A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes

  1. Michelle A Carmell  Is a corresponding author
  2. Gregoriy A Dokshin
  3. Helen Skaletsky
  4. Yueh-Chiang Hu
  5. Josien C von Wolfswinkel
  6. Kyomi J Igarashi
  7. Daniel W Bellott
  8. Michael Nefedov
  9. Peter W Reddien
  10. George C Enders
  11. Vladimir N Uversky
  12. Craig C Mello
  13. David C Page  Is a corresponding author
  1. Whitehead Institute, United States
  2. University of Massachusetts Medical School, United States
  3. Cincinnati Children's Hospital Medical Center, United States
  4. Yale University, United States
  5. University of Queensland, United States
  6. University of Kansas Medical Center, United States
  7. University of South Florida, United States

Abstract

The advent of sexual reproduction and the evolution of a dedicated germline in multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across eukarya - either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect the genomic integrity of cells carrying a heritable genome.

Article and author information

Author details

  1. Michelle A Carmell

    Whitehead Institute, Cambridge, United States
    For correspondence
    carmell@wi.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Gregoriy A Dokshin

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Helen Skaletsky

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yueh-Chiang Hu

    Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Josien C von Wolfswinkel

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kyomi J Igarashi

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel W Bellott

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Nefedov

    School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter W Reddien

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5569-333X
  10. George C Enders

    Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Vladimir N Uversky

    Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Craig C Mello

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. David C Page

    Whitehead Institute, Cambridge, United States
    For correspondence
    dcpage@wi.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9920-3411

Funding

Howard Hughes Medical Institute

  • Michelle A Carmell
  • Gregoriy A Dokshin
  • Helen Skaletsky
  • Yueh-Chiang Hu
  • Kyomi J Igarashi
  • Daniel W Bellott
  • Peter W Reddien
  • Craig C Mello

Life Sciences Research Foundation

  • Michelle A Carmell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse studies were performed using a protocol approved by the Committee on Animal Care at the Massachusetts Institute of Technology (Protocol number: 0714-074-17).

Copyright

© 2016, Carmell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,873
    views
  • 1,081
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle A Carmell
  2. Gregoriy A Dokshin
  3. Helen Skaletsky
  4. Yueh-Chiang Hu
  5. Josien C von Wolfswinkel
  6. Kyomi J Igarashi
  7. Daniel W Bellott
  8. Michael Nefedov
  9. Peter W Reddien
  10. George C Enders
  11. Vladimir N Uversky
  12. Craig C Mello
  13. David C Page
(2016)
A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes
eLife 5:e19993.
https://doi.org/10.7554/eLife.19993

Share this article

https://doi.org/10.7554/eLife.19993

Further reading

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.