et al., 2005), or the cytosolic QC mutant ubr1D

(Eisele and Wolf, 2008; Heck et al., 2010). Taken together with our observations that Tom1 directly

binds and ubiquitylates unassembled ribosome proteins, these data point to a direct and critical role

for Tom1 in the cellular proteostasis network.

The hypersensitivity of tom1CA cells to stoichiometric imbalances in ribosome components raises

interesting questions as to why unassembled ribosomal proteins would be toxic, and whether feed-

back mechanisms exist to monitor and respond to failures in ERISQ. Regarding the first question,

given that ribosomal proteins are highly expressed, positively charged nucleic acid binding proteins,

their accumulation might interfere with RNA biology. Regarding feedback mechanisms, it is interest-

ing to note that in human cells, reduction of rRNA expression by low-dose actinomycin D treatment

results in poor assembly of several ribosomal proteins including Rpl5 (Dai and Lu, 2004), Rpl11
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(Lohrum et al., 2003; Zhang et al., 2003), Rpl26 (Zhang et al., 2010), Rps7 (Chen et al., 2007) and

Rps14 (Zhou et al., 2013). These unassembled ribosomal proteins bind to and titrate ubiquitin ligase

Mdm2, which leads to stabilization and accumulation of the Mdm2 substrate p53. This provides a

sensitive feedback loop to reduce cell growth in response to stresses that impede ribosome assem-

bly. It will be of great interest to determine whether a similar feedback mechanism operates in yeast,

and how Huwe1 activity relates to the Mdm2–p53 feedback pathway described in human cells.

Is ERISQ relevant to cancer?
Dysfunctional ribosomal proteins and ribosome biogenesis has been linked to many diseases

(Freed et al., 2010; Narla and Ebert, 2010). Particularly, given that one of the characteristic fea-

tures of cancer is an increase in the overall rate of protein synthesis, it is clear that regulation of ribo-

some biogenesis is closely associated with tumor progression. Consistent with this expectation, RNA

Pol I activity is highly elevated in many cancer cells and it leads to the enlargement of the nucleolus,

which has been used as a marker for cancer for over 100 years (Derenzini et al., 2009). Furthermore,

two major human tumor suppressor proteins, pRB and p53, have been shown to repress the produc-

tion of rRNA and the loss of these factors cause an up-regulation of ribosome biogenesis in cancer

tissues, consistent with a close relationship between cancer and ribosome synthesis

(Montanaro et al., 2008). Up-regulation of ribosome production in cancer cells implies an enhanced

dependency on QC mechanisms that survey ribosome assembly. However, the molecular pathway

that mediates ERISQ in human cells has, up to now, remained unknown. Interestingly, several obser-

vations link Huwe1 function to cancer. Huwe1 is overexpressed in multiple human tumors, is essential

for proliferation of a subset of tumors (Adhikary et al., 2005), and is required for activation of Myc-

inducible target genes including ribosomal proteins in colon carcinoma cells (Peter et al., 2014).

Our data suggest the intriguing hypothesis that accumulation of unassembled ribosomal proteins

would titrate Huwe1, resulting in reductions in both Myc activity and transcription of genes that

encode ribosomal proteins. Insights into the detailed molecular basis underlying ERISQ afforded by

the discovery reported here will enable investigations into the biological relevance of ERISQ in

human pathologies, including cancer, which may lead to novel concepts for therapy.

Materials and methods

Yeast strains, growth conditions, and transformation
All yeast strains used in this study (listed in Supplementary file 1) were derived from BY4741 (MATa

his3D1 leu2D0 met15D0 ura3D0) or W303a (MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-

11,15). All transformants were verified by auxotrophic selection or genomic PCR. Yeast was grown

at 30˚C in YPD or appropriate synthetic complete (SC) drop-out media. For ectopic expression of

proteins from the GAL1,10 promoter, cells grown in raffinose containing medium were treated with

2% galactose for 60–90 min. We note that experiments were initiated with cells at OD600 3.0,

because the ERISQ pathway was more prominent in cells at mid-log phase (OD600 ~3.0) compared

to early-log phase (OD600 ~1.0) (data not shown). Yeast transformation was performed by lithium

acetate method (Gietz and Schiestl, 2007). For several strains, PCR products were generated by

the ‘gene splicing by overlap extension’ method (Horton et al., 1989).

