A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes

  1. Michelle A Carmell  Is a corresponding author
  2. Gregoriy A Dokshin
  3. Helen Skaletsky
  4. Yueh-Chiang Hu
  5. Josien C von Wolfswinkel
  6. Kyomi J Igarashi
  7. Daniel W Bellott
  8. Michael Nefedov
  9. Peter W Reddien
  10. George C Enders
  11. Vladimir N Uversky
  12. Craig C Mello
  13. David C Page  Is a corresponding author
  1. Whitehead Institute, United States
  2. University of Massachusetts Medical School, United States
  3. Cincinnati Children's Hospital Medical Center, United States
  4. Yale University, United States
  5. University of Queensland, United States
  6. University of Kansas Medical Center, United States
  7. University of South Florida, United States

Abstract

The advent of sexual reproduction and the evolution of a dedicated germline in multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across eukarya - either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect the genomic integrity of cells carrying a heritable genome.

Article and author information

Author details

  1. Michelle A Carmell

    Whitehead Institute, Cambridge, United States
    For correspondence
    carmell@wi.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Gregoriy A Dokshin

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Helen Skaletsky

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yueh-Chiang Hu

    Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Josien C von Wolfswinkel

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kyomi J Igarashi

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel W Bellott

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Nefedov

    School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter W Reddien

    Whitehead Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5569-333X
  10. George C Enders

    Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Vladimir N Uversky

    Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Craig C Mello

    RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. David C Page

    Whitehead Institute, Cambridge, United States
    For correspondence
    dcpage@wi.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9920-3411

Funding

Howard Hughes Medical Institute

  • Michelle A Carmell
  • Gregoriy A Dokshin
  • Helen Skaletsky
  • Yueh-Chiang Hu
  • Kyomi J Igarashi
  • Daniel W Bellott
  • Peter W Reddien
  • Craig C Mello

Life Sciences Research Foundation

  • Michelle A Carmell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Ethics

Animal experimentation: All mouse studies were performed using a protocol approved by the Committee on Animal Care at the Massachusetts Institute of Technology (Protocol number: 0714-074-17).

Version history

  1. Received: July 27, 2016
  2. Accepted: October 5, 2016
  3. Accepted Manuscript published: October 8, 2016 (version 1)
  4. Accepted Manuscript updated: October 21, 2016 (version 2)
  5. Version of Record published: November 7, 2016 (version 3)

Copyright

© 2016, Carmell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,784
    views
  • 1,077
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle A Carmell
  2. Gregoriy A Dokshin
  3. Helen Skaletsky
  4. Yueh-Chiang Hu
  5. Josien C von Wolfswinkel
  6. Kyomi J Igarashi
  7. Daniel W Bellott
  8. Michael Nefedov
  9. Peter W Reddien
  10. George C Enders
  11. Vladimir N Uversky
  12. Craig C Mello
  13. David C Page
(2016)
A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes
eLife 5:e19993.
https://doi.org/10.7554/eLife.19993

Share this article

https://doi.org/10.7554/eLife.19993

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.