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Abstract How transcription factor dimerization impacts DNA-binding specificity is poorly

understood. Guided by protein dimerization properties, we examined DNA binding specificities of

270 human bZIP pairs. DNA interactomes of 80 heterodimers and 22 homodimers revealed that

72% of heterodimer motifs correspond to conjoined half-sites preferred by partnering monomers.

Remarkably, the remaining motifs are composed of variably-spaced half-sites (12%) or ‘emergent’

sites (16%) that cannot be readily inferred from half-site preferences of partnering monomers.

These binding sites were biochemically validated by EMSA-FRET analysis and validated in vivo by

ChIP-seq data from human cell lines. Focusing on ATF3, we observed distinct cognate site

preferences conferred by different bZIP partners, and demonstrated that genome-wide binding of

ATF3 is best explained by considering many dimers in which it participates. Importantly, our

compendium of bZIP-DNA interactomes predicted bZIP binding to 156 disease associated SNPs, of

which only 20 were previously annotated with known bZIP motifs.

DOI: 10.7554/eLife.19272.001

Introduction
Multiple sequence-specific transcription factors (TFs) converge at enhancers and promoters to con-

trol the expression of genes (Ptashne and Gann, 2002). Such TF assemblages permit integration of

multiple cellular signals to regulate targeted gene networks (Ciofani et al., 2012; Kittler et al.,

2013; Xie et al., 2013). The combinatorial use of a limited number of TFs provides the means to

finely control the complex cellular transcriptome. The ability of a given TF to interact with different

partners expands the DNA targeting repertoire. It also enhance specificity by focusing combinations

of factors to a more specific set of regulatory sites across the genome. Different partners also alter

the regulatory potential of a given TF, at times completely altering its regulatory output such that

the factor switches from an activator to a repressor of transcription depending on the binding part-

ners with which it associates (Ptashne and Gann, 2002).

The bZIP class of human TFs is well suited to play a role in signal integration and combinatorial

transcriptional control (Lamb and McKnight, 1991; Miller, 2009; Tsukada et al., 2011). bZIPs bind

DNA as either homo- or heterodimers; the discovery in 1988 that JUN and FOS could bind to DNA

as a heterodimer immediately suggested the potential for combinatorial regulation by this family

(Franza et al., 1988; Lamb and McKnight, 1991). Interestingly, the human bZIP network displays

greater ability to form heterodimers compared to simpler eukaryotes, suggesting that more complex
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combinatorial regulation may contribute to organismal complexity (Reinke et al., 2013). bZIP pro-

teins also interact with other classes of TFs to stabilize higher order oligomers at enhancers

(Jain et al., 1992; Murphy et al., 2013; Thanos and Maniatis, 1995). Their role in nucleating such

multi-factor complexes is supported by the observation that certain bZIP dimers such as AP-1

(FOS.JUN) and CEBPA can function as ‘pioneer’ factors that bind inaccessible chromatin and enable

the assembly of other TFs at regulatory sites (Biddie et al., 2011; Collins et al., 2014). Notably, the

choice of dimerizing partner not only impacts DNA recognition properties but can also influence reg-

ulatory function of a given bZIP. For example, ATF3 homodimer acts as a repressor, whereas

ATF3.JUN activates transcription (Hsu et al., 1992). As a class, bZIPs regulate diverse biological

phenomena ranging from response to stress at the cellular level, organ development at the tissue

level and viral defense, circadian patterning, memory formation, and ageing at an organismal level

(Costa et al., 2003; Herdegen and Waetzig, 2001; Jung and Kwak, 2010; Male et al., 2012).

Given their central role in various processes, mutations in bZIP proteins are implicated in the etiology

of diseases ranging from cancer and diabetes to neuronal malfunction, developmental defects and

behavioral dysfunction (Lopez-Bergami et al., 2010; Tsukada et al., 2011).

Fifty-three bZIPs encoded by the human genome can be grouped into 21 families, and as homo-

dimers they are known to bind at least six distinct classes of DNA motifs, including sites labeled as

TRE, CRE, CRE-L, CAAT, PAR, and MARE (Figure 1) (Deppmann et al., 2006; Jolma et al., 2013).

In 1991, Hai and Curran (1991) showed that some heterodimers have DNA-binding specificities that

are distinct from those of each partnering bZIP. For example, JUN.ATF2 heterodimer binds to a

cognate site in the ENK2 promoter that is not bound by either JUN.JUN or ATF2.ATF2 homo-

dimers. However, the past 20 years have provided only a handful of additional examples of how

bZIP heterodimerization influences DNA-binding specificity (Cohen et al., 2015; Jolma et al., 2015;

eLife digest Most cells in our body contain the same DNA blueprint, which encodes all the

genes needed for every process in the body. However, only certain genes need to be active in a

particular cell at any given time. Proteins known as transcription factors control the activity of genes

by binding to DNA near the start of the genes and switching genes on or off as required. Often

transcription factors work together to regulate specific genes in response to signals from other cells

or the environment. Failure to control the activity of genes can give rise to cancer, diabetes and a

wide array of other diseases.

The bZIP family of transcription factors regulates the activities of many genes. These transcription

factors work in pairs to bind a specific DNA site. They either partner with an identical molecule or

with a different bZIP transcription factor. Different combinations of bZIP pairs prefer to bind

different stretches of DNA. Except for a few examples, it is not yet understood how bZIP pairs work

together to find the right target DNA.

Rodriguez-Martinez, Reinke, Bhimsaria et al. have identified all of the DNA sites that 102 pairs of

human bZIP transcription factors can bind to. The experiments show that over two thirds of the bZIP

pairs bind to DNA sequences that each individual partner prefers. However, in many cases, the

choice of a partner can change the DNA sequence that the pair targets in a manner that could not

have been predicted based on the preferences of each partner alone. This suggests that, by pairing

up, bZIP transcription factors are able to change their preferences for which location they target in

the DNA. The experiments also show that many of the 102 pairs could bind to more than one type

of site. Thus, the ability of bZIP proteins to interact with different partners greatly expands the

locations on genomic DNA from which they can regulate the activity of different genes.

DNA sequences vary between different individuals and some variants can predispose individuals

to certain diseases. Rodriguez-Martinez et al. found that bZIP pairs can bind to over a hundred DNA

variants that are associated with disease. The next challenge is to find out how specific variations in

DNA can lead to the formation or elimination of bZIP binding sites that cause disease. In the future,

DNA editing methods may make it possible to specifically fix such changes in our genomes to

reduce the risk of disease.

DOI: 10.7554/eLife.19272.002
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Figure 1. Overview of human bZIP homodimer and heterodimer DNA-binding specificities. (A) Summary of SELEX-seq results categorized by protein-

protein interaction (PPI) affinity (Reinke et al., 2013). Specificity profiles were classified as resulting in a motif arising from DNA binding by either a

homodimer (brown) or a heterodimer (dark brown), or not resulting in a motif (white). Some profiles could not be unambiguously assigned to a homo

vs. heterodimer (light brown). (B) Pairwise comparisons of the DNA-binding preferences of 102 bZIP dimers (22 homodimers and 80 heterodimers) using

the z-scores for 1222 unique 10 bp sequences corresponding to the 50 top ranked sequences for each dimer. Throughout the paper, the biotinylated

Figure 1 continued on next page
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Vinson et al., 1993; Yamamoto et al., 2006). Central questions about bZIP transcription factors

remain unanswered: What is the influence of protein dimerization on DNA binding? Does DNA stabi-

lize dimer formation? Which protein dimers can bind DNA? Which sequences do they bind? And,

how do bZIP-binding sites contribute to cellular function and the etiology of various diseases?

Resolving these issues requires systematic examination of the DNA-binding specificities of bZIP

homo- and heterodimers. Fifty-three human bZIP proteins can potentially form as many as 1431 dis-

tinct dimers. Quantitative experiments using fluorescence resonance energy transfer (FRET) in solu-

tion indicated that ~ 30% of all possible bZIP dimers form in the absence of DNA. Most bZIPs can

form dimers with different partners, potentially greatly expanding the repertoire of cognate sites

that might be targeted by different heterodimers (Reinke et al., 2013). We used this protein-protein

interaction (PPI) dataset to prioritize 270 bZIP dimers for bZIP-DNA interactome studies and to apply

FRET-based methods to distinguish DNA-bound heterodimers from homodimers.

Insights that emerged from our compendium of bZIP-DNA interactomes include: (i) identification

of new bZIP cognate sites, (ii) evidence for three classes of heterodimer-binding sites (conjoined

half-sites, variably-spaced half-sites, and unpredicted emergent cognate sites), (iii) ability of individ-

ual bZIP heterodimers to target a range of binding sites, (iv) evidence for varying heterodimer selec-

tivity between distinct sequences currently classified as a single consensus motif, (v) improved ability

to account for in vivo genome-wide occupancy of heterodimers, and (vi) identification of bZIP cog-

nate sites at 156 SNPs linked to human diseases and quantitative traits. DNA sequence preferences

of bZIP heterodimers reported here serve as a valuable resource for many purposes including, but

not limited to, evaluating potential bZIP dimer binding at genomic binding sites, providing hypothe-

ses about mechanisms underlying the etiology of disease-linked SNPs, and predicting binding specif-

icities of heterodimeric bZIPs from other species.

Results

Comprehensive bZIP-DNA interactomes
To elucidate DNA sequence-recognition properties of TFs that form obligate dimers, we examined

270 pairs of purified human bZIP proteins. These pairs were composed from 36 bZIP proteins repre-

senting 21 bZIP families and encompassing the diversity of all 53 bZIPs encoded in the human

genome (Supplementary file 1A). Given the 666 potential dimeric pairs that can be formed with 36

bZIPs, we used biophysically measured PPIs to prioritize the dimers that were examined

(Reinke et al., 2013). We selected 126 pairs (97 hetero- and 29 homodimer) that form stable dimers

with PPI dissociation constants (Kd) less than 1 mM at 21˚C in the absence of DNA. In addition, we

tested 144 (137 hetero- and seven homo-) dimer combinations that do not stably associate in

Figure 1 continued

bZIP is listed first when describing a heterodimer. (C) Representative motifs bound by bZIP homodimers and heterodimers reported in this study.

Heterodimer motifs were grouped as Conjoined, Variable spacer, and Emergent. The color code defined here for half sites (colored arrows above

motifs) is used throughout the figures.

DOI: 10.7554/eLife.19272.003

The following source data and figure supplements are available for figure 1:

Source data 1. Data for Figure 1C.

DOI: 10.7554/eLife.19272.004

Figure supplement 1. Cognate site identification by SELEX-sequencing.

DOI: 10.7554/eLife.19272.005

Figure supplement 2. ATF3 CSI Intensity (z-score) correlates with equilibrium association constant.