Mammalian cell culture and transfection
T-REx-293 (Thermo Fisher Scientific, Waltham, MA), HeLa (Thompson et al., 2014), HEK293

(Choe et al., 2016) cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA), penicillin, and streptomycin

(Invitrogen, Carlsbad, CA) at 37˚C in 5% CO2. Mycoplasma contamination has been tested negative

by MycoAlert Mycoplasma detection kit (Lonza, Switzerland). Cells used in this study were not in the

database of cross-contaminated or mis-identified curated by the International Cell Line Authentica-

tion Committee (ICLAC). We haven’t authenticated cells by a third party. Transient transfections

were performed using transfection reagents FuGENE HD (Promega, Madison, WI) according to man-

ufacturer’s instructions. For lentiviral production, T-REx-293 cell line (ThermoFisher) was transfected

with the lentiviral construct along with helper plasmids. Forty eight hours after transfection, media

supernatant containing the lentivirus was collected. The lentivirus-containing medium supplemented
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with polybrene, was used to transduce the target cells. The doxycycline-inducible shRNA expression

constructs (pLKO-Tet-ON vector (Thompson et al., 2014; Wiederschain et al., 2009)) containing

the control (RDB3142; CAA CAA GAT GAA GAG CAC CAA) and shHUWE1 (RDB3143; TGC CGC

AAT CCA GAC ATA TTC) sequences were used (Thompson et al., 2014). shHUWE1 described pre-

viously as si5635 (Zhong et al., 2005) was used. Transduced T-REx-293 cells transduced with the

control or HUWE1 shRNA constructs were selected in the presence of 4 mg/ml of puromycin.

Plasmids and yeast molecular genetic manipulations
All plasmids used in this study are listed in Supplementary file 2. To construct pESC(HIS)-PGAL10-

RPL26A(mutants)-FLAG used in Figure 4, site-directed mutagenesis was performed using Quik-

Change Site-Directed Mutagenesis Kit (Agilent Technologies; 200519, Santa Clara, CA) according to

manufacturer’s instructions.

To construct N-terminally 3�HA-tagged Tom1, the ~1800 bp PCR product including the KAN

selection marker and RFA1 promoter was obtained using pKanMX6–PRFA1–9Myc–AID*

(Morawska and Ulrich, 2013) as a template, forward primer 50-GAG AGG AAA AGA AGA AAA

GGT AAA ACA ACG AAT ATT TTT CCG GAT CCC CGG GTT AAT TAA-30 and reverse primer 50-

TCT TGT AAG TAT AAT CTG GTC TTC T-30, and the ~180 bp PCR product encoding the 3�HA tag

was obtained using pRS304-3�HA-TOM1 plasmid (Duncan et al., 2000) as a template, forward

primer 50- AGA AGA CCA GAT TAT ACT TAC AAG AAT GGA ATT CGG CCG CAT CTT TTA CC-30

and reverse primer 50- GTT TCT CCT TTC TTG CCT TTT CAC ACC GAG TAA AAA GCA CAG ATC

TGC ACT GAG CAG CGT-30. With the two PCR products as templates, the ~2000 bp PCR product

was obtained using forward primer 50- GAG AGG AAA AGA AGA AAA GGT AAA ACA ACG AAT

ATT TTT CCG GAT CCC CGG GTT AAT TAA-30 and reverse primer 50- GTT TCT CCT TTC TTG CCT

TTT CAC ACC GAG TAA AAA GCA CAG ATC TGC ACT GAG CAG CGT-30. The obtained final PCR

product was used for transformation, generating cells expressing 3�HATom1 from the RFA1

promoter.

To construct tom1CA mutants, the ~145 bp PCR product including the 3’ end region of TOM1

with a C3235A mutation was obtained using pRS304-3�HA-TOM1CA plasmid (Duncan et al., 2000)

as a template, forward primer 50-TGA TTT TGG TTC ATC AGA AAG ACT ACC ATC ATC ACA TAC

C-30 and reverse primer 50-CAA AAG CAG AGA GGC GCG CCT CAG GCA AGA CCA AAC CCT

TCA TGC-30, and the ~1700 bp PCR product including the KlURA3 was obtained using pFA6a-GFP-

KlURA3 plasmid (Sung et al., 2008) as a template, forward primer 50-GCA TGA AGG GTT TGG TCT

TGC CTG AGG CGC GCC TCT CTG CTT TTG-30 and reverse primer 50-CAT GGC GCT ATA AAT

TTA CAC GAA AAA TGA CGT CAT TGG TTC TGG AGG AAG TTT GAG-30. With the two PCR prod-

ucts as templates, the ~1850 bp PCR product was obtained using forward primer 50-TGA TTT TGG

TTC ATC AGA AAG ACT ACC ATC ATC ACA TAC C-30 and reverse primer 50-CAT GGC GCT ATA

AAT TTA CAC GAA AAA TGA CGT CAT TGG TTC TGG AGG AAG TTT GAG-30. The obtained final

PCR product was used for transformation, generating tom1CA strains.

