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Abstract Before the outbreak that reached the Americas in 2015, Zika virus (ZIKV) circulated in

Asia and the Pacific: these past epidemics can be highly informative on the key parameters driving

virus transmission, such as the basic reproduction number (R0). We compare two compartmental

models with different mosquito representations, using surveillance and seroprevalence data for

several ZIKV outbreaks in Pacific islands (Yap, Micronesia 2007, Tahiti and Moorea, French

Polynesia 2013-2014, New Caledonia 2014). Models are estimated in a stochastic framework with

recent Bayesian techniques. R0 for the Pacific ZIKV epidemics is estimated between 1.5 and 4.1, the

smallest islands displaying higher and more variable values. This relatively low range of R0 suggests

that intervention strategies developed for other flaviviruses should enable as, if not more effective

control of ZIKV. Our study also highlights the importance of seroprevalence data for precise

quantitative analysis of pathogen propagation, to design prevention and control strategies.

DOI: 10.7554/eLife.19874.001

Introduction
In May 2015, the first local cases of Zika were recorded in Brazil and by December of the same year

the number of cases had surpassed 1.5 million. On February 2016, the World Health Organization

declared Zika as a public health emergency of international concern (Who, 2016) and in March

2016, local transmission of Zika was recognized in 34 countries. Previously the Zika virus had circu-

lated in Africa and Asia but only sporadic human cases had been reported. In 2007 the outbreak on

Yap (Micronesia) was the first Zika outbreak outside Africa and Asia (Duffy et al., 2009). Since, Zika

outbreaks have been also reported in French Polynesia and in New Caledonia (Cao-Lormeau et al.,

2014; Dupont-Rouzeyrol et al., 2015) between 2013 and 2014 and subsequently, there have been

cases of Zika disease in the Cook Islands, the Solomon Islands, Samoa, Vanuatu, and Easter Island

(Chile) (see Figure 1 in Petersen et al. [2016]).

Zika virus (ZIKV) is a flavivirus, mostly transmitted via the bites of infected Aedes mosquitoes,

although non-vector-borne transmission has been documented (sexual and maternofoetal trans-

mission, laboratory contamination, transmission through transfusion) (Musso and Gubler, 2016).

The most common clinical manifestations include rash, fever, arthralgia, and conjunctivitis

(Musso and Gubler, 2016) but a large proportion of infections are asymptomatic or trigger mild

symptoms that can remain unnoticed. Nevertheless, the virus may be involved in many severe
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neurological complications, including Guillain-Barre syndrome (Cao-Lormeau et al., 2016) and

microcephaly in newborns (Schuler-Faccini et al., 2015). These complications and the impressive

speed of its geographically propagation make the Zika pandemic a public health threat

(Who, 2016). This reinforces the urgent need to characterize the different facets of virus trans-

mission and to evaluate its dispersal capacity. We address this here by estimating the key param-

eters of ZIKV transmission, including the basic reproduction number (R0), based on previous

epidemics in the Pacific islands.

Defined as the average number of secondary cases caused by one typical infected individual in an

entirely susceptible population, the basic reproduction number (R0) is a central parameter in epide-

miology used to quantify the magnitude of ongoing outbreaks and it provides insight when design-

ing control interventions (Diekmann et al., 2010). It is nevertheless complex to estimate

(Diekmann et al., 2010; van den Driessche and Watmough, 2002), and therefore, care must be

taken when extrapolating the results obtained in a specific setting, using a specific mathematical

model. In the present study, we explore the variability of R0 using two models in several settings

that had Zika epidemics in different years and that vary in population size (Yap, Micronesia 2007,

Tahiti and Moorea, French Polynesia 2013–2014, and New Caledonia 2014). These three countries

were successively affected by the virus, resulting in the first significant human outbreaks and they dif-

fer in several ways, including population size and location specific features. Hence, the comparison

of their parameter estimates can be highly informative on the intrinsic variability of R0. For each set-

ting, we compare two compartmental models using different parameters defining the mosquito pop-

ulations. Both models are considered in a stochastic framework, a necessary layer of complexity

given the small population size and recent Bayesian inference techniques (Andrieu et al., 2010) are

used for parameter estimation.

Results
We use mathematical transmission models and data from surveillance systems and seroprevalence

surveys for several ZIKV outbreaks in Pacific islands (Yap, Micronesia 2007 (Duffy et al., 2009), Tahiti

eLife digest Zika virus is an infectious disease primarily transmitted between people by

mosquitoes. While most people develop mild flu-like symptoms, infection during pregnancy can

interfere with how the baby’s head and brain develop. Until recently, the virus had only been seen

sporadically in Africa and Asia, but since 2007, outbreaks have been recorded on several Pacific

islands. In 2015, the Zika virus reached the Americas, and within six months over 1.5 million cases

had been reported in Brazil alone.

There is an urgent need to understand how the Zika virus moves within a population in order to

help policymakers, and public health professionals, plan treatment and control of outbreaks of the

disease. Researchers often use predictive models to estimate how a disease will spread. A

parameter commonly calculated by these models is the “basic reproductive number”, or R0, which

represents the average number of additional cases of the disease caused by one infected individual.

Using models that incorporated data from Zika virus outbreaks that occurred on several Pacific

islands, Champagne et al. have produced estimates of R0 that range from 1.5-4.1.

The R0 values are greater than one, indicating that infection will spread within a population, but

in the same range as those obtained for dengue fever, another closely related mosquito-borne

disease. This suggests that by taking appropriate measures, the spread of Zika and dengue can be

controlled to similar extents.

A closer look at the relationship between the population size and the predicted R0 value for each

Pacific island revealed an unexpected inverse relationship: the smaller the population, the larger the

value of R0. Since other regional factors may also explain these large differences between settings,

further work is needed to disentangle context-specific from disease-specific factors. In this respect,

data about seroprevalence (the number of people whose blood shows evidence of a past infection)

in different populations is crucial for precisely analyzing the spread of Zika virus.

DOI: 10.7554/eLife.19874.002
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and Moorea, French Polynesia 2013–2014 (CHSP, 2014; Mallet et al., 2015; Aubry et al., 2015b),

New Caledonia 2014 [DASS, 2014]) to quantify the ZIKV transmission variability.

Two compartmental models with vector-borne transmission are compared (cf. Figure 1). Both

models use a Susceptible-Exposed-Infected-Resistant (SEIR) framework to describe the virus trans-

mission in the human population, but differ in their representation of the mosquito population.

Figure 1a is a schematic representation derived from Pandey et al. (2013) and formulates

explicitly the mosquito population, with a Susceptible-Exposed-Infected (SEI) dynamic to account

for the extrinsic incubation period (time taken for viral dissemination within the mosquito).