DOI: 10.7554/eLife.19272.006

Figure supplement 3. Pairwise comparison of bZIP homodimers reported in this study and bZIP dimers reported by Jolma et al.

DOI: 10.7554/eLife.19272.007

Figure supplement 4. bZIP heterodimer specificity.

DOI: 10.7554/eLife.19272.008

Figure supplement 5. DNA sequence preferences for FOS.CEBPE, FOS.CEBPG, FOSL1.CEBPE, and FOSL1.CEBPG.

DOI: 10.7554/eLife.19272.009
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solution in the absence of DNA (Kd >1 mM at 21˚C). For most TFs, including the bZIP class, the DNA

specificity of the isolated DNA binding domain (DBD) is typically indistinguishable from the full-

length factor (Jolma et al., 2013). Therefore, we focused our efforts on the bZIP domain, which

comprises the basic region that binds DNA and the leucine zipper dimerization module that forms a

coiled-coil. Recombinant proteins, overexpressed in bacteria, were purified to homogeneity. Two

versions of each protein were made, one conjugated to biotin at the carboxyl terminal and the other

without. This set of highly purified DNA binding proteins enabled examination of the innate DNA-

binding sequence specificity of 36 representative human bZIPs. Individual bZIP partners were mixed

in 3:1 molar ratios with the biotinylated partner at the lower concentration; affinity purification of the

protein-DNA complexes using the less abundant biotinylated partner enriched for heterodimers. To

additionally favor examination of the heterodimer, whenever possible, the interaction partner with

the weaker homodimer was biotinylated and used for isolating protein-DNA complexes. Each pro-

tein dimer is denoted by a dot between each monomer – for example, JUN.ATF3. The DNA binding

sites are indicated either by a specific sequence or their classical designations, such as CRE or

CAAT, or by half-sites connected by a hyphen, such as CRE-CAAT.

DNA-binding specificity of the pairs was queried using systematic evolution of ligands by expo-

nential enrichment coupled to deep sequencing (SELEX-seq) (Figure 1—figure supplement 1)

(Jolma et al., 2010; Slattery et al., 2011; Tietjen et al., 2011; Zhao et al., 2009; Zykovich et al.,

2009). In our cognate site identification (CSI) effort using SELEX-seq, a DNA library spanning the

entire sequence space of a 20-mer (1012 different sequence permutations) was independently incu-

bated with each of the 270 different bZIP pairs (234 hetero- and 36 homodimers), and protein-bound

DNA sequences were enriched, amplified, and re-probed for an additional two cycles to further

enrich cognate sites over non-cognate sites that comprise the majority of the starting library. The

starting DNA library as well as selectively enriched sequences were barcoded and sequenced using

massively parallel DNA sequencing methods. The CSI intensity, corresponding to the z-score for the

enrichment of a sequence, was computed for each 10-mer as described in the methods. Repeated

experiments demonstrated an average Pearson’s correlation r = 0.8 ± 0.1 between CSI intensities

from replicates (Figure 1—figure supplement 1). The CSI intensity (z-score) correlates with the

binding affinity for a particular sequence (Figure 1—figure supplement 2) (Carlson et al., 2010;

Puckett et al., 2007; Tietjen et al., 2011). In three cases, reciprocal biotinylation of each partner

was performed to ensure that the choice of partner did not skew the results (Pearson’s correlation

for comparing experiments was r = 0.89–0.98; Figure 1—figure supplement 1C).

Among the 270 pairs tested were 12 homodimers that had been previously examined by other

groups (Jolma et al., 2013). Overall, we found excellent agreement between the cognate sites iden-

tified using highly purified bZIP modules in our study versus full-length proteins in unpurified cell

lysates in other studies, with only a few inconsistent examples that can be seen in Figure 1—figure

supplement 3A (e.g. MAFB, NFE2, ATF4). Interestingly, we found that the previously reported DNA

specificity of ATF4 has a higher correlation with the specificity of ATF4.CEBPG heterodimer identi-

fied in this report than with the specificity of the ATF4 homodimer (Figure 1—figure supplement

3B), suggesting that CEBPG possibly formed a complex with ATF4 in the cell lysates used in the

prior study (Jolma et al., 2013). This observation highlights the advantage of using highly purified

proteins over cell lysates and validates our focus on the bZIP domain to capture the innate specificity

of this class of transcription factors that bind DNA as obligate dimers.

Overall, 30 out of the 36 bZIP proteins tested in this study enriched specific DNA sequences as

part of at least one dimer. bZIPs that are not known to bind DNA as homodimers did not yield cog-

nate sites in our studies (e.g. JUNB and FOS) (Deng and Karin, 1993; Hai and Curran, 1991). 73 of

126 (58%) bZIP pairs that dimerize in the absence of DNA yielded specific cognate sites (Figure 1A).

Surprisingly, 29 of the 144 (20%) bZIP pairs that do not stably associate in the absence of DNA

(Kd >1 mM at 21˚C) yielded evidence of sequence-specific binding to DNA, indicating that PPIs were

stabilized by binding to specific DNA sites (Figure 1A; Supplementary file 1C). This finding has

important implications, given that the majority of the potential bZIP PPI space consists of protein

pairs that do not associate strongly in the absence of DNA (Reinke et al., 2013).
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Conjoined, variably-spaced, and emergent cognate sites bound by
heterodimers
For 184 bZIP-DNA interactomes that showed evidence for an enriched motif, we computationally

parsed and retained datasets that could be attributed with high confidence to 80 heterodimers and

22 homodimers (Materials and methods). We assigned a specificity profile to a heterodimer when it

bound sequences that were significantly different (t-test p<0.05) from the sequences preferred by

the homodimer of the biotinylated bZIP (e.g. ATF4 vs. ATF4.CEBPA, r = 0.1; Figure 1—figure sup-

plement 4) or when the biotinylated bZIP did not bind specific DNA sequences as a homodimer

(e.g. FOS and JUNB).

Of the 22 homodimers, comprehensive DNA-binding specificity is reported for the first time for

human ATF2, ATF3, ATF6, ATF6B, CEBPA, CREB1, FOSL1, JUN, MAFB, and NFE2L1. Hierarchical

clustering of the 102 bZIP-DNA interactomes readily identified six previously known classes of bZIP-

binding sites (TRE, CAAT, PAR, MARE, CRE, and CRE-L) (Figure 1B–C). Notably, several bZIP homo-

dimers (ATF6, ATF6B, CREB3L1, and JUN) enriched more than one motif (Supplementary file 2).

Examining the cognate sites bound by heterodimers highlighted the ability of some heterodimers to

bind homodimer motifs as well as a range of other heterodimer-specific motifs. Such binding to mul-

tiple motifs is reminiscent of previous studies that reported bZIP dimers binding to different sites

with different affinities (Badis et al., 2009; Kim and Struhl, 1995; König and Richmond, 1993).

Interestingly, several heterodimers that bind classic bZIP homodimer motifs such as TRE, CRE-L, or

CRE displayed clear differences in their preference for a subset of sequences categorized under a

single consensus motif (e.g. compare motifs 9 and 10 in Figure 1 with the CRE-L site). This was also

true for different homodimers (e.g. compare CRE-L binding profiles for ATF6, CREB3, CREB3L1, and

XBP1 in Supplementary file 2). Thus, the binding data reported here reveal a sequence sub-struc-

ture to classic consensus motifs. Moreover, the sub-structure highlights differences in DNA-binding

specificity between closely related dimers.

Three classes of bZIP heterodimer motifs were identified and are illustrated in Figure 1C: ‘Con-

joined’ sites for which half-sites preferred by each contributing monomer are juxtaposed (such as the

CRE-CAAT site represented by motif 1, or the MARE-CRE site of motif 7), ‘Variably-spaced’ sites for

which half-sites overlap (as is the case in motifs 2 and 4), and ‘Emergent’ sites for which binding

preferences could not have been readily inferred based on the half-site preferences of each partner

(motifs 3, 5, 8, 9, and 10). In other words, an emergent site arises as a consequence of heterodimer

formation and is not simply comprised of the conjoined or variably-spaced half-sites preferred by

each monomer. An elegant study of Hox-Exd heterodimers identified ‘latent’ sites that were pre-

ferred by different Hox factors when they bound DNA in conjunction with Exd (Slattery et al.,

2011). Preferences for different sequences at the interface of half-sites or sequences flanking the

half sites were observed for different classes of Hox-Exd heterodimers. In our studies, we observed

a change in half-site preference of certain bZIPs when they bound DNA as heterodimers. In some

instances, homodimers bound with low affinity to sites that emerged as high-affinity sites in the con-

text of a heterodimer, whereas in other cases entirely new site preferences emerged. We classified

such newly acquired binding preferences as emergent sites because they are not readily inferred

from the binding preferences of homodimers.

While a large fraction of heterodimers bind conjoined sites, it was surprising to find that closely

related heterodimers such as FOS.CEBPG and FOS.CEBPE preferred different arrangements of half-

sites, with the former heterodimer preferring the 8 bp conjoined CRE-CAAT site (motif 1 5’TGACG-

CAA3’) and the latter preferring the 7 bp variably-spaced TRE-CAAT site (motif 4 5’TGAGCAA3’).

Figure 1—figure supplement 5 highlights the unexpectedly poor correlation between the binding

preferences of these two heterodimers and between the binding preferences of FOSL1.CEBPG and

FOSL1.CEBPE. Similarly, other heterodimers bound both conjoined and variably spaced motifs (see

JUNB.ATF3 and MAFB.ATF5 in Supplementary file 2); however, the preference for one arrange-

ment over the other was not amenable to predictions based on the binding preferences of each con-

tributing partner of the heterodimer.

Emergent sites pose a particular challenge for current models of DNA binding site predictions

that are based on protein homology (Weirauch et al., 2014). Emergent cognate sites for hetero-

dimers can be subdivided into two categories: (i) ‘gain-of-specificity’ motifs that display a change in

half-site preferences for a bZIP or (ii) motifs that display a ‘loss-of-specificity’ for one half-site. An
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example of the first category includes a switch in the half-site preferences of BATF family members,

from a CRE half-site (5
0

TGAC30) that is preferred in homodimers to a CRE-L (5
0

CCAC30) half-site that is

preferred by many BATF-containing heterodimers (compare motifs 3 and 8–10, and see examples in

Supplementary file 2 such as BATF2.ATF3, BATF2.JUN, BATF3.ATF3, BATF3.ATF4). An example

of the second category is DDIT3.CEBPG binding to 50ATTGCA30 (motif 5) (Ubeda et al., 1996), with

heterodimers displaying no apparent requirement for one half-site. Overall, for the 80 bZIP hetero-

dimers with binding motifs reported here, 72% of the motifs can be classified as conjoined, 16% as

emergent, and 12% as variably-spaced. Nine out of the 80 heterodimers (11%) enriched two motifs

(Supplementary file 2). For example, BATF.CEBPG enriched both CRE-CAAT and CRE-L-CAAT

motifs.