Antibodies
Anti-Rpl1 and anti-Rpl3 were generous gifts from Jonathan Warner. Anti-FLAG (F1804; RRID:AB_

262044; 1:10,000 dilution) was from Sigma (St. Louis, MO), anti-Hexokinase (H2035-02; 1:10,000

dilution) was from USBiological (Salem, MA), anti-HUWE1 (A300-486A; RRID: AB_2615536; 1:1,000

dilution) was from Bethyl laboratories (Montgomery, TX), anti-HA (SC-7392; RRID:AB_627809;

1:5,000 dilution) was from Santa Cruz (Dallas, TX), anti-myc (MMS-150R; RRID: AB_291325; 1:5,000

dilution) was from Covance (San Diego, CA), anti-Ubiquitin (05–944; RRID: AB_441944; 1:5,000 dilu-

tion) and anti-GAPDH (MAB374; RRID: AB_2107445; 1:5,000 dilution) were from EMD Millipore, and

anti-His6 (200-332-382; RRID: AB_10704645; 1:5,000 dilution) was from Rockland (Limerick, PA). For

secondary antibody, HRP-conjugated anti-rabbit IgG (A6154; RRID: AB_258284; 1:10,000 dilution)

and HRP-conjugated anti-mouse IgG (M8770; RRID: AB_260711; 1:10,000 dilution) were from Sigma,

IR680RD conjugated anti-rabbit (926–68071; RRID: AB_10956166; 1:10,000 dilution) and IR800CW

conjugated anti-mouse (926–32210; RRID: AB_621842; 1:10,000 dilution) were from LI-COR Bio-

sciences (Lincoln, NE).
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Microscopic analysis
Yeast cells grown in raffinose-containing SC medium at 30˚C (OD600 � 1.0) were induced with galac-

tose for 1 hr to express Rpl26aGFP and placed in 384-well glass-bottom microplates (Whatman, UK)

pretreated with concanavalin A (Sigma; L7647) to ensure cell adhesion. Fluorescence images were

taken using a Zeiss Axiovert 200M Inverted Microscope with an FITC filter set (excitation band pass

filter, 450–490 nm; beam splitter, 510 nm; emission band pass filter, 515–565 nm) and a Rhodamine

filter set (excitation band pass filter, 546 nm; beam splitter, 580 nm; emission long pass filter, 590

nm). We analyzed at least 50 cells and subcellular localization of GFP-fused proteins was reconfirmed

by co-localization assay as described previously (Huh et al., 2003).

Immunoblotting
For denatured samples, yeast or mammalian cells were harvested, washed two times with PBS, and

boiled in 2� SDS-containing sample buffer for 5 min followed by brief bead beating or sonication,

respectively. For non-denatured samples, yeast cells were harvested and disrupted by bead beating

in lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-100 andprotease inhibitor cocktail

(EDTA-free; Roche, Switzerland)). Cell debris was removed by centrifuging at 3000 rpm for 5 min,

and the remaining cell extract was centrifuged at 12,000 rpm for 10 min in an Eppendorf Centrifuge

5430R. For mammalian cells, harvested cells were washed twice with PBS, and then incubated with

RIPA buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% IGEPAL, 0.5% sodium deoxycholate, 0.1%

SDS and protease inhibitor cocktail (EDTA-free; Roche)) for 10 min. After centrifugation at 12,000

rpm for 10 min in an Eppendorf Centrifuge 5430R, the supernatant was transferred to a new tube

and mixed with SDS-PAGE sample buffer. Hexokinase and GAPDH were used as an internal control.

Myc-GFP was used as a control for transfection efficiency. Protein levels were quantified using Odys-

sey software.

Protein expression and purification
Acl4-FLAGRpl4, Acl4-FLAGRpl4Dext and Chaetomium thermophilum Kap104 were expressed in E. coli

BL21-CodonPlus(DE3)-RIL cells (Stratagene, San Diego, CA) grown in LB media supplemented with

appropriate antibiotics. Protein expression was induced at an OD600 of approximately 0.6 with 0.5

mM isopropyl b-D-thiogalactoside (IPTG) for ~18 hr at 18˚C (Acl4-FLAGRpl4, Acl4-FLAGRpl4Dext) or

23˚C (ctKap104). Cells were harvested by centrifugation and resuspended in a buffer containing 20

mM Tris-Base pH 8.0, 500 mM NaCl, 5 mM b-mercaptoethanol (Sigma), 2 mM bovine lung aprotinin

(Sigma), and complete EDTA-free protease inhibitor cocktail (Roche), and subsequently flash frozen

in liquid nitrogen. Thawed cells were lysed with a cell disrupter (Avestin, Germany) and the lysate

was centrifuged for 1 hr at 40,000 �g. Cleared lysate of ctKap104 expression was applied to a gluta-

thione sepharose column equilibrated in buffer containing 20 mM Tris-Base pH 8.0, 100 mM NaCl,

and 5 mM DTT (GE Healthcare, Pasadena, CA) and eluted via a glutathione gradient. Pooled frac-

tions were cleaved with PreScission protease (GE Healthcare) for 12 hr. Cleared lysate of Acl4--
FLAGRpl4, Acl4-FLAGRpl4Dext expression was applied to a Ni-NTA column equilibrated in buffer

containing 20 mM Tris-Base pH 8.0, 500 mM NaCl, and 5 mM b-mercaptoethanol and eluted via an

imidazole gradient. Pooled fractions were cleaved with ubiquitin-like-specific protease 1 (Ulp1) for

12 hr. Cleaved proteins were bound to a HiTrapQ HP (GE Healthcare) column equilibrated in buffer

containing 20 mM Tris-Base pH 8.0, 100 mM NaCl, and 5 mM DTT and eluted via a linear NaCl gra-

dient, concentrated, and injected onto a HiLoad 16/60 Superdex 200 column equilibrated in 20 mM

Tris-Base pH 8.0, 100 mM NaCl, and 5 mM DTT. The Acl4-FLAGRpl4-ctKap104 complex was assem-

bled by stoichiometric incubation for 1 hr at 4˚C and injection onto a HiLoad 16/60 Superdex 200

column equilibrated in 20 mM Tris-Base pH 8.0, 100 mM NaCl, and 5 mM DTT.