By contrast, in the second model (Figure 1b) based on Laneri et al. (2010) the vector is modeled

implicitly: the two compartments k and l do not represent the mosquito population but the force of

infection for vector to human transmission. This force of infection passes through two successive

stages in order to include the delay associated with the extrinsic incubation period: k stands for this

latent phase of the force of infection whereas l corresponds directly to the rate at which susceptible

humans become infected.

The basic reproduction number of the models (R0) is calculated using the next Generation Matrix

method (Diekmann et al., 2010):

R
Pandey
0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bHbVt

g�ð�þ tÞ

s

RLaneri
0

¼

ffiffiffi

b

g

s

In addition, we consider that only a fraction � of the total population is involved in the epidemic,

due to spatial heterogeneity, immuno-resistance, or cross-immunity. For both models we define N ¼

� �H with H the total size of the population reported by census.

The dynamics of ZIKV transmission in these islands is highly influenced by several sources of

uncertainties. In particular, the small population size (less than 7000 inhabitants in Yap) leads to high

variability in transmission rates. Therefore all these models are simulated in a discrete stochastic

framework (Poisson with stochastic rates [Bretó et al., 2009]), to take this phenomenon into

account. Stochasticity requires specific inference techniques: thus estimations are performed with

PMCMC algorithm (particle Markov Chain Monte Carlo [Andrieu et al., 2010]).

Using declared Zika cases from different settings, the two stochastic models (Figure 1) were fit-

ted (Figures 2–3). These models allow us to describe the course of the observed number of cases

and estimate the number of secondary cases generated, R0. Our estimates of R0 lie between 1.6

(1.5–1.7) and 3.2 (2.4–4.1) and vary notably with respect to settings and models (Figures 2–3 and

Tables 1–2). Strikingly, Yap displays consistently higher values of R0 in both models and in general,

there is an inverse relationship between island size and both the value and variability of R0. This phe-

nomenon may be explained by the higher stochasticity and extinction probability associated with

smaller populations and can also reflect the information contained in the available data. However,

the two highly connected islands in French Polynesia, Tahiti and Moorea, display similar values

despite their differing sizes.

Regarding model variability, R0 estimates are always higher and coarser with the Pandey model

than with the Laneri model (cf. Tables 1–2). The Pandey model has two additional estimated param-

eters (in particular, the mosquito lifespan), which can explain the higher variability of the output. It is

worth noting that these parameters are very sensitive (see Materials and methods). The difference in

R0 may also be linked to the difference in the estimated initial number of infected individuals (HIð0Þ),

which is higher in the Laneri model than in the Pandey model. Because of the high proportion of

asymptomatic cases (the ratio of asymptomatic:symptomatic is estimated to be 1:1.3, V.-M Cao-Lor-

meau personal communication), it is hard to determine which scenario is more realistic, the time

between introduction of the disease into the island and the first reported symptomatic case being

unknown in most settings.

For the durations of infectious and intrinsic incubation (in human) and extrinsic incubation (in mos-

quito) periods, the posterior density ressembles the informative prior (cf. Figures 6–13), indicating

the models’ incapacity to identify properly these parameters without more informative data.
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Figure 1. Graphical representation of compartmental models. Squared boxes and circles correspond respectively

to human and vector compartments. Plain arrows represent transitions from one state to the next. Dashed arrows

indicate interactions between humans and vectors. (a) Pandey model (Pandey et al., 2013). HS susceptible

individuals; HE infected (not yet infectious) individuals; HI infectious individuals; HR recovered individuals; s is the

rate at which HE-individuals move to infectious class HI ; infectious individuals (HI ) then recover at rate g; VS

susceptible vectors; VE infected (not yet infectious) vectors; VI infectious vectors; V constant size of total mosquito

population; t is the rate at which VE-vectors move to infectious class VI ; vectors die at rate �. (b) Laneri model

(Laneri et al., 2010). HS susceptible individuals; HE infected (not yet infectious) individuals; HI infectious

individuals; HR recovered individuals; s is the rate at which HE-individuals move to infectious class HI ; infectious

individuals (HI ) then recover at rate g; implicit vector-borne transmission is modeled with the compartments k and

l; l current force of infection; k latent force of infection reflecting the exposed state for mosquitoes during the

extrinsic incubation period; t is the transition rate associated to the extrinsic incubation period.

DOI: 10.7554/eLife.19874.003
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Moreover, these parameters have a clear sensitivity (see Materials and methods) and precise field

measures are therefore crucial for reliable model predictions.

The fraction � of the population involved in the epidemic is well estimated when the seropreva-

lence is known (in Yap and French Polynesia). In these cases, the proportion of the population

involved is slightly greater than the seroprevalence rate, indicating a very high infection rate among
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Figure 2. Results using the Pandey model. Posterior median number of observed Zika cases (solid line), 95% credible intervals (shaded blue area) and

data points (black dots). First column: particle filter fit. Second column: Simulations from the posterior density. Third column: R0 posterior distribution.

(a) Yap. (b) Moorea. (c) Tahiti. (d) New Caledonia. The estimated seroprevalences at the end of the epidemic (with 95% credibility intervals) are: (a) 73%

(CI95: 68–77, observed 73%); (b) 49% (CI95: 45–53, observed 49%); (c) 49% (CI95: 45–53, observed 49%); (d) 39% (CI95: 8–92). See Figure 4.
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involved individuals. In New Caledonia, as no information on seroprevalence was available, the frac-

tion of population involved displays very large confidence intervals (cf. Tables 1 and 2), indicating

that the model did not manage to identify properly this parameter with the available data. In this

case, this parameter is highly correlated to the observation rate r (cf Figures 17 and 21): r and �

seem unidentifiable without precise information on seroprevalence.
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Figure 3. Results using the Laneri model. Posterior median number of observed Zika cases (solid line), 95% credible intervals (shaded blue area) and

data points (black dots). First column: particle filter fit. Second column: Simulations from the posterior density. Third column: R0 posterior distribution.

(a) Yap. (b) Moorea. (c) Tahiti. (d) New Caledonia. The estimated seroprevalences at the end of the epidemic (with 95% credibility intervals) are: (a) 72%

(CI95: 68–77, observed 73%); (b) 49% (CI95: 45–53, observed 49%); c) 49% (CI95: 45–53, observed 49%); d) 65% (CI95: 24–91). See Figure 5.
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Discussion
The reproduction number R0 is a key parameter in epidemiology that characterizes the epidemic

dynamics and the initial spread of the pathogen at the start of an outbreak in a susceptible popula-

tion. R0 can be used to inform public health authorities on the level of risk posed by an infectious dis-

ease, vaccination strategy, and the potential effects of control interventions (Anderson and May,

1982). In the light of the potential public health crisis generated by the international propagation of

ZIKV, characterization of the potential transmissibility of this pathogen is crucial for predicting epi-

demic size, rate of spread and efficacy of intervention.