Specificity and energy landscapes reveal the entire spectrum of
cognate sites bound by heterodimers
To examine the full specificity spectrum of individual bZIP dimers, we displayed DNA binding data

as specificity and energy landscapes (SELs) (Carlson et al., 2010; Tietjen et al., 2011). In a SEL, all

possible sequences of a given length are arranged within concentric circles based on their homology

to a seed motif. The seed motif is often derived from position weight matrices (PWMs) of the most

enriched sequences (Figure 2A). The innermost circle contains all sequences that have an exact

sequence match to the seed motif (0-mismatch). As each enriched sequence placed in this ring is an

exact match to the seed motif, the source of varying CSI intensity (z-score) is the contribution of the

sequences flanking the seed motif. The 1-mismatch ring contains all sequences that differ from the

seed motif at any one position, or a Hamming distance of one. The subsequent rings, going out-

wards, display sequences with increasing number of mismatches to the seed motif. The height and

color of each point represents the CSI intensity for the corresponding sequence. As noted above,

CSI intensity correlates with binding affinity where measured (Figure 1—figure supplement 2)

(Carlson et al., 2010; Hauschild et al., 2009; Puckett et al., 2007; Tietjen et al., 2011;

Warren et al., 2006). Although there are far more low-affinity sequences than enriched sequences

(as depicted by the illustrative histogram in Figure 2A), the moderate-to-low affinity sites (low CSI

intensity) are often overlooked by motif searching algorithms. Such sequences readily emerge in SEL

display of the entire binding data (Carlson et al., 2010; Tietjen et al., 2011). In Figure 2A, we illus-

trate how SELs are built and we note that a SEL can be constructed using any sequence as a seed

motif. The choice of a different seed motif simply alters the placement of the sequences on the land-

scape without changing the underlying binding preferences of a protein for a given sequence.

SEL plots of 102 bZIP homo- and heterodimers reveal that the impact of flanking sequence con-

text and the range of different cognate sites bound by most bZIPs is far richer than might be

inferred from motifs represented as PWMs (Supplementary file 2). In Figure 2B, the SELs of

JUN.ATF3 and ATF4.CEBPG illustrate the broader insights that emerged from examining specificity

profiles of these two heterodimers. JUN.ATF3 binds a CRE site composed of conjoined half-sites for

JUN and ATF3. Visualizing the entire JUN.ATF3-DNA interactome via a SEL shows that the binding

of JUN.ATF3 heterodimer to CRE is significantly influenced by the sequence context that flanks the

motif (see affinity variations in the 0-mismatch ring). Additionally, the 3-mismatch ring of the SEL

identifies several high-intensity peaks corresponding to additional cognate sites. As indicated, one

of these is a variably spaced site, and another is an emergent site 50TGACGCAT3
0

. Thus, the SEL

highlights that this single heterodimer binds multiple classes of cognate sites. On the other hand,

the SEL for ATF4.CEBPG shows that the seed motif 50ATGCGCAAT3
0

bound by this heterodimer is

relatively insensitive to context effects (0-mismatch ring). The 1-mismatch ring indicates that both

half-sites are not equally tolerant of mismatches, with mismatches in the 50TGA30 core of the CRE site

dramatically reducing binding, whereas the 50CAA30 site is tolerant of deviations at the first position

of the half-site but sensitive to deviations in the 50AA30 positions. Similar insights can be obtained

from the SELs for each of the102 bZIP dimers that are reported in Supplementary file 2.

Our compendium of SEL plots greatly extend previous reports that bZIP dimers bind a range of

sequences with different degrees of affinity (Badis et al., 2009; Kim and Struhl, 1995; König and

Richmond, 1993). To examine whether the set of sequences that are pointed out in SELs of

JUN.ATF3 and ATF4.CEBPG from Figure 2B are bound by homodimers or any bZIP in our compen-

dium, we displayed the relative preferences of each dimer for this set of binding sites in a heatmap

(Figure 2C). Each column displays the relative preference of each of the 102 bZIP dimers for
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Figure 2. Specificity and energy landscapes (SELs) and motifs for bZIP heterodimers. (A) SEL displays CSI intensities for all sequence permutations of a

given binding site size (k-mers). Sequences are organized with respect to any selected seed motif; however, a k-mer representing PWM-derived motif is

typically used. CSI intensities correlate with equilibrium binding affinities. As an example, the arrangement of 6-mer sequences for a simplified 4-mer

seed motif is shown. The innermost circle displays the intensities for all sequences that have an exact match to the seed motif (0-mismatch ring). In this

ring, sequences are arranged in a clockwise manner with sequences that include residues 50 of the seed motif at the start, sequences with residues that

flank both 50 and 30 ends in the middle, and 30 flanking sequences at the end (context). The subsequent 1-mismatch ring contains the sequences that

differ at one position from the seed. The sequences are organized clockwise starting with mismatches at the first position and ending with mismatches

at the last position of the motif. Within each sector, the mismatches at a given position (indicated by x) are organized in alphabetical order (A, C, G,

and T). The 2-mismatch ring contains all permutations with two positional differences with the seed, similarly ordered. (B) Left, SEL for JUN.ATF3

heterodimer using CRE (5
0

TGACGTCA30 ) as the seed motif. By displaying the 10 bp sequence space, preferred sequences become apparent. Peaks

corresponding to emergent and variably-spaced sites are identified by arrows. Right, SEL displaying 12 bp sequences for ATF4.CEBPG heterodimer

using CRE-CAAT (5
0

ATGACGCAAT3
0

) as the seed motif. (C) Heatmap of the relative CSI intensities of 102 bZIP dimers (columns) for the 10 sites

highlighted in Figure 2B as well as constituent half-sites of the six classic bZIP motifs (rows). Displayed is the maximum CSI intensity of all the 10 mers

matching the site. bZIP dimers are listed in the same order as in Figure 1B. ATF3, ATF4, CEBPG, and JUN homodimers are marked by asterisks. While

bZIPs do not bind as monomers to half-sites, the occurrence of bZIP half-sites within motifs is displayed in the second set of rows to enable comparison

between the half-site preferences versus the CSI intensity for motifs that display these half-sites in different combinations or in different contexts.

DOI: 10.7554/eLife.19272.010

Figure 2 continued on next page
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different sequences, including half-sites of all six classical homodimer motifs. An examination of row

3, which displays preferences of all 102 dimers for the emergent site 5’TGACGCAT3’, indicates that

this site is highly preferred by JUN.ATF3 and to some extent by JUN.CEBPG but not by homo-

dimers formed by ATF3, CEBPG, or JUN (denoted by asterisks). While not as exclusive as the

JUN.ATF3 emergent site, the conjoined CRE-CAAT site is primarily targeted by heterodimers

formed by the CEBP family of bZIPs. The heatmap does indicate that this heterodimer-preferred site

permits low-affinity binding by the CEBPG homodimer. Interestingly, data in row 8 reveals that

substituting 5’CAAT3’ with 5’TAAT3’ in the CRE-CAAT site perturbs binding by CEBP heterodimers in

a non-uniform manner, unmasking hidden differential sequence preferences of related heterodimers

that are opaque to current models that use protein homology to predict cognate site preferences.

The C-to-T substitution also expands the repertoire of bZIPs that bind this mutated site. DBP, HLF,

and NFIL3 as homo- and hetero- dimers display an unmistakable affinity for this modified CRE-CAAT

site that recreates the PAR half-site that is a target of this set of bZIPs. On the other hand, a different

substitution at the same position (5’GAAT3’) dramatically reduces the binding of all bZIPs to this ver-

sion of the CRE-CAAT site (row 9). Furthermore, the importance of the sequences flanking a binding

site (rows 4 and 5) or the contribution of each half-site to the binding of bZIPs (rows 8–10) is also

made evident by the heatmap. In essence, SEL plots alongside comparative heatmaps of affinities of

proteins for a range of cognate sites bring a new appreciation for diversity of DNA sequences that

can be targeted by a given factor.

EMSA-FRET analysis to validate heterodimer binding to different
cognate sites
To validate the ability of heterodimers to bind cognate sites identified by CSI analysis, we used an

electrophoretic mobility shift assay (EMSA) in which a FRET signal distinguished homo- vs. hetero-

dimers in protein-DNA complexes (Figure 3A; Materials and methods) (Reinke et al., 2013). We first

used EMSA-FRET to assay bZIP dimers formed by mixing fluorescein and TAMRA labeled versions of

16 proteins drawn from different bZIP families. For 15 homodimers for which we could detect bind-

ing to DNA, the mixed-dye homodimer could be easily distinguished from both of the single-dye

homodimers, as shown for CEBPG and ATF3 homodimers binding to CAAT and CRE sites, respec-

tively (Figure 3A). This assay was then used to demonstrate that the ATF3.CEBPG heterodimer

bound the conjoined CRE-CAAT site better than either parental homodimer (Figure 3A). Further-

more, swapping fluorophores did not alter the binding properties of the resulting heterodimer (last

panel of Figure 3A). DNA fluorescence coincides with the protein FRET signals, confirming that pro-

tein-DNA complexes were being observed in the EMSA gels (Figure 3—figure supplement 1A).

We used this EMSA-FRET assay to quantify the DNA binding of 83 bZIP homodimers and hetero-

dimers comprised of 16 proteins. Each heterodimer was systematically examined with DNA sites

that were constructed by conjoining the preferred half-site(s) for each bZIP. Figure 3B shows EMSA-

FRET data for six heterodimers and corresponding homodimers binding to heterodimer-specific

sites (three conjoined sites and three emergent sites). For these sites, the CSI intensity for the heter-

odimers is higher than the scores for either of the two contributing homodimers. The EMSA-FRET

data demonstrate clearly that neither the JUN nor the ATF3 homodimers associate with the emer-

gent site identified for JUN.ATF3 (Figure 3B and Figure 3—figure supplement 2). Similarly, emer-

gent sites identified for ATF4.CEBPA and ATF4.JUN, and several conjoined sites such as TRE-CAAT

for ATF3.CEBPA, CRE-L-CAAT for BATF3.CEBPA, and CRE-CRE-L for BATF3.JUN, were validated

by EMSA-FRET as bona fide heterodimer-specific cognate sites that show weaker binding, or no

binding, by the contributing homodimers (Figure 3B). EMSA-FRET data also validate the ability of

BATF3 to bind emergent CRE-L half-sites as a heterodimer (in addition to the CRE site preferred by

the homodimer). The complete EMSA-FRET data are presented in a more compact format in Fig-

ure 3—figure supplement 1.