In vitro ubiquitination assay
Five hundred OD600 units of cells expressing 3�HATom1 (WT) and 3�HATom1CA were grown in raffi-

nose medium and then induced to express Rpl26aFLAG in galactose medium for 45 min followed by

bortezomib (50 mM) treatment for an additional 45 min. Cells were harvested and disrupted by bead

beating in 2.5 ml lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% NP-40 andprotease inhibi-

tor cocktail (EDTA-free; Roche)). Cell debris was removed by centrifuging at 3,000 rpm for 5 min,

and the remaining cell extract was centrifuged at 12,000 rpm for 10 min in an Eppendorf Centrifuge
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5430R. Total lysates were incubated overnight with 150 ml anti-HA magnetic beads. Beads were

washed three times with the same lysis buffer and then twice with 1� ubiquitin reaction buffer (50

mM Tris-HCl pH 8.0, 10 mM MgCl2, 0.2 mM CaCl2, 1 mM DTT and 5 mM MG132). Beads were incu-

bated with 2 mM ATP, 166 nM E1 (Ube1; BostonBiochem; E-305), 1 mM E2 (UbcH5a; BostonBio-

chem; E2-616) and 20 mg of His6-ubiquitin (Ubiquitin; BostonBiochem, C a m b r i d g e , M A;

U-530) at 30˚C for 1 hr. For Rpl4 ubiquitination, 10 mg of purified substrates (Acl4-FLAGRpl4, Acl4--
FLAGRpl4Dext and Acl4-FLAGRpl4-ctKap104) were used. One-fifth volume of 5� SDS-containing sam-

ple buffer was added to stop the reactions and boiled for 5 min.

Binding to UBA columns and Usp2 treatment
Immunoprecipitation of ubiquitin conjugates was performed as described with some modifications

(Verma et al., 2013). TUBE2-UBA resin (BostonBiochem; AM-130) was used to bind polyubiquiti-

nated substrates. One hundred OD600 units of cells were harvested and disrupted by bead beating

in 500 ml lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 10% Glycerol, 5 mM NEM,

1% Triton X-100 andprotease inhibitor cocktail (EDTA-free; Roche)). Cell debris was removed by

centrifuging at 3000 rpm for 5 min, and the remaining cell extract was centrifuged at 12,000 rpm for

10 min in an Eppendorf Centrifuge 5430R. TUBE2-UBA resin (30 ml) incubated overnight was washed

three times with buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5% Triton X-100). Fifty ml of 2�

SDS-containing sample buffer was added to the resin and boiled for 5 min. Note that unmodified

proteins can also potentially bind due to indirect interactions with ubiquitinated proteins. For Usp2

treatment, TUBE2-UBA resin prepared as described above was washed twice with 1� ubiquitin reac-

tion buffer (50 mM Tris-HCl pH 8.0, 10 mM MgCl2, 0.2 mM CaCl2 and 1 mM DTT) and mixed with 1

mM Usp2 (BostonBiochem; E-504) at 30˚C for 1 hr.

Nuclear fractionation of yeast cells
Subcellular fractionation was performed as described (Keogh et al., 2006). One hundred OD600

units of cells grown in rich medium (OD600�1.0) were collected by centrifugation and then treated

with 200 units Zymolyase for 1 hr at 30˚C in 1 ml SB buffer (1 M Sorbitol, 20 mM Tris-HCl pH 7.5, 10

mM b-mercaptoethanol). Spheroplasts collected by centrifugation (2000 rpm for 5 min at 4˚C) were
washed twice with SB buffer, and then resuspended in 500 ml EBX buffer (20 mM Tris-HCl pH 7.5,

100 mM NaCl, 0.25% Triton X-100, 15 mM b-mercaptoethanol and protease inhibitor cocktail

(EDTA-free; Roche)). An aliquot was taken and used as a total cell extract, and the remainder of the

lysate was layered over 1 ml NIB buffer (20 mM Tris-HCl pH 7.5, 100 mM NaCl, 1.2 M Sucrose, 15

mM b-mercaptoethanol and protease inhibitor cocktail (EDTA-free; Roche)) and centrifuged (12,000

rpm for 15 min at 4˚C in an Eppendorf Centrifuge 5430R). A sample of the upper soluble fraction

was taken and used as cytosol and the rest of the supernatant discarded. The glassy white nuclear

pellet was suspended in 500 ml EBX buffer and kept on ice for 10 min with gentle mixing and an ali-

quot taken and used as the nuclear fraction. 2� SDS-PAGE loading buffer was added to each frac-

tion and samples were incubated at 95˚C for 5 min and then subjected to SDS-PAGE and Western

analyses.

