Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction

  1. Matthew J Shurtleff
  2. Morayma M Temoche-Diaz
  3. Kate V Karfilis
  4. Sayaka Ri
  5. Randy Schekman  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of Oregon, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Exosomes are small vesicles that are secreted from metazoan cells and may convey selected membrane proteins and small RNAs to target cells for the control of cell migration, development and metastasis. To study the mechanisms of RNA packaging into exosomes, we devised a purification scheme based on the membrane marker CD63 to isolate a single exosome species secreted from HEK293T cells. Using immunoisolated CD63-containing exosomes we identified a set of miRNAs that are highly enriched with respect to their cellular levels. To explore the biochemical requirements for exosome biogenesis and RNA packaging, we devised a cell-free reaction that recapitulates the species-selective enclosure of miR-223 in isolated membranes supplemented with cytosol. We found that the RNA-binding protein Y-box protein I (YBX1) binds to and is required for the sorting of miR-223 in the cell-free reaction. Furthermore, YBX1 serves an important role in the secretion of miRNAs in exosomes by HEK293T cells.

Data availability

The following data sets were generated
    1. Shurtleff M
    2. Karfilis K
    3. Temoche-Diaz M
    4. Ri S
    5. Schekman R
    (2016) HEK293T cell small RNA-seq
    Available at Dryad Digital Repository under a CC0 Public Domain Dedication.
    1. Shurtleff M
    2. Karfilis K
    3. Temoche-Diaz M
    4. Ri S
    5. Schekman R
    (2016) Exosomes from HEK293T cells small RNA-seq reads
    Available at Dryad Digital Repository under a CC0 Public Domain Dedication.

Article and author information

Author details

  1. Matthew J Shurtleff

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9846-3051
  2. Morayma M Temoche-Diaz

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Kate V Karfilis

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    No competing interests declared.
  4. Sayaka Ri

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Randy Schekman

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    schekman@berkeley.edu
    Competing interests
    Randy Schekman, EIC, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8615-6409

Funding

Howard Hughes Medical Institute (Investigator)

  • Randy Schekman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Publication history

  1. Received: June 30, 2016
  2. Accepted: August 24, 2016
  3. Accepted Manuscript published: August 25, 2016 (version 1)
  4. Version of Record published: October 3, 2016 (version 2)

Copyright

© 2016, Shurtleff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,078
    Page views
  • 2,753
    Downloads
  • 396
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew J Shurtleff
  2. Morayma M Temoche-Diaz
  3. Kate V Karfilis
  4. Sayaka Ri
  5. Randy Schekman
(2016)
Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction
eLife 5:e19276.
https://doi.org/10.7554/eLife.19276

Further reading

    1. Biochemistry and Chemical Biology
    Allyson Li, Rashmi Voleti ... Neel H Shah
    Tools and Resources Updated

    Tyrosine kinases and SH2 (phosphotyrosine recognition) domains have binding specificities that depend on the amino acid sequence surrounding the target (phospho)tyrosine residue. Although the preferred recognition motifs of many kinases and SH2 domains are known, we lack a quantitative description of sequence specificity that could guide predictions about signaling pathways or be used to design sequences for biomedical applications. Here, we present a platform that combines genetically encoded peptide libraries and deep sequencing to profile sequence recognition by tyrosine kinases and SH2 domains. We screened several tyrosine kinases against a million-peptide random library and used the resulting profiles to design high-activity sequences. We also screened several kinases against a library containing thousands of human proteome-derived peptides and their naturally-occurring variants. These screens recapitulated independently measured phosphorylation rates and revealed hundreds of phosphosite-proximal mutations that impact phosphosite recognition by tyrosine kinases. We extended this platform to the analysis of SH2 domains and showed that screens could predict relative binding affinities. Finally, we expanded our method to assess the impact of non-canonical and post-translationally modified amino acids on sequence recognition. This specificity profiling platform will shed new light on phosphotyrosine signaling and could readily be adapted to other protein modification/recognition domains.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sean M Braet, Theresa SC Buckley ... Ganesh S Anand
    Research Article Updated

    SARS-CoV-2 emergent variants are characterized by increased viral fitness and each shows multiple mutations predominantly localized to the spike (S) protein. Here, amide hydrogen/deuterium exchange mass spectrometry has been applied to track changes in S dynamics from multiple SARS-CoV-2 variants. Our results highlight large differences across variants at two loci with impacts on S dynamics and stability. A significant enhancement in stabilization first occurred with the emergence of D614G S followed by smaller, progressive stabilization in subsequent variants. Stabilization preceded altered dynamics in the N-terminal domain, wherein Omicron BA.1 S showed the largest magnitude increases relative to other preceding variants. Changes in stabilization and dynamics resulting from S mutations detail the evolutionary trajectory of S in emerging variants. These carry major implications for SARS-CoV-2 viral fitness and offer new insights into variant-specific therapeutic development.