Abstract

Seizures are often followed by sensory, cognitive or motor impairments during the postictal phase that show striking similarity to transient hypoxic/ischemic attacks. Here we show that seizures result in a severe hypoxic attack confined to the postictal period. We measured brain oxygenation in localized areas from freely-moving rodents and discovered a severe hypoxic event (pO2<10mmHg) after the termination of seizures. This event lasted over an hour, is mediated by hypoperfusion, generalizes to people with epilepsy, and is attenuated by inhibiting cyclooxygenase-2 or L-type calcium channels. Using inhibitors of these targets we separated the seizure from the resulting severe hypoxia and show that structure specific postictal memory and behavioral impairments are the consequence of this severe hypoperfusion/hypoxic event. Thus, epilepsy is much more than a disease hallmarked by seizures, since the occurrence of postictal hypoperfusion/hypoxia results in a separate set of neurological consequences that are currently not being treated and are preventable.

Article and author information

Author details

  1. Jordan S Farrell

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Ismael Gaxiola-Valdez

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Marshal D Wolff

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurence S David

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Haruna I Dika

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Bryce L Geeraert

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. X Rachel Wang

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Shaily Singh

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Simon C Spanswick

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Jeff F Dunn

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael C Antle

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5178-4683
  12. Paolo Federico

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    For correspondence
    pfederic@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
  13. Gordon Campbell Teskey

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    For correspondence
    gteskey@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8462-355X

Funding

Canadian Institutes of Health Research (MOP-130495)

  • Gordon Campbell Teskey

Natural Sciences and Engineering Research Council of Canada (RGPIN/03819-2014)

  • Gordon Campbell Teskey

Canadian Institutes of Health Research (MOP-136839)

  • Paolo Federico

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Rodents were handled and maintained according to the Canadian Council for Animal Care guidelines. These procedures were approved by the Life and Environmental Sciences Animal Care and Health Sciences Animal Care Committees at the University of Calgary (AC11-0073).

Human subjects: Human experimentation was approved by the University of Calgary's Conjoint Health Research Ethics Board (REB13-0571). All patients (or guardians of patients) provided written informed consent.

Copyright

© 2016, Farrell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,387
    views
  • 549
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordan S Farrell
  2. Ismael Gaxiola-Valdez
  3. Marshal D Wolff
  4. Laurence S David
  5. Haruna I Dika
  6. Bryce L Geeraert
  7. X Rachel Wang
  8. Shaily Singh
  9. Simon C Spanswick
  10. Jeff F Dunn
  11. Michael C Antle
  12. Paolo Federico
  13. Gordon Campbell Teskey
(2016)
Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia event that is COX-2 dependent
eLife 5:e19352.
https://doi.org/10.7554/eLife.19352

Share this article

https://doi.org/10.7554/eLife.19352

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.