Sucrose gradient and polysome profiling
Sucrose gradient and polysome profiling were performed as described (Verma et al., 2013). Yeast

cells were grown to logarithmic phase in rich medium supplemented with glucose or raffinose at

30˚C, and treated with cycloheximide (100 mg/ml) for 15 min before cell lysis to stabilize polysomes.

One hundred OD600 units of cells were harvested and disrupted by bead beating in lysis buffer (0.5

mM DTT, 100 mg/ml cycloheximide, 200 mg/ml heparin, 20 mM Tris-HCl pH 7.5, 140 mM KCl, 5 mM

MgCl2 andprotease inhibitor cocktail (EDTA-free; Roche)). Cell debris was removed by centrifuging

at 3000 rpm for 5 min, and the remaining cell extract was centrifuged at 12,000 rpm for 10 min in an

Eppendorf Centrifuge 5430R. Twenty five A260 units of cell lysate layered on 7%~47% discontinuous

sucrose gradient prepared in buffer (1 mM DTT, 140 mM KCl, 20 mM Tris-HCl pH 7.5 and 5 mM

MgCl2) were centrifuged in SW55Ti rotor for 90 min at 50,000 rpm. For polysome profiling analysis,

samples were fractionated while continuously recording the absorbance at 254 nm with a UV detec-

tor (ISCO, Lincoln, NE). For Western blot, 0.2 ml fractions collected from the top were treated with

0.02% sodium deoxycholate for 30 min on ice and then precipitated by adding TCA to 10% final
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concentration for 1 hr. Pellets were washed with ice-cold acetone, and then resuspended in 2� SDS-

containing sample buffer.

Isolation of protein aggregates
Isolation of protein aggregates from yeast cells was performed as described previously

(Koplin et al., 2010) with slight modifications. One hundred OD600 units of exponentially growing

cells were harvested, and cell pellets were frozen in liquid N2. The cell pellets were resuspended in 1

ml lysis buffer (20 mM Na-phosphate pH 6.8, 10 mM DTT, 1 mM EDTA, 0.1% Tween, 1 mM PMSF,

protease inhibitor cocktail and 100 units/ml zymolyase) and incubated at 30˚ C for 30 min. Chilled

samples were treated by tip sonication (20%, 10 sec, twice) and centrifuged for 20 min at 600 g at

4˚C. Supernatants were adjusted to identical protein concentrations, and aggregated proteins were

pelleted at 16,000 g for 20 min at 4˚C. After removing supernatants, insoluble proteins were washed

once with Wash I buffer (20 mM Na-phosphate pH 6.8, 500 mM NaCl, 5 mM EDTA, 2% NP-40, 1

mM PMSF, and protease inhibitor cocktail), and centrifuged at 16,000 g for 20 min at 4˚C. Insoluble
proteins were washed twice with Wash II buffer (20 mM Na-phosphate pH 6.8) and sonicated (10%,

10 s, twice) in 40 ml of Wash II buffer. Pellets were processed either as described below or solubilized

in 10 ml SDS sample buffer. 1X of the total cell lysate (T) and soluble (S) fractions, and 20X of the iso-

lated pellet (P) fraction were separated by SDS-PAGE, and analyzed by Coomassie Blue staining and

immunoblotting. For the experiment in Figure 3—figure supplement 3A, the cells were lysed by

agitation with glass beads as described by Kaganovich et al., (2008), in the presence of 3 different

lysis buffers: 1) 100 mM Tris-Cl, 1% Triton X-100, 150 mM KCl, 5 mM MgCl2 and protease inhibitor;

2) 100 mM HEPES, 1% Triton X-100, 300 mM NaCl and protease inhibitor (Lu et al., 2014); 3) 30

mM HEPES, 0.5% Triton X-100, 150 mM NaCl, 1% glycerol, 1 mM DTT and protease inhibitor

(Kaganovich et al., 2008).

SILAC labeling of cells
In order to determine the effect of deleting TOM1 on ubiquitination in vivo, stable isotope labeling

of amino acids in cell culture (SILAC) experiments were performed. Wild type or tom1D yeast strains

were grown in either heavy or light medium and mixed 1:1. Three biological replicates of each strain

was grown, one of which was a label swap. Yeast cells were grown in complete synthetic medium

supplemented with 2% dextrose and 20 mg/l of L-lysine and L-arginine. Yeast cells labelled ’heavy’,

were grown in L-13C6
15N2-lysine (Lys 8) and L-13C6-arginine (Arg 6) (Cambridge Isotope

Laboratories, T e w k s b u r y , M A), while yeast cells labelled ’light’ were grown in L-lysine (Lys 0)

and L-arginine (Arg 0). Yeast cells were allowed to grow for 10 generations to log-phase (OD600

0.6~1.0) in the appropriate media to ensure full incorporation of the desired labels. Incorporation

was determined by LC-MS analysis of the derivatized amino acid hydrolysate as previously described

(Hess et al., 2002). Cells were harvested by centrifugation at 5000 �g for 5 min, washed twice with

sterile water, flash frozen in liquid N2 and stored at �80˚C until lysis.