Figure 2 continued

The following source data is available for figure 2:

Source data 1. Data for Figure 2C.

DOI: 10.7554/eLife.19272.011

Rodrı́guez-Martı́nez et al. eLife 2017;6:e19272. DOI: 10.7554/eLife.19272 9 of 29

Research article Computational and Systems Biology Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19272.011
http://dx.doi.org/10.7554/eLife.19272


CRE•CAAT

TRE•CAAT

* ATF3•ATF3

ATF3•CEBPA

* CEBPA•CEBPA

CRE•CAAT

CRE-L•CAAT
* BATF3•BATF3

BATF3•CEBPA

* CEBPA•CEBPA

* BATF3•BATF3

BATF3•JUN

* JUN•JUN

CRE•CRE

CRE•CRE-L

* ATF3•ATF3

ATF3•JUN

* JUN•JUN

CRE•CRE

CTGACGCAT

* ATF4•ATF4

ATF4•CEBPA

* CEBPA•CEBPA

CRE•CAAT

CCCACGCAAT

CRE•CRE

ATGAGATCAT
* ATF4•ATF4

ATF4•JUN

* JUN•JUN

% DNA bound

0 20 40 60 80
PPI Site

+ +

+ +

Heterodimer

FRET

Homodimer

+ +

Homodimer

–
–
–
–

CRE • CAAT
–
–

+
+

+
–

–
+

–
–

+
+

+
–

–
+

+
–
–
+

–
+
+
–

–
–
+
+

+
+
–
–

–CEBPG
–CEBPG
–ATF3
–ATF3

CAAT • CAAT CRE • CRE

B

C

A

<10

10-50

50-250

250-1000

>1000

PPI
Kd (nM)

ATF3•MAFB

ATF3•MAFG

FOS•MAFB

MAFB•NFE2L1

MAFG•NFE2L1

ATF6•CEBPG

BATF3•CEBPA

BATF3•CEBPG

BATF3•DBP

BATF3•MAFG

ATF2•BATF3

ATF3•BATF3

ATF4•BATF3

ATF6•ATF6

ATF6•BATF3

ATF6•XBP1

*  BATF3•BATF3

BATF3•FOS

BATF3•JUN

BATF3•XBP1

XBP1•XBP1

* ATF3•ATF3

ATF3•FOS

ATF3•JUN

ATF3•NFE2L1

* FOS•FOS

FOS•JUN

FOS•NFE2L1

* JUN•JUN

JUN•NFE2L1

* NFE2L1•NFE2L1

ATF3•CEBPA

ATF3•CEBPG

CEBPA•FOS

CEBPA•JUN

CEBPG•FOS

CEBPG•JUN

% DNA bound

0 20 40 60 80
PPI Site

CRE•CRE

CRE•CRE-L

CRE•CRE

CRE•TRE

CAAT•CRE

CAAT•TRE

CAAT•CRE

CAAT•CRE-L

MARE•CRE

MARE•CRE-L

PAR•CRE

PAR•CRE-L

MARE•CRE

MARE•TRE

* ATF2•ATF2

ATF2•ATF3

ATF2•ATF4

ATF2•CREB1

ATF2•FOS

ATF2•JUN

ATF3•ATF4

ATF3•CREB1

* ATF4•ATF4

ATF4•CREB1

ATF4•FOS

ATF4•JUN

ATF4•NFE2L1

* CREB1•CREB1

CREB1•FOS

CREB1•JUN

ATF2•CEBPA

ATF2•CEBPG

ATF4•CEBPA

ATF4•CEBPG

CEBPG•CREB1

ATF2•MAFB

ATF2•MAFG

ATF4•MAFB

ATF4•MAFG

% DNA bound

*  DBP•DBP

DBP•NFIL3

* NFIL3•NFIL3

CEBPA•DBP

CEBPA•NFIL3

CEBPG•DBP

CEBPG•NFIL3

* MAFB•MAFB

MAFB•MAFG

* MAFG•MAFG

ATF2•DBP

ATF3•DBP

ATF3•NFIL3

ATF4•DBP

ATF4•NFIL3

BATF3•NFIL3

CREB1•NFIL3

DBP•FOS

0 20 40 60 80
PPI Site

* CEBPA•CEBPA

* CEBPA•CEBPG

* CEBPG•CEBPG

CRE•CAAT

PAR•PAR

CAAT•PAR

CAAT•CAAT

MARE•MARE

CRE•CRE

CRE•MARE

CRE•PAR

Conjoined half-sites

Heterodimer-specific sites

Figure 3. Influence of bZIP protein dimerization on DNA binding. (A) EMSA-FRET assay used to quantify bZIP heterodimers and homodimers binding

to DNA. Fluorescein and TAMRA are depicted as blue and green stars, respectively. In the EMSA gel, homodimers give rise to pseudo-colored blue

(fluorescein) or green (TAMRA) signals, whereas heterodimers give a FRET signal that is pseudo-colored red. (B) EMSA-FRET results for bZIP dimers

binding to selected heterodimer-specific emergent sites (brown) and conjoined half-sites (blue). Bar graphs show the percent of the indicated DNA

Figure 3 continued on next page
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A striking result of our CSI analysis is that conjoined half-sites form a substantive fraction (~70%)

of the cognate sites bound by heterodimers. To determine how frequently DNA half-sites derived

from homodimer-binding data, when presented as conjoined sites, would bind the corresponding

heterodimers, we tested DNA binding by EMSA-FRET for stably interacting bZIP heterodimers (PPI:

Kd <1 mM at 21˚C), and the corresponding homodimers (Figure 3C). Consistent with CSI analysis, 52

out of 56 bZIP pairs that form stable heterodimers bound the DNA site made by conjoining the half-

site preferred by each monomer. Specific binding to conjoined sites was also detected for 6 out of

27 (22%) pairs that do not stably associate in the absence of DNA (PPI: Kd >1 mM at 21˚C). This frac-
tion is similar to the 20% of bZIP pairs (29 out of 144) that showed sequence-specific DNA binding

in SELEX-seq experiments despite their apparent inability to dimerize in the absence of DNA.

ATF3: a case study of the influence of interacting partners on
heterodimer cognate site preferences
Activating Transcription Factor 3 (ATF3) is a member of the CREB/ATF family. Initially identified as a

suppressor of inflammation and the adaptive immune response in resting cells, ATF3 is now associ-

ated with numerous diseases including a variety of aggressive and widely occurring cancers

(Tanaka et al., 2011; Thompson et al., 2009; Yin et al., 2008). ATF3 is able to interact with a large

variety of TFs to function as a regulatory hub of cellular adaptive response (Gilchrist et al., 2006;

Hai et al., 1999, 2010). As a homodimer, ATF binds to CRE sites and represses a wide array of

genes (Hai et al., 1999, 2010). However, as a heterodimer with JUN or JUND, ATF3 activates tran-

scription of targeted genes (Chu et al., 1994; Filén et al., 2010; Hsu et al., 1992).

To test the hypothesis that heterodimerization with other bZIPs might alter DNA-binding specific-

ity and possibly genomic targets, we analyzed SELEX-seq for 20 different ATF3 heterodimers span-

ning the full range of PPI affinities. DNA-binding specificities could be assigned with high confidence

to nine heterodimers that displayed a range of DNA sequence preferences, including affinity for the

CRE site preferred by the homodimer (Figures 4A and B). Importantly, distinct DNA-binding prefer-

ences among ATF3.CEBP and ATF3.BATF heterodimers and their corresponding homodimers were

detected. The motifs enriched by the ATF3 homo- and heterodimers can be described in five broad

categories: CRE, TRE, CRE-CAAT, CRE-L, and the emergent 50TGACGCAT3
0

site (Figure 4B). Scatter

plots illustrate instances where the CSI intensities of ATF3 heterodimers differ markedly from those

of the parent homodimers (Figure 4C and D). For example, as evident from high CSI intensities,

CRE-CAAT sites (red) are preferably bound by ATF3.CEBPG as compared to ATF3 or CEBPG

(Figure 4C, top panel). Similarly, scores for TRE (green) and 50TGACGCA30 (black) are higher for

JUN.ATF3 than for JUN or ATF3 (Figure 4C, middle panel). BATF3.ATF3 (Figure 4C, bottom panel)

and BATF2.ATF3 (Figure 4D, top panel) enrich CRE-L sites (blue), further supporting that CRE-L is

an emergent site for BATF family heterodimers (also with JUN in Figure 3C). Figure 4D further high-

lights the differences between CRE and TRE binding by ATF3 in its homo versus heterodimer state.

An important and recurring observation is that several ATF3 heterodimers (BATF3.ATF3, JUN.ATF3,

and JUNB.ATF3) can associate with the CRE site that is bound by the ATF3 homodimer (Figure 4).

Figure 3 continued

oligomer bound by each dimer. The PPI strength of each dimer is indicated with gray-scale circles sized according to the Kd for a given protein-protein

interaction. Homodimers are marked with an asterisk (*). (C) EMSA-FRET results for bZIP dimers tested for binding to DNA sites composed of conjoined

half-sites. Left, dimers tested against two different sites composed of conjoined half-sites. Right, dimers tested against a single site. Data are displayed

as in B.

DOI: 10.7554/eLife.19272.012

The following figure supplements are available for figure 3:

Figure supplement 1. Influence of bZIP protein dimerization on DNA binding.

DOI: 10.7554/eLife.19272.013

Figure supplement 2. Heterospecific binding of DNA.

DOI: 10.7554/eLife.19272.014
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Heterodimer sites enriched in SELEX-seq map to occupied genomic loci
in vivo
To determine the extent to which cognate sites identified by SELEX-seq can explain genome-wide

occupancy in cells, we examined ChIP-seq data for ATF3 in four different human cell lines. H1 human

embryonic stem cells, HEPG2 liver-derived hepatocellular carcinoma cells, and K562 erythroblastoma

cells have been examined comprehensively (Encode, 2011). The fourth cell line, GBM1 from Glio-

blastoma multiforme, is an aggressive brain cancer, wherein ATF3 is a tumor suppressor and its loss

of function is indicative of high-grade cancer and poor prognosis (Gargiulo et al., 2013). As a first
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DOI: 10.7554/eLife.19272.015
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step, we identified ATF3 ChIP-seq peaks and examined the overlap between the genomic sites occu-

pied by ATF3 in all four lines. Only a small number of sites (119) were common between the four cell

lines, although the number increased to 1602 genomic loci if only the ENCODE cells lines (H1, K562,

and HEPG2) were examined (Figure 5A). This is a minor fraction of the over 10,000 peaks identified

in K562 and about a third of the 4808 ATF3-bound sites in H1 cells.