Using data from both surveillance systems and seroprevalence surveys in four different geo-

graphical settings across the Pacific (Duffy et al., 2009; CHSP, 2014; Mallet et al., 2015;

DASS, 2014; Aubry et al., 2015b), we have estimated the basic reproductive number R0 (see

Figures 2–3 and Tables 1–2). Our estimate of R0 obtained by inference based on Particle

MCMC (Andrieu et al., 2010) has values in the range 1.6 (1.5–1.7) – 3.2 (2.4–4.1). Our R0 esti-

mates vary notably across settings. Lower and finer R0 values are found in larger islands. This

phenomenon can at least in part be explained by large spatial heterogeneities and higher demo-

graphic stochasticity for islands with smaller populations, as well as the influence of stochasticity

on biological and epidemiological processes linked to virus transmission. This phenomenon can

also be specific to the selection of the studied islands or can reflect a highly clustered geograph-

ical pattern, the global incidence curve being the smoothed overview of a collection of more

explosive small size outbreaks. However, it is notable that the two French Polynesian islands yield

similar estimates of R0 despite differing population sizes. Indeed, other important factors differ

among French Polynesia, New Caledonia and Yap, such as the human genetic background and

their immunological history linked to the circulation of others arboviruses. Moreover, whilst both

New Caledonia and French Polynesia populations were infected by the same ZIKV lineage and

transmitted by the same principle vector species, Aedes aegypti, the epidemic in Yap occurred

Table 1. Parameter estimations for the Pandey model. Posterior median (95% credible intervals). All the posterior parameter distribu-

tions are presented in Figures 6–9 .

Pandey model Yap Moorea Tahiti New Caledonia

Population size H 6892 16,200 178,100 268,767

Basic reproduction number R0 3.2 (2.4–4.1) 2.6 (2.2–3.3) 2.4 (2.0–3.2) 2.0 (1.8–2.2)

Observation rate r 0.024 (0.019-0.032) 0.058 (0.048-0.073) 0.060 (0.050-0.073) 0.024 (0.010-0.111)

Fraction of population involved � 74% (69–81) 50% (48–54) 50% (46–54) 40% (9–96)

Initial number of infected individuals HIð0Þ 2 (1–8) 5 (0–21) 329 (16–1047) 37 (1–386)

Infectious period in human (days) g�1 5.2 (4.1–6.7) 5.2 (4.1–6.8) 5.2 (4.1–6.7) 5.5 (4.2–6.8)

Extrinsic incubation period in mosquito (days) t
�1 10.6 (8.7–12.5) 10.5 (8.6–12.4) 10.5 (8.6–12.6) 10.7 (8.9–12.5)

Mosquito lifespan (days) ��1 15.6 (11.7–19.3) 15.3 (11.4–19.1) 15.1 (11.2–19.0) 15.4 (11.6–19.4)

DOI: 10.7554/eLife.19874.006

Table 2. Parameter estimations for the Laneri model. Posterior median (95% credible intervals). All the posterior parameter distribu-

tions are presented in Figures 10–13.

Laneri model Yap Moorea Tahiti New Caledonia

Population size H 6892 16,200 178,100 268,767

Basic reproduction number R0 2.2 (1.9–2.6) 1.8 (1.6–2.0) 1.6 (1.5–1.7) 1.6 (1.5–1.7)

Observation rate r 0.024 (0.019–0.033) 0.057 (0.047–0.07) 0.057 (0.049–0.069) 0.014 (0.010–0.037)

Fraction of population involved � 73% (69–78) 51% (47–55) 54% (49–59) 71% (27–98)

Initial number of infected individuals HIð0Þ 2 (1–10) 9 (1–28) 667 (22–1570) 82 (2–336)

Infectious period in human (days) g�1 5.3 (4.1–6.6) 5.3 (4.1–6.7) 5.2 (4.1–6.7) 5.4 (4.1–6.8)

Extrinsic incubation period in mosquito (days) t
�1 10.7 (8.8–12.7) 10.6 (8.6–12.6) 10.5 (8.5–12.5) 10.8 (8.9–12.8)

DOI: 10.7554/eLife.19874.007
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much earlier with a different ZIKV lineage (Wang et al., 2016) and vectored by a different mos-

quito species Aedes hensilli (Ledermann et al., 2014). In French Polynesia, the vector Aedes pol-

ynesiensis is also present and dominates in Moorea with higher densities than in Tahiti. Finally,

different vector control measures have been conducted in the three countries.

To date, studies investigating Zika outbreaks in the Pacific have always estimated R0 using a

deterministic framework. Using a similar version of the Pandey model in French Polynesia,

Kucharski et al. (Kucharski et al., 2016) estimated R0 between 1.6 and 2.3 (after scaling to

square root for comparison) for Tahiti and between 1.8 and 2.9 in Moorea. These estimates are

slightly lower and less variable than ours. This difference can be explained firstly by the chosen

priors on mosquito parameters and secondly because our model includes demographic stochas-

ticity. Moreover, they predicted a seroprevalence rate at the end of the epidemic of 95–97%, far

from the 49% measured. In Yap island, a study (Funk et al., 2016) used a very detailed deter-

ministic mosquito model, and estimated an R0 for Zika between 2.9 and 8. In this case, our lower

and less variable estimates may come from the fact that our model is more parsimonious in the

number of uncertain parameters, especially concerning the mosquito population. Finally, a third

study (Nishiura et al., 2016a) relied on another method for R0 calculation (based on the early

exponential growth rate of the epidemic) in French Polynesia as a whole and in Yap. Again, the

obtained parameters are lower than ours in French Polynesia and higher in Yap. The first estima-

tions for South America using a similar methodology (Nishiura et al., 2016b; Towers et al.,

2016; Gao et al., 2016) lead to similar R0 values. In all these studies a deterministic framework

is used excluding the possibility of accounting for the high variability of biological and epidemio-

logical processes exacerbated by the small size of the population. In these three studies, like in

ours, it is worth noting that little insight is obtained regarding mosquito parameters. Posterior

distribution mimics the chosen prior (cf. Figures 6–13). Both the simulation of the epidemics and

the estimated R0 are highly sensitive to the choice of priors on mosquito parameters, for which

precise field measures are rare.