Peptide preparation for mass spec
Cell lysis, digestion and peptide desalting procedure were followed according to the PTMScan Ubiq-

uitin Remnant Motif (K-e-GG) Kit #5562 from Cell Signaling Technology product manual with a few

changes. Cells were lysed in 5 ml of lysis buffer (20 mM HEPES (pH 8.0), 9 M Urea, 1� Protease

Inhibitor cocktail (Promega), and 1 mM PMSF). Yeast cells were lysed by vortexing in the presence

of glass beads. Cells were vortexed 1 min with 1 min rests on ice in between, for 7 cycles. Lysate

was cleared by centrifugation at 20,000 �g for 15 min at 15˚C, after which protein concentration

was determined by Bradford. Cleared lysate was mixed 1:1, by using 10 mg of each label. The mixed

sample was reduced for 45 min with 1.25 M DTT, by adding 1/278 (v/v) to achieve a final concentra-

tion of 4.48 mM DTT. Cysteine alkylation was performed by treating the lysate with 10 mM NEM, for

30 min at room temperature (RT) in the dark. Proteins were then digested with LysC (Wako) at a

ratio of 1:200 for 4 hr at RT. Lysate was then diluted to 2 M urea by adding 50 mM Tris (pH 8.0). The

partially digested lysate was subsequently digested with sequence grade trypsin (Promega) at a pro-

tein ratio of 1:100 in the presence of 1 mM CaCl2 overnight (�15 hr) at room temperature in the

dark. The following morning the reaction was quenched by adding trifluoroacetic acid (TFA) to a

final concentration of 0.1%. Insoluble material was removed from the digest by centrifugation at
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4000 �g for 15 min. Peptides were desalted using a 500 mg capacity Sep-pak column that initially

was hydrated using 7 column volumes of ACN (21 ml), followed by an equilibration step with 7 col-

umn volumes of Buffer A (0.1% TFA in H2O) (21 ml). Cleared peptides were loaded onto the resin by

gravity flow, washed with 7 column volumes of Buffer A, followed by 3 column volumes of Wash

buffer (0.1% TFA, 5% ACN in H2O). Desalted peptides were eluted using 2 column volumes of Elu-

tion buffer (0.1% TFA, 40% ACN in H2O) (6 ml). The resulting peptide sample was frozen by storing

at �80˚C for at least 1 hr then lyophilized to dryness.

Basic reversed phase peptide fractionation
Peptide fractionation, cross-linking of antibody, and K-e-GG peptide immunoprecipitation procedure

was followed as in Udeshi et al., (Udeshi et al., 2013a) with a few changes. Briefly, dried peptides

were resuspended in 1.5 ml of bRP buffer A (5 mM ammonium formate, pH 10.0 and 2% ACN v/v)

and fractionated by HPLC using an Agilent Zorbax Extended C18 5 mM column (dimensions 9.4 �

250 mm). A 50 ml fraction of load was saved to analyze later as an MS detectable sample during

nanoLC-MS/MS analysis and for purposes of protein normalization. The sample was fractionated

using a step gradient with Buffer B (5 mM ammonium formate, pH 10.0 and 80% ACN v/v) as fol-

lows: 0–7.5 min (0–6% B), 7.5–10.5 min (6–8% B), 10.5–67.5 min (8–27% B), 67.5–73.5 min (27–31%),

73.5–79.5 min (31–39% B), 79.5–90 min (39–60%), and 90–116 min (60–80% B) all at a flow rate of

2.0 ml/min. Fractions were collected in one-minute increments and mixed non-contiguously into 5

bins, beginning with fraction 8 and ending with fraction 103. Binned fractions were frozen by storing

at �80˚C for more than 1 hr and subsequently lyophilized to dryness.

K-e-GG peptide antibody cross-linking and immunoprecipitation
In short, one aliquot of the K-e-GlyGly peptide specific antibody (PTMScan Ubiquitin Remnant Motif

(K-e-GlyGly) Kit #5562, Limited Use License, Cell Signaling Technology) was washed with 3–1 ml ali-

quots of 100 mM sodium borate (pH 9.0) and cross-linked in the presence of 1 ml of DMP cross-link-

ing solution (100 mM sodium borate, pH 8.0, 20 mM dimethyl pimelimidate, DMP) for 30 min at

room temperature with gentle rotation. Antibody bound beads were pelleted after each wash by

centrifugation at 2000 �g for 30 s and kept on ice whenever possible. The cross-linking reaction was

performed to decrease contamination of K-e-GG peptides with antibody during the final peptide elu-

tion step. The cross-linking reaction was quenched by washing the beads with 3–1 ml aliquots of 200

mM ethanolamine blocking buffer (pH 8.0) followed by incubating the cross-linked antibody for 2 hr

