Abstract

Seizures are often followed by sensory, cognitive or motor impairments during the postictal phase that show striking similarity to transient hypoxic/ischemic attacks. Here we show that seizures result in a severe hypoxic attack confined to the postictal period. We measured brain oxygenation in localized areas from freely-moving rodents and discovered a severe hypoxic event (pO2<10mmHg) after the termination of seizures. This event lasted over an hour, is mediated by hypoperfusion, generalizes to people with epilepsy, and is attenuated by inhibiting cyclooxygenase-2 or L-type calcium channels. Using inhibitors of these targets we separated the seizure from the resulting severe hypoxia and show that structure specific postictal memory and behavioral impairments are the consequence of this severe hypoperfusion/hypoxic event. Thus, epilepsy is much more than a disease hallmarked by seizures, since the occurrence of postictal hypoperfusion/hypoxia results in a separate set of neurological consequences that are currently not being treated and are preventable.

Article and author information

Author details

  1. Jordan S Farrell

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Ismael Gaxiola-Valdez

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Marshal D Wolff

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurence S David

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Haruna I Dika

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Bryce L Geeraert

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. X Rachel Wang

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Shaily Singh

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Simon C Spanswick

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Jeff F Dunn

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael C Antle

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5178-4683
  12. Paolo Federico

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    For correspondence
    pfederic@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
  13. Gordon Campbell Teskey

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    For correspondence
    gteskey@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8462-355X

Funding

Canadian Institutes of Health Research (MOP-130495)

  • Gordon Campbell Teskey

Natural Sciences and Engineering Research Council of Canada (RGPIN/03819-2014)

  • Gordon Campbell Teskey

Canadian Institutes of Health Research (MOP-136839)

  • Paolo Federico

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jan-Marino Ramirez, Seattle Children's Research Institute and University of Washington, United States

Ethics

Animal experimentation: Rodents were handled and maintained according to the Canadian Council for Animal Care guidelines. These procedures were approved by the Life and Environmental Sciences Animal Care and Health Sciences Animal Care Committees at the University of Calgary (AC11-0073).

Human subjects: Human experimentation was approved by the University of Calgary's Conjoint Health Research Ethics Board (REB13-0571). All patients (or guardians of patients) provided written informed consent.

Version history

  1. Received: July 4, 2016
  2. Accepted: November 21, 2016
  3. Accepted Manuscript published: November 22, 2016 (version 1)
  4. Version of Record published: December 13, 2016 (version 2)

Copyright

© 2016, Farrell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,214
    views
  • 534
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordan S Farrell
  2. Ismael Gaxiola-Valdez
  3. Marshal D Wolff
  4. Laurence S David
  5. Haruna I Dika
  6. Bryce L Geeraert
  7. X Rachel Wang
  8. Shaily Singh
  9. Simon C Spanswick
  10. Jeff F Dunn
  11. Michael C Antle
  12. Paolo Federico
  13. Gordon Campbell Teskey
(2016)
Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia event that is COX-2 dependent
eLife 5:e19352.
https://doi.org/10.7554/eLife.19352

Share this article

https://doi.org/10.7554/eLife.19352

Further reading

    1. Neuroscience
    Cristina Sáenz de Miera, Nicole Bellefontaine ... Carol F Elias
    Research Article

    The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.

    1. Neuroscience
    Zahra Ghasemahmad, Aaron Mrvelj ... Jeffrey J Wenstrup
    Research Article

    The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener’s internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice. In male mice, playback of restraint vocalizations increased ACh release and usually decreased DA release, while playback of mating sequences evoked the opposite neurochemical release patterns. In non-estrus female mice, patterns of ACh and DA release with mating playback were similar to males. Estrus females, however, showed increased ACh, associated with vigilance, as well as increased DA, associated with reward-seeking. Experimental groups that showed increased ACh release also showed the largest increases in an aversive behavior. These neurochemical release patterns and several behavioral responses depended on a single prior experience with the mating and restraint behaviors. Our results support a model in which ACh and DA provide contextual information to sound analyzing BLA neurons that modulate their output to downstream brain regions controlling behavioral responses to social vocalizations.