A 

H1 K562 HEPG2 

C GBM1 

K562H1

HEPG2 GBM1

0.5

0

1

FPR

0.5

0

1

FPR

B 

FDR 
(q-val)GO Biological Process

810

78

8542

253

14

119

89

980

1707

72
105 1602

326

5843

936

T

A
G

1
C0

1

2

b
it
s

0

1

2

b
it
s

C
G
A

2
T

3
T

G
4
A

5
G
T

6

G
7

T
A
C

8
A

9

A
10
T

C
G
A

1
T

2
T
G

3
A

4
C
A
G

5
T

6

C
7
A

8

C

T

G

9

A

G

T

11

C

leukocyte activation involved in immune response

cytoskeleton-dependent intracellular transport

response to nutrient levels

9 e-4

6 e-3

2 e-2

4 e-2

4 e-5

2 e-2

3 e-2

5 e-2

5 e-2

1 e-2

microtubule-based transport

JAK-STAT cascade

myeloid cell activation involved in immune response

cellular response to nutrient levels

regulation of cell junction assembly

PDGF receptor signaling pathway

regulation of smooth muscle contraction

A
T

F
3

J
U

N
B

•A
T

F
3

J
U

N
•A

T
F

3

F
O

S
•A

T
F

3

F
O

S
L

1
•A

T
F

3

A
T

F
3

•C
E

B
P

G

A
T

F
3

•C
E

B
P

A

B
A

T
F

•A
T

F
3

B
A

T
F

2
•A

T
F

3

B
A

T
F

3
•A

T
F

3

A
T

F
3

J
U

N
B

•A
T

F
3

J
U

N
•A

T
F

3

F
O

S
•A

T
F

3

F
O

S
L

1
•A

T
F

3

A
T

F
3

•C
E

B
P

G A
P

B
E

C•
3

F
T

A

B
A

T
F

•A
T

F
3

B
A

T
F

2
•A

T
F

3

B
A

T
F

3
•A

T
F

3

A
T

F
3

J
U

N
B

•A
T

F
3

J
U

N
•A

T
F

3

F
O

S
•A

T
F

3

F
O

S
L

1
•A

T
F

3

A
T

F
3

•C
E

B
P

G A
P

B
E

C•
3

F
T

A

B
A

T
F

•A
T

F
3

B
A

T
F

2
•A

T
F

3

B
A

T
F

3
•A

T
F

3

A
T

F
3

J
U

N
B

•A
T

F
3

J
U

N
•A

T
F

3

F
O

S
•A

T
F

3

F
O

S
L

1
•A

T
F

3

A
T

F
3

•C
E

B
P

G A
P

B
E

C•
3

F
T

A

B
A

T
F

•A
T

F
3

B
A

T
F

2
•A

T
F

3

B
A

T
F

3
•A

T
F

3

Figure 5. ATF3 binds to different genomic regions using diverse motifs. (A) Venn diagram of the numbers of

ATF3-bound regions determined by ChIP-seq in different cell lines. (B) Heatmap of the False Positive Rate (FPR)-

cutoffs at which ATF3 ChIP-seq peaks (rows) are detected as positive for ATF3 or ATF3-dimer binding. Peaks were

scored using CSI intensities of the ATF3 homodimer or ATF3-containing heterodimers (columns) in H1hESCs,

K562, and HEPG2 cells, and clustered by FPR-cutoffs across all dimers. (C) Same as (B) for the glioblastoma

multiforme (GBM1) cell line. Highlighted clusters (blue and green) contain DNA motifs preferred by different ATF3

dimers and are enriched with different Gene Ontology Biological Process terms. False Discovery Rates (q-values)

for each GO term are shown. See Supplementary file 1H.

DOI: 10.7554/eLife.19272.016

The following figure supplement is available for figure 5:

Figure supplement 1. ROC curves.

DOI: 10.7554/eLife.19272.017

Rodrı́guez-Martı́nez et al. eLife 2017;6:e19272. DOI: 10.7554/eLife.19272 13 of 29

Research article Computational and Systems Biology Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.19272.016
http://dx.doi.org/10.7554/eLife.19272.017
http://dx.doi.org/10.7554/eLife.19272


ATF3 ChIP-seq peaks likely include both homodimer and heterodimer bound regions. To assess

how well the in vitro discovered cognate sites explain bound sites in a cellular context, we used area

under the curve-receiver operating characteristic (AUC-ROC) values, plotting the true-positive rate

(TPR) versus false-positive rate (FPR) for peak detection (Materials and methods). ATF3 homodimer

sites spanning the entire spectrum of CSI intensities (z-scores) yielded 0.67–0.77 AUC values

(Supplementary file 1E and Figure 5—figure supplement 1). Using the AUC-ROC approach, we

examined the ability of CSI profiles of nine different ATF3 heterodimers as well as the ATF3 homo-

dimer to identify ATF3 ChIP-seq peaks that might represent heterodimer-bound regions. We used

published RNA-seq datasets to verify the expression of the bZIP genes used for the ATF3 hetero-

dimer analysis (Supplementary file 1F) (Encode, 2011; Gargiulo et al., 2013). Each of the 10 CSI

datasets captures a large but varying fraction of the ATF3 peaks and, intriguingly, these data reveal

that different ATF3 heterodimers perform better in different cell lines (Supplementary file 1E). For

example, JUN.ATF3 gives 0.85 AUC in the Glioblastoma line, whereas BATF3.ATF3 better explains

the ChIP-seq peaks in H1 and HepG2 cells with AUC of 0.69 and 0.70, respectively. While AUC-ROC

curves are not robust to subtle changes, the differences we observe may reflect underlying cell line

specific differences in the abundance and regulatory roles of different ATF3 heterodimers. The

underlying epigenetic landscapes would further exacerbate these differences. Nevertheless, when

considered together, the ATF3 homodimer combined with nine different heterodimers can account

for a much larger fraction of ChIP-seq peaks than can the homodimer alone. For example, at an

FPR-cutoff of 0.10, in the Glioblastoma cell line, the ATF3 homodimer classified just 39% of the

ATF3 ChIP-seq peaks as positive, whereas 85% of the peaks are classified positive by at least one of

the ATF3-containing dimers at FPR 0.10. Similar analysis for other cell lines and at different FPR cut-

offs is reported in Supplementary file 1G.

Given the cell-type-specific differences in genomic sites occupied by ATF3, we scored the ATF3-

bound loci for each cell line using the CSI data for 10 ATF3 dimers. Peaks were then clustered based

on the FPR-cutoffs for each bound region (Figure 5B–C and Materials and methods). All four cell

lines show clear clusters of sites where one or more heterodimer detects a peak at a lower FPR com-

pared to the ATF3 homodimer. Several such clusters are apparent for heterodimers with CEBP or

BATF family members. A striking result that emerged from the analysis of the GBM1 cell line is that

multiple ATF3-bound genomic loci were better described by ATF3-heterodimers than the homo-

dimer. For GBM1, we further examined two clusters of ChIP peaks for which heterodimers scored

better than the ATF3 homodimer (Figure 5C, blue and green clusters in the dendrogram). In the

blue cluster, de novo motif discovery revealed enrichment of a CRE-CAAT motif, which is the motif

with maximal CSI intensities for CEBP.ATF3 dimers. De novo motif search of ChIP-seq peaks in the

green cluster identified the TRE motif, which is the top ranked motif for ATF3 heterodimers formed

with JUNB, JUN, FOS, and FOSL1, all of which are expressed in GBM1 cells (Supplementary file

1F). This is in contrast to the CRE motif preferred by the ATF3 homodimer. Gene ontology func-

tional annotations of genes linked to the CRE-CAAT (blue) and TRE (green) clusters also differ sub-

stantially (Figure 5C and Supplementary file 1H). CRE-CAAT sites preferred by ATF3.CEBP

heterodimers (blue cluster) enriched for gene ontology (GO) terms related to immune response and

JAK-STAT signaling, whereas TRE sites (green cluster) enriched for GO terms associated to nutrient

sensing, PDGF signaling, and cell junction regulation. This observation lends support to the notion

that heterodimers drive cell-type and signal-specific gene networks.

Co-occupied genomic loci bear emergent and conjoined sites
Sharpening our focus to a subset of genomic loci that are co-occupied by ATF3 and another bZIP

permitted us to examine whether heterodimer cognate sites were evident at co-occupied genomic

loci. In Tier 1 ENCODE cell lines such as H1 and K562, occupancy of multiple TFs has been charted

across the genome (Dunham et al., 2012). We first examined loci co-occupied by ATF3 and CEBPB

or JUN. In H1 embryonic stem cells, we identified a region on chromosome I that shows overlapping

ChIP peaks for ATF3 and CEBPB (Figure 6A, top panel). This locus is also resistant to DNAse I, sug-

gesting that ATF3 and CEBPB are binding to a seemingly inaccessible part of the genome. Plotting

CSI intensities for a given TF across the genome generates CSI-Genomescapes (Figure 6A–B, bot-

tom panels; Materials and methods). CSI-Genomescapes in the co-occupied region identified a high-

intensity site for the ATF3.CEBPA heterodimer, whereas no high-intensity sequences were found for

ATF3 or CEBPA homodimers (Figure 6A). CEBPA is the closest homolog to CEBPB for which CSI
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Figure 6. bZIP heterodimer DNA sites are bound in vivo. (A) ChIP-seq traces for ATF3 (blue) and CEBPB (orange)

and DNase I hypersensitivity (black) trace for in H1 human embryonic stem cells. Below, CSI-Genomescape for

bound genomic regions for ATF3 and CEBPA homodimers and ATF3.CEPBA heterodimer. CEBPA and CEBPB

share 76% identity over their bZIP domain. (B) ChIP-seq traces for ATF3 (blue) and JUN (green) and DNAse I

hypersensitivity trace (black) in K562 cells. Below, CSI-Genomescape for bound genomic region for ATF3 and JUN

homodimers, and for JUN.ATF3 heterodimer. (C) Venn diagram of bound regions (ChIP-seq peaks) for ATF3 and

CEBPB in H1hESC and for (D) ATF3 and JUN in K562 cells. (E) Violin plots of CSI-seq scores for the ChIP-seq

peaks derived from the intersection of ATF3 and CEBPB ChIP peaks (1018 overlapping peaks) in H1 stem cells

using in vitro data for ATF3, CEBPA, CEBPB (from Jolma et al.) (Jolma et al., 2013), CEBPE, CEBPG homodimers

Figure 6 continued on next page
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data were obtained. Similar CSI-Genomescape analysis of a locus with overlapping ATF3 and JUN

peaks readily identified the JUN.ATF3 emergent site (5
0

TGACGCAT3
0

). This site is within DNase I

accessible euchromatin, and CSI-Genomescapes provide scant support for either JUN or ATF3

homodimer binding to this site (Figure 6B).