at 4˚C with 1 ml of fresh ethanolamine blocking buffer. After blocking, the antibody-bound beads

were washed with 3–1 ml aliquots of IAP buffer (50 mM MOPS, pH 7.2, 10 mM sodium phosphate,

and 50 mM NaCl) and divided equally into 5 aliquots. Independently, the 5 desalted binned peptide

samples were resuspended in 1.5 ml of 1� IAP buffer, the pH was measured (should be pHffi7), and

cleared by spinning at maximum speed for 5 min. The peptide samples were allowed to incubate

with the freshly cross-linked antibody for 2 hr at 4˚C. After immunoprecipitation the beads were pel-

leted by centrifugation at 2000 � g for 1 min, resuspended in 500 ml of 1� IAP, and transferred to

0.67 ml tubes and washed 3 times with 500 ml of 1� IAP buffer. Following the IAP washes, the beads

were washed once with 500 ml of 1� PBS, followed by one 500 ml of wash with mass spectrometry

grade water (Fluka). Finally, the bound K-e-GG peptides were eluted with 2 � 150 ml aliquots of

0.15% TFA. With each elution aliquot, the beads were incubated for 10 min at RT with periodic tap-

ping on the tube to achieve proper mixing. The resulting eluents were combined, dried, desalted by

HPLC using a Michrom Bioresources C18 macrotrap, (Buffer A: 0.2% Formic Acid in H2O; Buffer B:

0.2% Formic Acid in ACN) and concentrated in vacuo.

NanoLC-MS/MS analysis
The dried immunoprecipitated peptides were resuspend in Buffer A (0.2% Formic Acid, 2% ACN,

nanoLC grade 97.8% H2O) and subjected to proteomic analysis using an EASY II nano-UPLC (Thermo

Fisher Scientific) connected on-line to an Orbitrap Elite hybrid mass spectrometer with a nanoelec-

trospray ion source (Thermo Scientific) using settings similar to those previously described (Porras-

Yakushi et al., 2015). Peptides were separated using a 15 cm silica analytical column with a 75 mm

inner diameter packed in-house with reversed phase ReproSil-Pur C18AQ 3 mm resin (Dr Maisch

GmbH, Amerbuch-Entringen, Germany). The flow rate was set to 350 nl/min, using a linear gradient
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of 2%-32% B (0.2% Formic Acid, 80% ACN, 19.8% nanoLC grade H2O). Mass spectrometry detect-

able samples were analyzed on a 159 min gradient, while basic reversed phase immunoprecipitated

samples were analyzed on a 90 min gradient. The mass spectrometer was set to collect data in a

data-dependent mode, switching automatically between full-scan MS and tandem MS acquisition.

All samples were analyzed by ETD and decision tree fragmentation. For ETD fragmentation, the fif-

teen most intense precursor ions were selected, while the 20 most intense ions were selected for

fragmentation using the decision tree method. Data acquisition was managed using Xcalibur 2.0.7

and Tune 2.4 software (Thermo Fisher Scientific).

Mass spectrometry analyses of protein aggregates
Mass spectrometry analyses of protein aggregates were performed as described. Insoluble protein

pellets were solubilized in an 8 M Urea buffer (40 mM Tris, 65 mM DTT, 100 mM Ammonium biocar-

bonate) containing cOmplete Protease Inhibitor Cocktail (Roche) and sonicated for 10 s at 10% of

maximum amplitude using a Branson Digital Sonifier. Samples were digested and prepared for mass

spectrometry as described in (Pierce et al., 2013). One hundred fifty ng of digested peptides from

tom1D cells and equal volume of peptides from WT cells were analyzed using an EASY-nLC 1000

coupled to an Orbitrap Fusion. Spectra were analyzed by MaxQuant (v 1.5.3.30). Digested peptides

were loaded onto a 26-cm analytical HPLC column (75 mm ID) packed in-house with ReproSil-Pur

C18AQ 1.9 mm resin (120 Å pore size, Dr. Maisch, Ammerbuch, Germany). After loading, the pepti-

des were separated with a 120 min gradient at a flow rate of 350 nl/min at 50˚C (column heater)

using the following gradient: 2–6% solvent B (7.5 min), 6–25% B (82.5 min), 25–40% B (30min), 40–

100% B (1 min), and 100% B (9 min) where solvent A was 97.8% H2O, 2% ACN, and 0.2% formic

acid and solvent B was 19.8% H2O, 80% ACN, and 0.2% formic acid. The Orbitrap Fusion was oper-

ated in data-dependent acquisition (DDA) mode to automatically switch between a full scan (m/

z=350–1500) in the Orbitrap at 120,000 resolving power and a tandem mass spectrometry scan of

Higher energy Collisional Dissociation (HCD) fragmentation detected in the ion trap (using Top-

Speed). AGC target of the Orbitrap and ion trap was 400,000 and 10,000 respectively.