In the absence of sufficient data, the modeling of mosquito-borne pathogen transmission is a

difficult task due to non-linearity and non-stationarity of the involved processes (Cazelles and

Hales, 2006). This work has then several limitations. First, our study is limited by the complete-

ness and quality of the data, with regard to both incidence and seroprevalence, but, above all,

by the scarcity of information available on mosquitoes. Incidence data is aggregated at the island

scale and cannot disentangle the effects of geography and observation noise to explain bimodal

curves observed in Yap and New Caledonia. Moreover, although all data came from national sur-

veillance systems, we had very little information about the potential degree of under-reporting,

especially due to the high proportion of mildly symptomatic cases, at a time when the dangerous

complications associated with the virus were unknown. Moreover, some cases might have been

misdiagnosed as other flaviviruses, due to similarity in clinical manifestations or cross-reactivity in

assays. Seroprevalence data were gathered from small sample sizes and were also sensitive to

cross reactivity in populations non naive to dengue. In addition, they were missing in New Cale-

donia, which leads to strong correlation between our estimation of the observation rate and the

fraction of the population involved in the epidemic. Because of the high proportion of asymp-

tomatic or mildly symptomatic cases, the magnitude of the outbreaks is difficult to evaluate with-

out precise seroprevalence data (Metcalf et al., 2016) or detection of mild, asymptomatic or

pre-symptomatic infections (Thompson et al., 2016). Considering vectors, no demographic data

were available and this partly explains the large variability of our R0 estimations. Secondly, inci-

dence and seroprevalence data were difficult to reconcile; the use of incidence data led to higher

infection rates than those observed in the seroprevalence data. This difficulty has been overcome

by considering that only a fraction of the population (�) is involved in the epidemic and then our

model manages to reproduce the observed seroprevalence rate. This exposed fraction could be

the result of spatial heterogeneity and high clustering of cases and transmission, as observed for

dengue. The small dispersal of the mosquito and the limited population inter-mingling likely

leads to considerable spatial variation in the extent of exposure to the virus and pockets of refu-

gia in Tahiti as elsewhere (Telle et al., 2016). For instance, previous dengue infection rates in

French Polynesia display large spatial variations even within islands (Daudens et al., 2009). Finer

scale incidence and seroprevalence data would be useful to explore this. Another explanation for

higher predicted than observed infection rates could be due to interaction with other flaviviruses.
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The Zika outbreak was concomitant with dengue outbreaks in French Polynesia (CHSP, 2014;

Mallet et al., 2015) and New Caledonia (DASS, 2014). Examples of coinfection have been

reported (Dupont-Rouzeyrol et al., 2015) but competition between these close pathogens may

also have occurred. Finally, mathematical models with vectorial transmission may tend to estimate

high attack rates, sometimes leading to a contradiction between observed incidence and

observed seroprevalence. Assumptions on the proportionality between infected mosquitoes and

the force of infection, as well as the density-dependence assumption in these models could be

questioned. Indeed even if these assumptions are at the heart of the mathematical models of

mosquito-borne pathogen transmission (Reiner et al., 2013; Smith et al., 2014), a recent review

(Halstead, 2008) and recent experimental results (Bowman et al., 2014; Harrington et al.,

2014) question these important points.

On a final note, the estimates of R0 for ZIKV are similar to but generally on the lower side of esti-

mates made for two other flaviviruses of medical importance, dengue and Yellow Fever viruses

(Favier et al., 2006; Imai et al., 2015; Massad et al., 2003), even though caution is needed in the

comparison of studies with differing models, methods and data sources. Interventions strategies

developed for dengue should thus enable as, if not more effective control of ZIKV, with the caveat

that ZIKV remains principally a mosquito-borne pathogen with little epidemiological significance of

the sexual transmission route. Even though further work and data are needed to support this

hypothesis (Brauer et al., 2016), two recent studies indicated that sexual transmission alone is not

sufficient to sustain an epidemic (Gao et al., 2016; Towers et al., 2016).

In conclusion, using recent stochastic modeling methods, we have been able to determine esti-

mates of R0 for ZIKV with an unexpected relationship with population size. Further data from the cur-

rent Zika epidemic in South America that is caused by the same lineage as French Polynesia lead to

estimates in the same range of values (Nishiura et al., 2016b; Towers et al., 2016; Gao et al.,

2016). Our study highlights the importance of gathering seroprevalence data, especially for a virus

that often leads to an asymptomatic outcome and it would provide a key component for precise

quantitative analysis of pathogen propagation to enable improved planning and implementation of

prevention and control strategies.

Materials and methods

Data
During the 2007 outbreak that struck Yap, 108 suspected or confirmed Zika cases (16 per 1000

inhabitants) were reported by reviewing medical records and conducting prospective surveillance

between April 1st and July 29th 2007 (Duffy et al., 2009). In French Polynesia, sentinel surveillance

recorded more than 8700 suspected cases (32 per 1000 inhabitants) across the whole territory

between October 2013 and April 2014 (CHSP, 2014; Mallet et al., 2015). In New Caledonia, the

first Zika case was imported from French Polynesia on 2013 November 12th. Approximately 2500

cases (9 per 1000 inhabitants) were reported through surveillance between January (first autochto-

nous case) and August 2014 (DASS, 2014).

For Yap and French Polynesia, the post-epidemic seroprevalence was assessed. In Yap, a house-

hold survey was conducted after the epidemic, yielding an infection rate in the island of 73%

(Duffy et al., 2009). In French Polynesia, three seroprevalence studies were conducted. The first one

took place before the Zika outbreak, and concluded that most of the population was naive for Zika

virus (Aubry et al., 2015a). The second seroprevalence survey was conducted between February

and March 2014, at the end of the outbreak, and reported a seroprevalence rate around 49%

(Aubry et al., 2015b). The third one concerned only schoolchildren in Tahiti and was therefore not

included in the present study.

Demographic data on population size were based on censuses from Yap (Duffy et al., 2009),

French Polynesia (Insee, 2012), and New Caledonia (Insee, 2014).

Models and inference
Model equations
Although the models are simulated in a stochastic framework, we present them with ordinary dif-

ferential equations for clarity. The reactions involved in the stochastic models are the same as
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those governed by the deterministic equations, but the simulation process differs through the use

of discrete compartments. It is described in the next section.