Next, we identified genomic loci that are co-occupied by ATF3 and CEBPB in H1 (1018 overlap-

ping ChIP peaks) or ATF3 and JUN in K562 cells (6539 overlapping ChIP peaks; Figure 6C–D). We

then used CSI data of different homo- and heterodimers to assign CSI scores within these co-occu-

pied regions. Violin plots clearly demonstrate that regions co-occupied by ATF3 and CEBPB have

higher CSI intensities when scored with ATF3.CEBP heterodimers than when scored with ATF3 and

CEBP homodimers (Figure 6E and Figure 6—figure supplement 1). In contrast, for loci co-occupied

by JUN and ATF3, violin plots indicate that cognate sites for JUN.ATF3 heterodimer perform only

marginally better at explaining the genomic binding data than sites preferred by JUN or ATF3

homodimers (Figure 6F, left panel). This observation is consistent with the ability of the JUN.ATF3

heterodimer to bind consensus CRE sites that are also bound by each contributing homodimer. The

perceptibly higher CSI intensity when using JUN.ATF3 cognate sites might arise from heterodimer-

preferred TRE sites or heterodimer-specific emergent sites. To examine this possibility, we utilized

CSI-Genomescapes to score all co-occupied regions that include emergent heterodimer-specific
50TGACGCAT3

0

sites (39 sites). When this subset of genomic regions was examined with homodimer

CSI data, the violin plots reveal the inability of ATF3 homodimer cognate sites to account for the

ChIP signals, whereas JUN homodimers account for some of the JUN occupancy at those regions

(Figure 6F, right panel). In contrast, the ATF3.JUN heterodimer cognate sites showed the highest

scores for the emergent site.

Heterodimer-specific cognate sites map to SNPs associated with
diseases
Armed with 102 CSI profiles of bZIP dimers, we scrutinized 5076 non-coding single-nucleotide poly-

morphisms (SNPs) that are associated with diseases and quantitative traits (Maurano et al., 2012).

We reasoned that non-coding SNPs that are not assigned to known TF cognate sites might be

explained with our compendium of new bZIP-DNA interactomes. As a first step, we calibrated our

CSI data by examining SNPs that are known to alter binding by CREB1 and CEBPA (Figure 7A top

panel and Figure 7—figure supplement 1A). The minor allele of rs10993994 in the promoter of the

MSMB gene has been associated with prostate cancer and it creates a cognate site that is bound by

CREB1 (Lou et al., 2009). Similarly, the minor allele of rs12740374 has been associated with myocar-

dial infarction, aberrant plasma levels of low-density lipoprotein cholesterol (LDL-C), and enhanced

expression of SORT1 gene in the liver (Musunuru et al., 2010). Biochemical studies have demon-

strated that the G-to-T change generates an optimal CAAT site that is bound by CEBPA. We applied

CSI-Genomescape analysis to both SNPs. In both cases, the minor allele has a higher CSI intensity

than the corresponding major allele, suggesting that the minor alleles of these SNPs create CEBPA-

and CREB1-binding sites (Figure 7A and Figure 7—figure supplement 1). The CSI-Genomescape

for rs7631605 site is particularly interesting because it predicts disruption of the emergent site
50TGACGCAT3

0

(Figure 7A middle panel). This allele is associated to Alzheimer’s disease and mild

cognitive impairment (MCI) and elevated levels of phosphorylated Tau-181P (Han et al., 2010).

Additionally, CSI-Genomescape predicts that rs1869901, a variant associated with schizophrenia,

impacts binding of FOS.CEBPE by altering a TRE-CAAT site (Figure 7A bottom panel).

Figure 6 continued

and ATF3.CEBPA, ATF3.CEBPE, and ATF3.CEBPG heterodimers. CSI intensities were quantile normalized. (F)

Violin plots of CSI-seq scores for the ChIP-seq peaks derived from the intersection of ATF3 and JUN ChIP peaks

(left, 6539 overlapping peaks) in K562 cells, left. Violin plots for the subset of overlapping peaks of ATF3 and JUN

containing a match for the heterodimer-specific site TGACGCAT (39 peaks), right. Peaks were scored using ATF3

and JUN homodimers, and JUN.ATF3 heterodimers.

DOI: 10.7554/eLife.19272.018

The following figure supplement is available for figure 6:

Figure supplement 1. CSI intensities for bound genomic regions.

DOI: 10.7554/eLife.19272.019
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Figure 7. bZIP heterodimers and human diseases and traits. (A) CSI-Genomescape predicts increased binding by

CREB1 to the alternate allele of rs10993994 and decreased binding to alternate alleles of rs7631605 and rs1869901

by JUN.ATF3 and FOS.CEBPE heterodimers, respectively. (B) Scatterplot of FOS.JUN predicted CSI intensities for

reference and alternative alleles of 5076 autosomal SNPs linked to human diseases and quantitative traits

Figure 7 continued on next page
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A scatterplot of CSI intensity scores for FOS.JUN (AP-1) for reference (hg19) or alternate alleles

reveals SNPs that create or disrupt binding sites (Figure 7B). The plot shows that nearly all the 5076

SNPs are near the origin and do not lead to large differences in CSI scores for the FOS.JUN hetero-

dimer. However, a striking example of predicted increase in binding is rs3758354, a SNP associated

with schizophrenia, depression, and bipolar disorder (Huang et al., 2010). In contrast, a decrease in

FOS.JUN heterodimer binding is predicted for rs17293632, a variant linked to Crohn’s autoimmune

disorder (Franke et al., 2010). ChIP-seq studies in several cell lines examined by the ENCODE con-

sortium have shown binding by FOS and JUN to both loci, providing support that these sites are

accessed by bZIP proteins in a cellular context (Figure 7—figure supplement 1B).

Extending beyond AP-1, we used 102 bZIP CSI profiles to score both alleles of the 5076 SNPs

and calculated a predicted fold-change in CSI intensity, which correlates with binding affinity (Fig-

ure 1—figure supplement 2) (Carlson et al., 2010; Puckett et al., 2007). Similar correlations also

hold true for other high-throughput platforms (Berger et al., 2006; Fordyce et al., 2010;

Slattery et al., 2011). We added a noise factor to our scoring function to make the fold-change pre-

dictions less sensitive to low CSI intensities (Figure 7C; Materials and methods). A total of 156 SNPs

yielded a greater than twofold difference in CSI intensity between the reference and alternate alleles

(Figure 7C–D). Displaying the predicted increase (blue) or decrease (red) in binding by 102 bZIP

dimers at 156 SNPs reveals minor alleles that are targeted by unique heterodimers as well as muta-

tions that have wide-ranging impacts on multiple bZIP dimers. For example, rs10994336 is predicted

to increase CSI intensity by at least twofold for 44 out of 102 bZIP pairs reported here. We also

report that 80% of the identified changes impact bZIP heterodimers. In the richly annotated Regulo-

meDB database that ties SNP impact to occurrence of TF-binding sites, only 20 of 156 SNPs are cur-

rently annotated with a bZIP motif (Boyle et al., 2012). It is particularly important to note that many

of the SNPs in the database are annotated with PWMs derived from bZIP homodimers, whereas our

CSI intensity fold-change predictions for 22 homo- and 80 bZIP heterodimers make use of the entire

bZIP-DNA interactomes (all 10-mers). The clusters in Figure 7D also point to potential roles of bZIP

proteins in less understood diseases and provide new hypotheses for the etiology of such diseases

and traits.

Discussion
Transcription factors rarely function alone, different TFs are activated by different cellular stimuli,

and specific combinations of TFs converge at specific genomic loci to regulate expression of genes

(Ptashne and Gann, 2002). Such combinatorial control provides the means to integrate multiple sig-

nals and tune the expression of specific genes or sculpt genome-wide transcriptomes in a nuanced

manner. The ability of different TFs to form hetero-oligomers via PPI and protein-DNA interaction is

an essential feature of this process. While most eukaryotic TFs can bind DNA as monomers, the bZIP

class of TFs only binds DNA as homo- or heterodimers. The ability of bZIPs to form heterodimers

Figure 7 continued

identified in genome-wide association studies. SNPs and disease/traits classifications are from Maurano et al.

(Maurano et al., 2012). (C) (left) Number of SNPs predicted to increase or decrease bZIP binding by twofold at

different stringency levels determined by noise factor F (see Materials and methods). The F values at which a

twofold difference in CSI score is predicted for rs12740374 (#) and rs10993994 (*) are indicated in red. (right)

Distribution of predicted fold changes in bZIP binding for GWAS SNPs using CSI Intensities, using F = 25. Dashed

lines mark a twofold change. Red lines indicate the predicted change in binding of CREB1 and CEBPA to

rs10993994 (*) and rs12740374 (#). (D) Predicted fold-change in CSI score of sequences centered at SNPs linked to

disease or quantitative traits. A total of 156 SNPs have a predicted increase (red) or decrease (blue) of �2 fold in

CSI score for at least one bZIP dimer, when F = 25 (Materials and methods and Supplementary file 1I). Fold-

changes are relative to the reference genome hg19. Rows (SNPs) are organized by class of disease/trait. Columns

(bZIP dimers) are clustered by DNA specificity as in Figure 1.

DOI: 10.7554/eLife.19272.020

The following figure supplement is available for figure 7:

Figure supplement 1. Genomescapes, transcription factor binding, and chromatin environment for selected

SNPs.

DOI: 10.7554/eLife.19272.021
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appears to increase with increasing evolutionary complexity, with human bZIPs displaying more intri-

cate heterodimerization networks than C. elegans and D. melanogaster, which in turn, exhibit more

complex dimerization networks than S. cerevisiae (Reinke et al., 2013). Comprehensive PPI analysis

has shown that 36 human bZIP monomers can form nearly 217 heterodimers, greatly expanding the

repertoire of factors that can potentially bind DNA (Reinke et al., 2013). We demonstrate that this

diversity of dimers expands the DNA sequence space that can be targeted by bZIPs. Our study fur-

ther reveals that nearly 20% of the non-interacting bZIP pairs examined can be induced to dimerize

at cognate DNA sites, providing yet greater diversity from a modest number of contributing

monomers.

