Abstract

Seizures are often followed by sensory, cognitive or motor impairments during the postictal phase that show striking similarity to transient hypoxic/ischemic attacks. Here we show that seizures result in a severe hypoxic attack confined to the postictal period. We measured brain oxygenation in localized areas from freely-moving rodents and discovered a severe hypoxic event (pO2<10mmHg) after the termination of seizures. This event lasted over an hour, is mediated by hypoperfusion, generalizes to people with epilepsy, and is attenuated by inhibiting cyclooxygenase-2 or L-type calcium channels. Using inhibitors of these targets we separated the seizure from the resulting severe hypoxia and show that structure specific postictal memory and behavioral impairments are the consequence of this severe hypoperfusion/hypoxic event. Thus, epilepsy is much more than a disease hallmarked by seizures, since the occurrence of postictal hypoperfusion/hypoxia results in a separate set of neurological consequences that are currently not being treated and are preventable.

Article and author information

Author details

  1. Jordan S Farrell

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Ismael Gaxiola-Valdez

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Marshal D Wolff

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurence S David

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Haruna I Dika

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Bryce L Geeraert

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. X Rachel Wang

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Shaily Singh

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Simon C Spanswick

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Jeff F Dunn

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael C Antle

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5178-4683
  12. Paolo Federico

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    For correspondence
    pfederic@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
  13. Gordon Campbell Teskey

    Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
    For correspondence
    gteskey@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8462-355X

Funding

Canadian Institutes of Health Research (MOP-130495)

  • Gordon Campbell Teskey

Natural Sciences and Engineering Research Council of Canada (RGPIN/03819-2014)

  • Gordon Campbell Teskey

Canadian Institutes of Health Research (MOP-136839)

  • Paolo Federico

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Rodents were handled and maintained according to the Canadian Council for Animal Care guidelines. These procedures were approved by the Life and Environmental Sciences Animal Care and Health Sciences Animal Care Committees at the University of Calgary (AC11-0073).

Human subjects: Human experimentation was approved by the University of Calgary's Conjoint Health Research Ethics Board (REB13-0571). All patients (or guardians of patients) provided written informed consent.

Copyright

© 2016, Farrell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,582
    views
  • 563
    downloads
  • 111
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordan S Farrell
  2. Ismael Gaxiola-Valdez
  3. Marshal D Wolff
  4. Laurence S David
  5. Haruna I Dika
  6. Bryce L Geeraert
  7. X Rachel Wang
  8. Shaily Singh
  9. Simon C Spanswick
  10. Jeff F Dunn
  11. Michael C Antle
  12. Paolo Federico
  13. Gordon Campbell Teskey
(2016)
Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia event that is COX-2 dependent
eLife 5:e19352.
https://doi.org/10.7554/eLife.19352

Share this article

https://doi.org/10.7554/eLife.19352

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.