The equations describing Pandey model are:

dHS

dt
¼�bHvIHS

dHE

dt
¼ bHvIHS �sHE

dHI

dt
¼ sHE �gHI

dHR

dt
¼ gHI

dvS

dt
¼ �� bVHI

N
vS ��vS

dvE

dt
¼ bVHI

N
vS � tvE ��vE

dvI

dt
¼ tvE ��vI

where vs ¼
VS

V
is the proportion of susceptible mosquitoes, vE ¼

VE

V
the proportion of exposed mosqui-

toes, and vI ¼
VI

V
the proportion of infected mosquitoes. Since we are using a discrete model, we can-

not use directly the proportions vS, vE and vI whose values are smaller than one. Therefore, we

rescale using V ¼H, which leads to V 0
S ¼ vS �H, V 0

E ¼ vE �H, and V 0
I ¼ vI �H. In this model, the force of

infection for humans is lH ¼ bHvI , and the force of infection for mosquitoes is lV ¼ bV
HI

N

The equations describing Laneri model are:

dHS

dt
¼�lHS

dHE

dt
¼ lHS �sHE

dHI

dt
¼ sHE �gHI

dHR

dt
¼ gHI

dk

dt
¼ 2bHI t

N
� 2tk

dl

dt
¼ 2tk� 2tl

In this model, the role of mosquitoes in transmission is represented only through the delay they

introduce during the extrinsic incubation period (EIP, incubation period in the mosquito). For model-

ing reasons, this delay is included by representing the force of infection from infected humans to

susceptible humans with two compartments k and l: in this formalism, the duration between the

moment when an exposed individual becomes infectious and the moment when another susceptible

individual acquires the infection has a gamma distribution of mean t
�1(Laneri et al., 2010;

Roy et al., 2013; Lloyd, 2001). Therefore, l represents the current force of infection for humans

lH ¼ l . The compartment k represents the same force of infection but at a previous stage, reflecting

the exposed phase for mosquitoes during the extrinsic incubation period. As an analogy to Pandey

model, the force of infection for mosquitoes is lV ¼ bHIt

vsN
, and therefore, the parameter b can be inter-

preted as the product of a transmission parameter b0 by the proportion of susceptible mosquitoes:

b¼ vsb
0. The force of infection for mosquitoes is then similar to Pandey’s : lV ¼ b0

t
HI

N
.

Again, since we are using a discrete model, we cannot use directly the proportions l and k whose

values are smaller than one. Therefore, we rescale up to a factor N, which leads to L ¼ lN and

K ¼ kN.

In both models, following the dominant paradigm that diseases transmitted by Aedes mosquitoes

are highly clustered, we restricted the total population H measured by census to a fraction N ¼ �:H,

in which the parameter � is estimated. This formulation makes the hypothesis that a fraction of the

total population is not at risk from the epidemic, because of individual factors or because the individ-

uals remain in areas where the virus is not present. Moreover as the vector’s flying range is small,

the clustering of ZIKV infection may be reinforced. This may result in escapees from infection within

the population, even at a single island scale. The available data does not allow further exploration of
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the mechanisms underlying these phenomena, which seem fundamental to understand ZIKV propa-

gation. At the very least, the restriction to a fraction � enables the model to reproduce the observed

seroprevalence rates, and to provide coherent results with respect to both data sources (seropreva-

lence and surveillance data).
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Figure 4. Infected and recovered humans evolution during the outbreak with Pandey model. Simulations from the posterior density: posterior median

(solid line), 95% and 50% credible intervals (shaded blue areas) and observed seroprevalence (black dots). First column: Infected humans (HI ). Second

column: Recovered humans (HR). (a) Yap. (b) Moorea. (c) Tahiti. (d) New Caledonia.
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Stochastic framework
Both models are simulated in a stochastic and discrete framework, the Poisson with stochastic rates

formulation (Bretó et al., 2009), to include the uncertainties related to small population size. In this

framework, the number of reactions occurring in a time interval dt is approximated by a multinomial

distribution. In a model with m possible reactions and c compartments, zt being the state of the
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Figure 5. Infected and recovered humans evolution during the outbreak with Laneri model. Simulations from the posterior density: posterior median

(solid line), 95% and 50% credible intervals (shaded blue areas) and observed seroprevalence (black dots). First column: Infected humans (HI ). Second

column: Recovered humans (HR). (a) Yap. (b) Moorea. (c) Tahiti. (d) New Caledonia.
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system at time t and � the model parameters, the probability that each reaction with rate rk occurs

nk times in dt is calculated as follows (Dureau et al., 2013):

pðn1; :::nmjzt; �Þ ¼
Y

c

i¼1

Mið1�
X

XðkÞ¼i

pkÞ
�ni

Y

XðkÞ¼i

ðpkÞ
nk

8

<

:

9

=

;

þ oðdtÞ

βV γ
−1 Hi0 µ

−1

r R0
2 ρ σ

−1
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Figure 6. Posterior distributions. Pandey model, Yap island.
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with, z
ðiÞ
t being the number of individual in compartment i at time t,

. pk ¼ 1� exp �
P

XðlÞ¼i r
lðzt ; �Þz

XðlÞ
t dt

n o� �

rkðzt ;�Þ
P

XðlÞ¼i
rlðzt ;�Þ

. �ni ¼ z
ðiÞ
t �

P

XðkÞ¼i nk (the number of individuals staying in compartment i in dt)

. Mi ¼
z
ðiÞ
t

nkXðkÞ¼i �ni

� �

(multinomial coefficient)
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Figure 7. Posterior distributions. Pandey model, Moorea island.
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Observation models
The only observed compartments are the infected humans (incidence measured every week) and the

recovered humans (seroprevalence at the end of the outbreak when data is available). In order to

link the model to the data, two observation models, for both incidence and seroprevalence data, are

needed.
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Figure 8. Posterior distributions. Pandey model, Tahiti island.
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Observation model on incidence data
The observed weekly incidence is assumed to follow a negative binomial distribution (Bretó et al.,

2009) whose mean equals the number of new cases predicted by the model times an estimated

observation rate r.

The observation rate r accounts for non observed cases, due to non reporting from medical cen-

ters, mild symptoms unseen by health system, and asymptomatic infections. Without additional

data, it is not possible to make a distinction between these three categories of cases. We also
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Figure 9. Posterior distributions. Pandey model, New Caledonia.
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implicitely make the assumption that these cases transmit the disease as much as reported symp-

tomatic cases.

The observation model for incidence data is therefore :

Incobs ¼NegBinðf�1;
1

1þfrInc
Þ

Incobs being the observed incidence, and Inc the incidence predicted by the model. The dispersion

parameter (Bretó et al., 2009) f is fixed at 0.1.

Observation model on seroprevalence data
Seroprevalence data is fitted for Tahiti, Moorea, and Yap settings. It is assumed that the observed

seroprevalence at the end of the epidemic follows a normal distribution with fixed standard devia-

tion, whose mean equals the number of individuals in the HR compartment predicted by the model.

The observation model for seroprevalence data is therefore :

Hobs
R ¼NormalðHR;LÞ

at the last time step, with notations detailed for each model in Table 3.