Given the large repertoire of human bZIP heterodimers, this family of TFs is particularly amenable

to effect combinatorial control. Indeed, this potential was recognized long ago (Bohmann et al.,

1987; Franza et al., 1988; Lamb and McKnight, 1991). An ever-increasing body of evidence now

implicates bZIPs in numerous aspects of cellular and organismal function. Given their importance, a

systematic study of DNA binding by bZIP heterodimers is clearly essential to understanding their

functions. However, despite large surveys charting the TF-DNA interactomes (Badis et al., 2009,

2008; Berger et al., 2008; Carlson et al., 2010; Fordyce et al., 2010; Franco-Zorrilla et al., 2014;

Grove et al., 2009; Jolma et al., 2010, 2013; Kamesh et al., 2015; Nitta et al., 2015;

Noyes et al., 2008; Siggers et al., 2012; Wei et al., 2010; Weirauch et al., 2014), bZIP dimers

were under-scrutinized with only a handful of heterodimers reported thus far (Cohen et al., 2015;

Jolma et al., 2015; Mann et al., 2013). Thus, it was quite unclear prior to this work how dimeriza-

tion between different bZIP partners would impact DNA recognition. The DNA-binding profiles for

80 heterodimers, which we report alongside equivalent data for 22 homodimers, is the largest bZIP

heterodimer DNA-binding data reported to date and provides unprecedented insight into the

impact of heterodimer formation.

Guided by PPI data, we examined the DNA-binding specificities of 126 stable dimers and 144

bZIP dimers that display no dimerization even at 1 mM. These 270 bZIP pairs represent a wide survey

of the 666 potential pairs that can be formed by 36 monomers. The bZIP-DNA interactomes and

specificity landscapes that emerged revealed three classes of cognate sites and several heterodimers

displayed an ability to interact with more than one class of binding site. Of the three classes, con-

joined half-sites were the most abundant, with nearly 72% of all heterodimers displaying some affin-

ity for such sites. The second class contained variably-spaced half-sites, often overlapping by a

single nucleotide. The final class, comprising 16% of the sites, was the least expected ‘emergent’

class of binding sites, where new non-obvious preferences for half-sites were revealed. Emergent

sites targeted by heterodimers fall into ‘loss of specificity’ or ‘gain of specificity’ categories, as

defined above. EMSA-FRET analyses not only quantified the relative affinities of hetero- and homo-

dimers for these sites but also revealed the widespread ability of heterodimers to associate with

cognate sites that have typically assumed to be bound by homodimers. More closely examining the

emergent site targeted by ATF3.JUN, we find its occurrence at multiple locations across the human

genome and, more importantly, several of these sites are co-occupied by ATF3 and JUN in vivo. Fur-

ther emphasizing a physiological role for these non-obvious binding sites, a SNP that disrupts this

site is linked to neurological diseases (Han et al., 2010).

The high granularity of our CSI data also revealed that sequences flanking well-studied homo-

dimer motifs, such as CRE, can impart sub-structure to the motif that is recognized and preferentially

bound by different bZIP pairs. Access to such nuanced specificity preferences allows better annota-

tion of genome-wide binding data for bZIPs for which specificity profiles and high-quality ChIP data

exist. This is particularly relevant because it is not uncommon for ChIP or genomic DNase I footprint-

ing experiments to identify TF-bound regions that lack matches to the consensus motifs for a given

TF. Our results suggest that a fraction of such in vivo occupied regions likely contain heterodimer

binding sites. Another important insight from our comparative analysis of genome-wide binding pro-

files across four cell types is that a given heterodimer associates with distinct set of genomic loci in

each cell type. The results suggest that underlying chromatin and epigenetic landscapes in different

cell types may contribute significantly to the sites that are accessed by bZIP dimers. In this context,

the ability of ATF3.CEBPB to bind a cognate site within seemingly closed chromatin is consistent

with the ability of bZIPs such as CEBPB and FOS.JUN to function as ‘pioneer’ factors that first associ-

ate with closed chromatin and enable binding of additional TFs to yield transcriptionally active

euchromatin (Biddie et al., 2011; Garber et al., 2012). Whether the ability to bind just one half site
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is important, or whether DNA-templated dimerization of bZIPs confers any added ability to bind an

otherwise inaccessible enhancer in closed chromatin, remains to be determined.

Finally, the specificity and binding energy profiles of 102 bZIP dimers enables a more nuanced

examination of SNPs that have been linked by genome-wide association studies to various diseases

and quantitative traits. The vast majority of SNPs associated with diseases occur in non-coding

regions of the genome and most are not readily annotated by the available TF-DNA interactomes

perhaps in part because the focus has been on obtaining consensus motifs of monomeric or homodi-

meric TFs. Rather than consensus motifs, the use of the full spectrum of binding specificity may

enable more accurate mapping of TF-binding sites onto SNPs that are linked to diseases and pheno-

typic traits. Our compendium of CSI profiles accurately predicted creation of known bZIP cognate

sites by previously validated SNPs. Of the 156 SNPs predicted by our CSI profiles to impact bZIP

binding, nearly 77% were mapped to bZIP heterodimers, highlighting the importance of determining

protein-DNA interactomes for heterodimer TFs. Nearly 64% created bZIP binding sites and were

‘gain of function’ changes relative to the human reference genome. These results are consistent with

the 10-fold greater abundance of bZIP heterodimers over homodimers and the observation that

aberrant stimulation of gene networks is arguably a greater contributor to disease etiology

(Bell et al., 2015; Lee and Young, 2013; Mansour et al., 2014). SNPs that disrupt binding also con-

tribute to disease, an example of this form of regulatory perturbation being the loss of the emergent

JUN.ATF3-binding site that is associated with Alzheimer’s and other neurological, cognitive and

behavioral disorders. Our bZIP-DNA interactomes identify 156 SNPs that potentially impact 646

bZIP binding events, any one of these could potentially contribute to the associated ailments. Not

only do our data help better annotate the genome, they also serve as an invaluable resource to gen-

erate hypotheses on how genetic variants may contribute to the etiology of a range of diseases.

The recent emergence of powerful high-throughput platforms for mapping protein-DNA interac-

tomes has brought the goal of comprehensively mapping the binding specificities of all individual

human TFs within reach (Carlson et al., 2010; Jolma et al., 2013; Stormo and Zhao, 2010;

Weirauch et al., 2014). However, it is clear from our work as well as the recent work of others that

the binding of TFs to each other, and/or to adjacent DNA sites, can influence binding specificity pro-

files in important ways (Ansari and Peterson-Kaufman, 2011; Garvie et al., 2001; Grove et al.,

2009; Jolma et al., 2015; Mann et al., 2013; Siggers et al., 2012; Slattery et al., 2011). Our study

heralds the important next wave of specificity mapping, in which the field will tackle the effects of

higher order interactions and begin to relate these to the transcriptional control of key biological

processes.

Materials and methods

bZIP cloning, expression, and labeling
Human bZIP proteins containing the basic-region and coiled-coiled domains with an N-terminal 6x

His tag and a C-terminal intein-chitin binding domain were expressed as described previously

(Reinke et al., 2013). Sequences are in Supplementary file 1A. Briefly, Escherichia coli RP3098 cells

transformed with bZIP clones were grown in 0.5 L LB cultures at 37˚C to OD600 = 0.4–0.8. Expres-

sion was induced with the addition of 0.5 mM IPTG (Isopropyl b-D-thiogalactopyranoside) and cul-

tures incubated for 3–4 hr at which point cells were pelleted. Cells pellets were resuspended in 20

mM HEPES pH 8.0, 500 mM NaCl, 2 mM EDTA (ethylenediaminetetraacetic acid), 1 M guanidine-

HCl, 0.2 mM PMSF (phenylmethylsulfonyl fluoride), and 0.1% Trition X-100). Cells were then soni-

cated and the lysate poured over a column of 1 ml chitin beads to bind the protein (NEB, Ipswich,

MA). The column was then washed and equilibrated in EPL buffer (50 mM HEPES pH 8.0, 500 mM

NaCl, 200 mM MESNA (2-mercaptoethanesulfonic acid), 1 M guanidine-HCl). The bZIP domain was

then cleaved from the intein and labeled with biotin on the C-terminus by incubation for at least 16

hr in 1 ml EPL buffer containing 1 mg/ml cysteine-lysine-biotin peptide (CELTEK Peptides, Nashville,

TN). The cleaved and biotin-labeled proteins were then eluted from the column using EPL buffer

without MESNA and then diluted fivefold into denaturing buffer (6 M guanidine-HCl, 5 mM imidaz-

ole, 0.5 M NaCl, 20 mM TRIS, 1 mM (DTT) Dithiothreitol, pH 7.9) and bound to a column containing

1 ML Ni-NTA beads (QIAGEN, Hilden, Germany). Columns were washed and proteins eluted with

60% ACN (Acetonitrile)/0.1% TFA (Trifluoroacetic acid). The labeled proteins were then lyophilized,
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resuspended, and desalted using spin-columns (Bio-Rad, Hercules, CA). Proteins were stored in 10

mM potassium phosphate pH 4.5 at �80˚C. Peptide concentrations were determined by measuring

absorbance at 280 nM in 6 M guanidine-HCl/100 mM sodium phosphate pH 7.4. The fluorescein and

TAMRA-labeled proteins used in gel-shift assays were generated as described previously

(Reinke et al., 2013).

Cognate site identification by HT-SELEX
Cognate-binding sites for bZIP homo- and heterodimers were determined by SELEX-seq

(Jolma et al., 2010; Tietjen et al., 2011; Zhao et al., 2009; Zykovich et al., 2009). A DNA library

(Integrated DNA Technologies, Inc.) with a central randomized 20 bp region (1012 possible sequen-

ces), flanked by constant sequences used for amplification was used (Supplementary file 1B). In

vitro selections were performed as follows. For bZIP homodimers, purified, C-terminal biotinylated-

bZIP proteins (50 nM) were added to 100 nM of DNA library (Binding buffer: 1x PBS (10 mM PO4
3-,

137 mM NaCl, 2.7 mM KCl), pH 7.6, 2.5 mM DTT, 50 ng/ml poly dI-dC, 0.1% BSA) and incubated at

room temperature for 1 hr. The DNA library concentration and volume (20 ml) were such that there

was a high probability of sampling at least one copy of every 20-mer sequence (1012 permutations).

bZIP-DNA complexes were enriched with streptavidin-coated magnetic beads (Dynabeads,

Invitrogen, Carlsbad, CA) following the manufacturer’s protocol. After pull-down, three quick washes

with 100 ml ice-cold binding buffer were performed to remove unbound DNA. Beads were resus-

pended in a PCR master mix (EconoTaq PLUS 2X Master Mix, Lucigen) and the DNA was amplified

for 15 cycles. Amplified DNA was column purified (QIAGEN), quantified by absorbance at 260 nm,

and used for subsequent binding rounds. Three rounds of selection were performed. For bZIP heter-

odimers, one bZIP partner had a C-terminal biotin tag. bZIP-DNA complexes were pulled down with

streptavidin-coated magnetic beads. Several steps were followed to decrease DNA binding by com-

peting homodimers: (1) a 1:3 molar ratio with an excess of the non-biotinylated bZIP was used to

shift the thermodynamic equilibrium from the biotin-labeled homodimer; (2) the biotin-bZIP used for

pull-down was chosen as the more weakly interacting homodimer of the two interaction partners. As

a convention, when naming bZIP heterodimers, the bZIP-biotin is listed first, unless otherwise stated.