Mass spec data analysis
Raw data was searched using MaxQuant (Cox and Mann, 2008; Wagner et al., 2011) (v 1.5.3.30)

against the SGD yeast database (5911 entries) and a contaminant database (259 entries). Precursor

mass tolerance was 4.5 ppm after automatic recalibration. Fragment ion tolerance was 0.5 Da. All

default options were used except for SILAC diGly samples where the multiplicity was set to 2 with

heavy labels Arg6 (+6.020129) and Lys8 (+8.014199). Tryptic digest was specified with up to two

missed cleavages. Protein, peptide and site false discovery rates were less than 1% and were esti-

mated using a target-decoy approach (Elias and Gygi, 2010). For non-GlyGly analysis, oxidation of

methionine and protein N-terminal acetylation were specified as variable modifications and carbami-

domethylation of cysteine was specified as a fixed modification. For GlyGly analysis, N-ethylmalei-

mide modification of cysteine (+125.0477) was specified as a fixed modification, while N-terminal

acetylation (+42.0106), methionine oxidation (+15.9949), and the GlyGly remnant (+114.0429, not

on peptide C-terminus with neutral losses of 57.0215 and 114.0429 to account for fragmentation in

the GlyGly remnant) were set as variable modifications, as previously described (Porras-

Yakushi et al., 2015). iBAQ protein quantitation and ’match between runs’ were enabled.

For each pair of tom1D and WT samples, the difference between iBAQ abundances was used to

identify the proteins that were most accumulated in the insoluble fraction in tom1D. The average dif-

ference between tom1D and WT samples across the three replicates was then used to identify the

top 10 percent of proteins most accumulating. This set of 127 proteins was checked for annotation

enrichment against all proteins identified in the sample using DAVID (Huang et al., 2009a,

2009b). The most enriched terms included GO FAT cellular component annotations ’ribosome’ (p-

value<9.3E-40) and ’mitochondrion’ (p-value < 6.3E-2). The distribution of average DiBAQ values for

all proteins and for proteins with those annotations is in Figure 3H. The distributions of average

DiBAQ values for the large and small ribosomal subunits were compared with non-ribosomal pro-

teins in Figure 3—figure supplement 3C. The individual ribosomal proteins DiBAQ values are dis-

played in Figure 3—figure supplement 3D with error bars representing the standard error of the

mean (SEM).
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eukaryotic ribosome at 3.0 Å resolution. Science 334:1524–1529. doi: 10.1126/science.1212642

Bengtson MH, Joazeiro CA. 2010. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control.
Nature 467:470–473. doi: 10.1038/nature09371

Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn
J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS. 2012. A ribosome-bound quality control complex
triggers degradation of nascent peptides and signals translation stress. Cell 151:1042–1054. doi: 10.1016/j.cell.
2012.10.044

Brandmeir NJ, Geser F, Kwong LK, Zimmerman E, Qian J, Lee VM, Trojanowski JQ. 2008. Severe subcortical
TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. Acta
Neuropathologica 115:123–131. doi: 10.1007/s00401-007-0315-5

Cenci S, Oliva L, Cerruti F, Milan E, Bianchi G, Raule M, Mezghrani A, Pasqualetto E, Sitia R, Cascio P. 2012.
Pivotal Advance: Protein synthesis modulates responsiveness of differentiating and malignant plasma cells to
proteasome inhibitors. Journal of Leukocyte Biology 92:921–931. doi: 10.1189/jlb.1011497

Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER, Hill DL, Wang H, Zhang R. 2007. Ribosomal protein S7 as a
novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of
p53 function. Oncogene 26:5029–5066. doi: 10.1038/sj.onc.1210327

Choe KN, Nicolae CM, Constantin D, Imamura Kawasawa Y, Delgado-Diaz MR, De S, Freire R, Smits VA,
Moldovan GL. 2016. HUWE1 interacts with PCNA to alleviate replication stress. EMBO Reports 17:874–886.
doi: 10.15252/embr.201541685

Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz
J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M,
et al. 2010. The genetic landscape of a cell. Science 327:425–431. doi: 10.1126/science.1180823

Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass
accuracies and proteome-wide protein quantification. Nature Biotechnology 26:1367–1372. doi: 10.1038/nbt.
1511

Dai MS, Lu H. 2004. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5.
Journal of Biological Chemistry 279:44475–44557. doi: 10.1074/jbc.M403722200

Defenouillère Q, Yao Y, Mouaikel J, Namane A, Galopier A, Decourty L, Doyen A, Malabat C, Saveanu C,
Jacquier A, Fromont-Racine M. 2013. Cdc48-associated complex bound to 60S particles is required for the
clearance of aberrant translation products. PNAS 110:5046–5051. doi: 10.1073/pnas.1221724110

Deng M, Hochstrasser M. 2006. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature
443:827–831. doi: 10.1038/nature05170

Dephoure N, Hwang S, O’Sullivan C, Dodgson SE, Gygi SP, Amon A, Torres EM. 2014. Quantitative proteomic
analysis reveals posttranslational responses to aneuploidy in yeast. eLife 3:e03023. doi: 10.7554/eLife.03023
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