Prior distributions
Informative prior distributions are assumed for the mosquito lifespan, the duration of infectious

period, and both intrinsic and extrinsic incubation periods. The initial numbers of infected mosqui-

toes and humans are estimated, and the initial number of exposed individuals is set to the initial

number of infected to reduce parameter space. We assume that involved populations are naive to

Zika virus prior to the epidemic and set the initial number of recovered humans to zero. The other

priors and associated references are listed in Table 4.

The range for the prior on observation rate is reduced for Tahiti and New Caledonia, in order to

reduce the parameter space and facilitate convergence. In both cases, we use the information pro-

vided with the data source. In French Polynesia, 8750 cases we reported, but according to local

health authorities, more than 32,000 people would have attended health facilities for Zika

(Mallet et al., 2015) (8750/32000 � 0.3). In New Caledonia, approximately 2500 cases were

reported but more than 11,000 cases were estimated by heath authorities (DASS, 2014) (2500/

11000 � 0.23). In both cases, these extrapolations are lower bounds on the real number of cases (in

particular, they do not estimate the number of asymptomatic infections), and therefore can be used

as upper bounds on the observation rate.

Estimations
Inference with PMCMC
The complete model is represented using the state space framework, with two equation systems:

the transition equations refer to the transmission models, and the measurement equations are given

by the observation models.

In a deterministic framework, this model could be directly estimated using MCMC, with a Metrop-

olis-Hastings algorithm targeting the posterior distribution of the parameters. This algorithm would

require the calculation of the model likelihood at each iteration.

Table 3. Details of the observation models for seroprevalence

Island Date Standard deviation Observed seroprevalence

L Hobs
R

Yap 2007-07-29 150 5005 (Duffy et al., 2009)

Moorea 2014-03-28 325 0.49 � 16200 = 7938 (Aubry et al., 2015b)

Tahiti 2014-03-28 3562 0.49 � 178100 = 87269 (Aubry et al., 2015b)

DOI: 10.7554/eLife.19874.008
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In our stochastic framework, the model output is given only through simulations and the likeli-

hood is intractable. In consequence, estimations are performed with the PMCMC algorithm (particle

Markov Chain Monte Carlo (Andrieu et al., 2010)), in the PMMH version (particle marginal Metropo-

lis-Hastings). This algorithm uses the Metropolis-Hastings structure, but replaces the real likelihood

by its estimation with Sequential Monte Carlo (SMC).

Algorithm 1 PMCMC (Andrieu et al., 2010) (PMMH version, as in SSM (Dureau et al., 2013))

In a model with n observations and J particles.

qð:j�ðiÞÞ is the transition kernel.

1: Initialize �ð0Þ.

2: Using SMC algorithm, compute p̂ðy1:nj�
ð0ÞÞ and sample x�

0:n from p̂ðx0:njy1:n; �
ð0ÞÞ.

3: for i ¼ 1:::N do
4: Sample �� from qð:j�ðiÞÞ
5: Using SMC algorithm, compute Lð��Þ ¼ p̂ðy1:nj�

�Þ and sample x�
0:n from p̂ðx0:njy1:n; �

�Þ

6: Accept �� (et x�
0:n) with probability 1 ^ Lð�ðiÞÞqðj��Þ

Lð��Þqð�� j�ðiÞÞ

7: If accepted, �ðiþ1Þ ¼ �� and x
ðiþ1Þ
0:n ¼ x�

0:n. Otherwise �ðiþ1Þ ¼ �ðiÞ and x
ðiþ1Þ
0:n ¼ x

ðiÞ
0:n.

8: end for

SMC (Doucet et al., 2001) is a filtering method that enables to recover the latent variables and

estimate the likelihood for a given set of parameters. The data is treated sequentially, by adding

one more data point at each iteration. The initial distribution of the state variables is approximated

by a sample a particles, and from one iteration to the next, all the particles are projected according

Table 4. Prior distributions of parameters. ’Uniform[0,20]’ indicates a uniform distribution in the range [0,20]. ’Normal(5,1) in [4,7]’ indi-

cates a normal distribution with mean five and standard deviation 1, restricted to the range [4,7].

Parameters Pandey model Laneri model References

R2

0
squared basic reproduction
number

Uniform[0, 20] Uniform[0, 20] assumed

bV transmission from human to
mosquito

Uniform[0,10] . assumed

g�1 infectious period (days) Normal(5,1) in [4,7] Normal(5,1) in [4,7] (Mallet et al., 2015)

s�1 intrinsic incubation period
(days)

Normal(4,1) in [2,7] Normal(4,1) in [2,7] (Nishiura et al., 2016b; Bearcroft, 1956;
Lessler et al., 2016)

t
�1 extrinsic incubation period

(days)
Normal(10.5,1) in
[4,20]

Normal(10.5,1) in [4,20] (Hayes, 2009; Chouin-Carneiro et al., 2016)

��1 mosquito lifespan (days) Normal(15,2) in
[4,30]

. (Brady et al., 2013; Liu-Helmersson et al., 2014)

� fraction of population involved Uniform[0,1] Uniform[0,1]

Initial conditions
(t=0) Pandey model Laneri model

HI(0) infected humans Uniform[10-6,1]N Uniform[10-6,1]N

HE(0) exposed humans HI(0) HI(0)

HR(0) recovered humans 0 0

infected vectors VI(0)=Uniform[10-6,1]
H

L(0)=Uniform[10-6,1]N

exposed vectors VE(0) = VI(0) K(0)=L(0)

Local conditions Yap Moorea Tahiti
New
Caledonia References

r observation rate Uniform
[0,1]

Uniform
[0,1]

Uniform
[0,0.3]

Uniform
[0,0.23]

(Mallet et al., 2015; DASS, 2014)

H population size 6,892 16,200 178,100 268,767 (Duffy et al., 2009; Insee, 2012, 2014)
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to the dynamic given by the model. The particles receive a weight according to the quality of their

prediction regarding the observations. Before the next iteration, all the particles are resampled using

these weights, in order to eliminate low weight particles and concentrate the computational effort in

high probability regions. Model likelihood is also computed sequentially at each iteration

(Dureau et al., 2013; Doucet and Johansen, 2011).

Algorithm 2 SMC (Sequential Monte Carlo, as implemented in SSM [Dureau et al., 2013])

In a model with n observations and J particles.

L is the model likelihood pðy1:T j�Þ. Wk
ðjÞ is the weight and xk

ðjÞ is the state associated to particle j at iteration k.

1: Set L ¼ 1, W
ðjÞ
0

¼ 1=J.