After three rounds of selection, an additional PCR was done to incorporate Illumina sequencing

adapters and a unique 6 bp barcode for multiplexing. The starting library (Round 0) was also bar-

coded. Up to 180 samples were combined and sequenced in a single Illumina GAIIx or HiSeq2000

lane.

Sequencing data analysis
Illumina sequencing yielded ~180 million reads per lane. Reads were de-multiplexed by requiring an

exact match to the 6 bp barcode and truncated to include only the 20 bp derived from the random

portion of the library. On average, we obtained 850,000 reads per barcode. The occurrence of every

k-mer (lengths 8 through 14 bp) was counted using a sliding window of size k. To correct for biases

in our starting DNA library, we took the ratio of the counts of every k-mer to the expected number

of counts in the starting library. The starting library was modeled using a fifth-order Markov Model

derived from the sequencing reads corresponding to the starting library (Round 0) (Slattery et al.,

2011). We then calculated a CSI intensity (z-score = (x – m)/ s) for each k-mer, using the distribution

of k-mer enrichment values for that dimer. The most enriched 10, 12, and 14 bp subsequences were

used to derive PWM motifs using MEME. Samples that failed to enrich specific sequences relative to

the starting library (Round 0) or that only enriched low-complexity sequences were not included in

further analysis. Data files for 20 bp reads and normalized 10 bp sequences are available at https://

ansarilab.biochem.wisc.edu/computation.html.

Previously reported bZIP-DNA interaction data were downloaded from study PRJEB3289 in the

European Nucleotide Archive (http://www.ebi.ac.uk/ena/data/view/PRJEB3289) (Jolma et al., 2013).

20 bp reads for bZIP proteins and their corresponding 20 bp DNA library (round 0) were analyzed as

described previously.

Homodimer and heterodimer clustering
Binding profiles were defined for each bZIP pair using the CSI intensities (z-scores) of 1222 unique

10-mer sequences. This set of 10-mers is composed of the 50 highest-scoring sequences for each
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dimer. Unsupervised hierarchical clustering of pair-wise binding profile similarities, assessed by Pear-

son’s correlation coefficient r, was done using R. Dendrograms and heatmaps were generated using

the heatmap.2 function in the gplots R-package. Heterodimers were labeled as such if the bZIP-

DNA complex was pulled-down by a biotinylated bZIP that does not binds DNA as a homodimer in

our experimental conditions. If the bZIP used for pull-down of the bZIP heterodimer also bound

DNA as a homodimer, the observed DNA specificity was assigned to the heterodimer only if the het-

erodimer specificity landscape was different (t-test p<0.05) from the homodimer specificity, assessed

by correlation scores (Figure 1—figure supplement 4).

Sequence logos
PWMs were derived from the 1000 most enriched 12-mer sequences (ranked by z-score) for each

bZIP pair, using the MEME (Bailey and Elkan, 1994). The most enriched 14-mer sequences were

used for MAF dimers. MEME was run with following parameters: -dna -mod anr -nmotifs 10 -minw 8

-maxw 18 -time 7200 -maxsize 60000 –revcomp.

Specificity and energy landscapes
SELs display high-throughput protein-DNA (or protein-RNA) binding data for both array and

sequencing methods (Campbell et al., 2012; Carlson et al., 2010; Tietjen et al., 2011). The organi-

zation of data in SEL is detailed in Figure 2A. The SELs shown in this work were generated from 10-,

12-, or 14-mer intensity files. Seed motifs were derived from PWM-derived DNA logos or from the

highest intensity k-mer, and are shown on top of each SEL. The length of the seed motifs has to be

smaller than the k-mer length of the CSI intensity file. The software to generate SELs is provided as

Source Code Files (SEL_10MER and SEL12MER_14MER).

Electrophoretic mobility shift assay–FRET
An electrophoretic mobility shift assay (EMSA) with fluorescence resonance energy transfer (FRET)

readout was used to validate bZIP heterodimer binding to DNA. The assay relies on the ability to

observe FRET between two fluorophores, TAMRA and fluorescein, as well as to detect each fluoro-

phore in the absence of FRET (Figure 3A). The assay also measures DNA fluorescence to ensure

that protein-DNA complexes are being examined. Two versions of each bZIP were made, one conju-

gated to TAMRA and the other to fluorescein. We observed that the fluorophores reproducibly

retard (TAMRA) or increase (fluorescein) the mobility of the bZIP protein that they are attached to

and thus assist in resolving each heterodimer with respect to the two homodimers formed by con-

tributing partners. The sequences of all the DNA sites used are listed in Supplementary file 1D.

Each site was flanked by six constant nucleotides on each side (GAGTCC-site-CCGTAG). Oligos

modified on the 50 end with the dye TYE 665 (IDT, Coralville, IA) were annealed with an unlabeled

reverse-complement oligo. Binding reactions contained 50 nM of each fluorescein- and TAMRA-

labeled proteins, 10 nM annealed dye-labeled DNA in 20 ml of binding buffer (50 mM potassium

phosphate pH 7.4, 150 mM KCl, 0.1% BSA, 0.1% Tween-20, 5 ng/ml poly (dI-dC), 0.5 mM TCEP).

Samples were mixed, incubated at 37˚C for 30 min, and then at 21˚C for 30 min. NOVEX 6% DNA

retardation gels were loaded with 16 ml of each sample (Life Technologies, Carlsbad, CA) and run at

300V for 20–22 min at 22–25˚C. Gels were then imaged using a Typhoon 9500 scanner (GE Health-

care Bio-Sciences Corp., Piscataway, NJ) with separate channels for fluorescein, TAMRA, TYE 665,

and FRET. Bleed through between channels was corrected using the spectral-unmixing plugin in

ImageJ (http://rsb.info.nih.gov/ij/). The amount of DNA bound for the homodimers was calculated

by quantifying the DNA signal that corresponded to all three bound species (fluorescein homodimer,

TAMRA homodimer, and mixed-dye homodimer). For the heterodimers, the amount of DNA bound

was calculated by quantifying the DNA signal that corresponded to the mixed dye heterodimer. The

amount of bound DNA was divided by the amount of unbound DNA run without protein added. For

each heterodimer, the interaction was measured twice, with the fluorescein and TAMRA dye on dif-

ferent proteins, and the average of the two measurements is reported.

ChIP-seq data
ChIP-seq peaks from the ENCODE project used in this work were downloaded from ftp://hgdown-

load.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/ (Dunham et al.,
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2012). Overlapping genomic regions of ChIP-seq peaks were determined and extracted using bed-

ops (Neph et al., 2012). For ATF3 ChIP-seq in GBM1 cells, aligned reads (.bam file) were down-

loaded from GEO (GSE33912). ATF3 peaks were called using the MACS tool (Zhang et al., 2008) in

the Galaxy (Goecks et al., 2010) platform using default parameters. Overlapping ATF3-bound

regions between different cell lines (Figure 5) were determined using the ChIPpeakAnno R-package

(Zhu et al., 2010).

CSI genomescapes: scoring in vivo bound sites with in vitro data
A CSI Genomescape is a plot generated by assigning in vitro CSI intensities (z-scores) to genomic

regions. To generate the CSI Genomescapes in Figures 6 and 7, a 10 bp sliding window was used

to score reported ChIP-seq peaks using quantile-normalized CSI intensities for different bZIP dimers

as follows: Given a bZIP pair and a ChIP-seq peak, the peak was assigned the maximum CSI intensity

for any 10-mer within the reported peak.

Receiver operating characteristic
CSI Genomescapes of ChIP-seq data sets were then used to generate Receiver Operating Character-

istic (ROC) curves to reflect how well the in vitro binding data for different bZIPs explains the ChIP-

seq data. In this analysis, ChIP-seq peaks were used as a true positive set, whereas two regions of

equal length ±5 kbp from the center of each peak (that did not overlap another ChIP-seq peak) were

chosen to make the true negative set. The fraction of regions in the positive vs. negative sets with

scores above a varying CSI intensity cutoff were plotted to generate ROC curves (True Positive Rate

vs. False Positive Rate). ATF3-bound regions (ChIP-seq peaks) were scored with the CSI intensities

for ATF3 homodimer or for ATF3-containing heterodimers to generate the areas under the curves.

Heatmaps and clustergrams in Figure 5 were made by hierarchical clustering of the lowest FPR-cut-

off values at which peaks were detected as positives using the CSI intensities of the ATF3 containing

dimers. ROC curves and heatmaps were generated in MATLAB.

De novo motifs and functional annotation of ChIP-seq peaks
Motif finding within ChIP-seq peaks was done with MEME-ChIP with default settings

(Machanick and Bailey, 2011). Enrichment of functional annotations of genomic regions was done

with Genomic Regions Enrichment of Annotations Tool (GREAT) with default settings

(McLean et al., 2010). Gene Ontology annotations that are significantly enriched (FDR < 0.05) by

both binomial and hypergeometric test are shown. The False Discovery Rate (q-value) is corrected

for multiple hypothesis tests.

Single-nucleotide polymorphism scoring
SNPs linked to diseases or quantitative traits by GWAS were obtained from the Supplemental Table

S2 from Maurano et al., which reports human SNPs associated to diseases and quantitative traits

(Maurano et al., 2012). For each SNP, we considered 21 bp region centered on the SNP (10 bp on

each side) and assigned a score using the CSI intensity data all 10-mers. We scored both alleles

using a 10 bp sliding window and assigning the highest CSI intensity (z-score) in the 21 bp fragment;

each 21 bp region was scored with twelve 10 bp windows. We calculated a predicted fold-difference

in CSI intensity between a given SNP and its reference allele (hg19) using the following formula:

ðCSI Intensity for alternate allele � Minimum CSI IntensityþAÞ

ðCSI Intensity for reference allele ðhg19Þ � Minimum CSI IntensityþAÞ

where the A = (Maximum CSI Intensity – Minimum CSI Intensity) * F, Minimum CSI Intensity = mini-

mum CSI Intensity (z-score) among the scored SNPs, Maximum CSI Intensity = maximum CSI Inten-

sity (z-score) among the scored SNPs. And F is a noise factor which was varied from 1% to 90%,

from lower to higher stringency in estimating the predicted difference in CSI intensity. We added a

noise factor (F) to the formula to make the fold-change prediction less sensitive to low CSI scores

and decrease the number of false-positives predictions.
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