1. Biochemistry and Chemical Biology
  2. Cancer Biology
Download icon

Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction

  1. Matthew J Shurtleff
  2. Morayma M Temoche-Diaz
  3. Kate V Karfilis
  4. Sayaka Ri
  5. Randy Schekman  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of Oregon, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
Research Article
  • Cited 263
  • Views 9,428
  • Annotations
Cite this article as: eLife 2016;5:e19276 doi: 10.7554/eLife.19276

Abstract

Exosomes are small vesicles that are secreted from metazoan cells and may convey selected membrane proteins and small RNAs to target cells for the control of cell migration, development and metastasis. To study the mechanisms of RNA packaging into exosomes, we devised a purification scheme based on the membrane marker CD63 to isolate a single exosome species secreted from HEK293T cells. Using immunoisolated CD63-containing exosomes we identified a set of miRNAs that are highly enriched with respect to their cellular levels. To explore the biochemical requirements for exosome biogenesis and RNA packaging, we devised a cell-free reaction that recapitulates the species-selective enclosure of miR-223 in isolated membranes supplemented with cytosol. We found that the RNA-binding protein Y-box protein I (YBX1) binds to and is required for the sorting of miR-223 in the cell-free reaction. Furthermore, YBX1 serves an important role in the secretion of miRNAs in exosomes by HEK293T cells.

Data availability

The following data sets were generated
    1. Shurtleff M
    2. Karfilis K
    3. Temoche-Diaz M
    4. Ri S
    5. Schekman R
    (2016) HEK293T cell small RNA-seq
    Available at Dryad Digital Repository under a CC0 Public Domain Dedication.
    1. Shurtleff M
    2. Karfilis K
    3. Temoche-Diaz M
    4. Ri S
    5. Schekman R
    (2016) Exosomes from HEK293T cells small RNA-seq reads
    Available at Dryad Digital Repository under a CC0 Public Domain Dedication.

Article and author information

Author details

  1. Matthew J Shurtleff

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9846-3051
  2. Morayma M Temoche-Diaz

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Kate V Karfilis

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    No competing interests declared.
  4. Sayaka Ri

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Randy Schekman

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    schekman@berkeley.edu
    Competing interests
    Randy Schekman, EIC, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8615-6409

Funding

Howard Hughes Medical Institute (Investigator)

  • Randy Schekman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Publication history

  1. Received: June 30, 2016
  2. Accepted: August 24, 2016
  3. Accepted Manuscript published: August 25, 2016 (version 1)
  4. Version of Record published: October 3, 2016 (version 2)

Copyright

© 2016, Shurtleff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,428
    Page views
  • 2,504
    Downloads
  • 263
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Katarina Akhmetova et al.
    Research Article Updated

    Stimulator of interferon genes (STING) plays an important role in innate immunity by controlling type I interferon response against invaded pathogens. In this work, we describe a previously unknown role of STING in lipid metabolism in Drosophila. Flies with STING deletion are sensitive to starvation and oxidative stress, have reduced lipid storage, and downregulated expression of lipid metabolism genes. We found that Drosophila STING interacts with lipid synthesizing enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). ACC and FASN also interact with each other, indicating that all three proteins may be components of a large multi-enzyme complex. The deletion of Drosophila STING leads to disturbed ACC localization and decreased FASN enzyme activity. Together, our results demonstrate a previously undescribed role of STING in lipid metabolism in Drosophila.