2: Sample ðx
ðjÞ
0
Þj¼1:J from pðxj�0Þ.

3: for k ¼ 0 : n� 1do
4: for j ¼ 0 : jdo

5: Sample ðx
ðjÞ
kþ1

Þj¼1:J from pðxkþ1jxk; �Þ

6: Set aðjÞ ¼ pðykþ1jx
ðjÞ
kþ1

; �Þ
7: end for

8: Set W
ðjÞ
kþ1

¼ aðjÞ
PJ

l¼1
aðlÞ

and L ¼ L 1

J

P

j a
ðlÞ

9: Resample ðx
ðjÞ
0:kþ1

Þj¼1:J from W
ðjÞ
kþ1

10: end for

A gaussian kernel qð:j�ðiÞÞ is used in the PMCMC algorithm, with mean �ðiÞ and fixed variance S
q

(random walk Metropolis Hastings).

Initialization
PMCMC algorithm is very sensitive to initialization of both the parameter values �ð0Þ and the covari-

ance matrix S
q. Several steps of initialization are therefore used.

Firstly, parameter values are initialized by maximum likelihood through simplex algorithm on a

deterministic version of the model. We apply the simplex algorithm to a set of 1000 points sampled

in the prior distributions and we select the parameter set with the highest likelihood.

Secondly, in order to initialise the covariance matrix, an adaptative MCMC (Metropolis Hastings)

framework is used (Roberts and Rosenthal, 2009; Dureau et al., 2013). It uses the empirical covari-

ance of the chain S
ðiÞ, and aims to calibrate the acceptance rate of the algorithm to an optimal value.

The transition kernel is also mixed (with a probability a ¼ 0:05) with another gaussian using the iden-

tity matrix to improve mixing properties.

qAð:jxðiÞÞ ¼ aNðxðiÞ;l
2:382

d
IdÞþ ð1�aÞNðxðiÞ;l

2:382

d
S
ðiÞÞ

The parameter l is approximated by successive iterations using the empirical acceptance rate of

the chain.

liþ1 ¼ lia
iðAccRatei � 0:234Þ

The adaptative PMCMC algorithm itself may have poor mixing properties without initialization. A

first estimation of the covariance matrix is computed using KMCMC algorithm (Dureau et al., 2013).

In the KMCMC algorithm, the model is simulated with stochastic differential equations (intermediate

between deterministic and Poisson with stochastic rates frameworks) and the SMC part of the adap-

tative PMCMC is replaced by the extended Kalman filter. When convergence is reached with

KMCMC, then, adaptative PMCMC is used.

The PMCMC algorithm is finally applied on the output of the adaptative PMCMC, using 50,000

iterations and 10,000 particles. Calculations are performed with SSM software (Dureau et al., 2013)

and R version 3.2.2.

R0 Calculation
R0 is calculated using the Next Generation Matrix approach (NGM) (19).
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R0 Calculation in Pandey model

F ¼

0 0 0 bH

0 0 0 0

0 bv 0 0

0 0 0 0

0

B

B

@

1

C

C

A

v¼

�s 0 0 0

0 �g 0 0

0 0 �ð�þ tÞ 0

0 0 0 ��

0

B

B

@

1

C

C

A

Then we have,

V�1 ¼

�1=s 0 0 0

�1=g �1=g 0 0

0 0 �1=ð�þ tÞ 0

0 0 �t=½�ðtþ�Þ� �1=�

0
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@
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We calculate the eigen values a of �FV�1 :

�a 0 bHt=½�ðtþ�Þ� bH=�
0 �a 0 0

bv=g bv=g �a 0

0 0 0 �a

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ a2 a2 �
bHbVt

g�ðtþ�Þ

� �

¼ 0

Then a¼ 0 or a¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

bHbV t

g�ðtþ�Þ

q

and the highest eigenvalue is R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

bHbV t

g�ðtþ�Þ

q

.

This formula defines R0 as "the number of secondary cases per generation" (Dietz, 1993): i.e R0

can be written as the geometric mean R0 ¼
ffiffiffiffiffiffiffiffiffiffi

Rv
0
Rh
0

q

, where Rv
0
is the number of infected mosquitoes

after the introduction of one infected human in a naive population, and Rh
0
is the number of infected

humans after the introduction of one infected mosquito in a naive population. With this definition,

herd immunity is reached when ð1� R�2

0
Þ of the population is vaccinated (Dietz, 1993).

R0 Calculation in Laneri model
Following the analogy with Pandey model, we compute the spectral radius of the NGM for the

Laneri model.

F¼

0 0 0 1

0 0 0 0

0 bt 0 0
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B
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@
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C
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A
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0

B

B

@

1
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C

A

Then we have,

V�1 ¼

�1=s 0 0 0

�1=g �1=g 0 0

0 0 �1=t 0

0 0 �1=t �1=t

0

B

B

@

1

C

C
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We calculate the eigen values a of �FV�1 :
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�a 0 1=t 1=t
0 �a 0 0

bt=g bt=g �a 0

0 0 0 �a

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ a2 a2 �
bt

gt

� �

¼ 0

Then a¼ 0 or a¼�
ffiffiffi

b

g

q

and the highest eigenvalue is aR ¼
ffiffiffi

b

g

q

.

γ
−1 L0

r R0
2 ρ

σ
−1

τ
−1

0.0

0.1

0.2

0.3

0.4

0.5

0

500

1000

1500

0

1000

2000

3000

4000

0

30

60

90

0.0

0.1

0.2

0.3

0.4

0.5

0

5

10

15

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

4 5 6 7 0.000 0.002 0.004 0.006 0.0000 0.0005 0.0010 0.0015 0.0020

0.02 0.03 0.04 0.05 2 4 6 8 10 0.65 0.70 0.75 0.80

2 3 4 5 6 7 8 10 12 14

prior posterior

Hi0

Figure 10. Posterior distributions. Laneri model, Yap island.
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Because l and k can be seen as parameters rather than state variables, the interpretation of the

spectral radius as the R0 of the model is not straightforward. Therefore, we computed the R0 of the

model through simulations, by counting the number of secondary infections after the introduction of

a single infected individual in a naive population. Since Laneri model is considered here as a vector

model, the number of infected humans after the introduction of a single infected is considered as

R2

0
. We simulated 1000 deterministic trajectories, using parameter values sampled in the posterior

distributions for all parameters except initial conditions. With this method, the confidence intervals

for number of infected humans (R2

0
) are similar to the ones of a2

R estimated by the model. As a conse-

quence, R0 was approximated by the spectral radius of the NGM in our results with our stochastic

framework (cf. Table 5).

As a robustness check, the same method was applied to Pandey model : the confidence intervals

for the number of secondary cases in simulations are very similar to the ones of R2

0
(cf. Table 5).

Sensitivity analysis
In order to analyse the influence of parameter values on the model’s outputs, a sensitivity analysis

was performed, using LHS/PRCC technique (Blower and Dowlatabadi, 1994), on Tahiti example.

Similar results were obtained for the other settings. Three criteria were retained as outputs for the

analysis: the seroprevalence at the last time point, the intensity of the peak of the outbreak and the

Table 5. Square root of the number of secondary cases after the introduction of a single infected indi-

vidual in a naive population. Median and 95% credible intervals of 1000 deterministic simulations

using parameters from the posterior distribution.

Pandey model Laneri model

Yap 3.1 (2.5–4.3) 2.2 (1.9–2.6)

Moorea 2.6 (2.2–3.3) 1.8 (1.6–2.0)

Tahiti 2.4 (2.0–3.2) 1.6 (1.5–1.7)

New Caledonia 2.0 (1.8–2.2) 1.6 (1.5–1.7)

DOI: 10.7554/eLife.19874.010

Table 6. Sensitivity analysis in Pandey model. Tahiti island. 1000 parameter sets were sampled with latin hypercube sampling (LHS),

using ’lhs’ R package (Carnell, 2016). On each parameter set, the model was simulated deterministically in order to explore variability

in parameters without interference with variations due to stochasticity. PRCC were computed using the ’sensitivity’ R package

(Pujol et al., 2016).

Parameters Distribution Seroprevalence Peak intensity Peak date

Model parameters

R2

0
Uniform[0,20] 0.87 0.90 �0.55

bV Uniform[0,10] �0.66 �0.73 0.35

g�1 Uniform[4,7] �0.25 0.10 0.20

s�1 Uniform[2,7] �0.03 �0.10 0.15

t
�1 Uniform[4,20] �0.05 �0.07 0.06

��1 Uniform[4,30] �0.56 �0.70 0.49

Initial conditions

HI(0) Uniform[2.10-5,0.011] 0.05 �0.02 0.02

VI(0) Uniform[10-4,0.034] 0.11 �0.00 �0.26

Fraction involved and observation model

� Uniform[0.46,0.54] 0.47 0.15 �0.03

r Uniform[0.048,0.072] �0.04 0.03 0.05

DOI: 10.7554/eLife.19874.011
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date of the peak. We used uniform distributions for all parameters, which are listed in Tables 6 and

7. For model parameters, we used the same range as for the prior distribution. For initial conditions,

the observation rate r and the fraction involved in the epidemic �, we used the 95% confidence inter-

val obtained by PMCMC, in order to avoid unrealistic scenarios.

For all criteria, the key parameters in both models are transmission parameters (R0 and bV ). High

values for R0 are positively correlated with a large seroprevalence and a high and early peak. On the

contrary, high values for the parameters introducing a delay in the model, the incubation periods in
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Figure 11. Posterior distributions. Laneri model, Moorea island.
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human (s�1) and in mosquito (t�1), are associated with a lower and later peak, and have no signifi-

cant effect on seroprevalence. Moreover, the simulations are clearly sensitive to the other model

parameters, in particular the mosquito lifespan (��1) in Pandey model.

Concerning other parameters, the initial conditions have a noticeable effect on the date of the

peak only. As expected, the fraction involved in the epidemic (�) influences the magnitude of the

outbreak, by calibrating the proportion of people than can be infected, but it has no significant

effect on the timing of the peak.
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Figure 12. Posterior distributions. Laneri model, Tahiti island.
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Complementary results
These complementary results include PMCMC results for both models in the four settings: the epi-

demic trajectories regarding the human compartments for infected and recovered

individuals (Figures 4,5), the detailed posterior distributions for all parameters (Figures 6–13) and

correlation plots for all models (Figures 14–21).
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Figure 13. Posterior distributions. Laneri model, New Caledonia.
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Correlation between estimated parameters
The inference technique may fail to estimate some parameters due to identifiability issues. In particu-

lar, when two parameters are highly correlated to one another, the model manages to estimate the

pair of parameters but not each one separately. The analysis of correlation between parameters’

posterior distributions can reveal such cases. The following graphics display for each model the cor-

relation coefficients between all pairs of parameters across the MCMC chain. For example, in models

for New Caledonia, the observation rate and the fraction of the population involved in the epidemic

Table 7. Sensitivity analysis in Laneri model. Tahiti island. 1000 parameter sets were sampled with latin hypercube sampling (LHS),

using ’lhs’ R package (Carnell, 2016). On each parameter set, the model was simulated deterministically in order to explore variability

in parameters without interference with variations due to stochasticity. PRCC were computed using the ’sensitivity’ R package

(Pujol et al., 2016).

Parameters Distribution Seroprevalence Peak intensity Peak date

Model parameters

R2

0
Uniform[0,20] 0.62 0.93 �0.50

g�1 Uniform[4,7] 0.01 0.62 0.15

s�1 Uniform[2,7] �0.03 �0.54 0.21

t
�1 Uniform[4,20] �0.03 �0.70 0.47

Initial conditions

HI(0) Uniform[10-5,0.015] 0.05 0.02 �0.32

L(0) Uniform[2.10-5,0.004] 0.05 0.00 �0.16

Fraction involved and observation model

� Uniform[0.49,0.59] 0.80 0.34 0.02

r Uniform[0.048,0.068] �0.01 0.01 �0.02

DOI: 10.7554/eLife.19874.012

Figure 14. Correlation plot of MCMC output. Pandey model, Yap island.
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are strongly negatively correlated (Figures 17,21): the inference technique does not manage to esti-

mate properly these two parameters, due to the lack of information on seroprevalence.

Figure 15. Correlation plot of MCMC output. Pandey model, Moorea island.

DOI: 10.7554/eLife.19874.024

Figure 16. Correlation plot of MCMC output. Pandey model, Tahiti island.
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Figure 17. Correlation plot of MCMC output. Pandey model, New Caledonia.

DOI: 10.7554/eLife.19874.026

Figure 18. Correlation plot of MCMC output. Laneri model, Yap island.
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Figure 19. Correlation plot of MCMC output. Laneri model, Moorea island.

DOI: 10.7554/eLife.19874.028

Figure 20. Correlation plot of MCMC output. Laneri model, Tahiti island.
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Code and source data files
The estimation tools are provided by the open source software SSM (Dureau et al., 2013) (State

Space Models, RRID:SCR_014647), available at https://github.com/JDureau/ssm and https://github.

com/sballesteros/ssm-predict. The codes for the implementation of each model are provided as sup-

plementary file.
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