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Abstract Most human aneuploidies originate maternally, due in part to the presence of highly

stringent checkpoints during male meiosis. Indeed, male sterility is common among aneuploid mice

used to study chromosomal abnormalities, and male germline transmission of exogenous DNA has

been rarely reported. Here we show that, despite aberrant testis architecture, males of the

aneuploid Tc1 mouse strain produce viable sperm and transmit human chromosome 21 to create

aneuploid offspring. In these offspring, we mapped transcription, transcriptional initiation,

enhancer activity, non-methylated DNA, and transcription factor binding in adult tissues.

Remarkably, when compared with mice derived from female passage of human chromosome 21,

the chromatin condensation during spermatogenesis and the extensive epigenetic reprogramming

specific to male germline transmission resulted in almost indistinguishable patterns of

transcriptional deployment. Our results reveal an unexpected tolerance of aneuploidy during

mammalian spermatogenesis, and the surprisingly robust ability of mouse developmental

machinery to accurately deploy an exogenous chromosome, regardless of germline transmission.

DOI: 10.7554/eLife.20235.001

Introduction
Most human aneuploidies originate maternally. The most common viable aneuploidy in humans is

Down Syndrome, which is caused by an extra copy of chromosome 21 that is maternally inherited in

over 90% of all cases (Hultén et al., 2010). An elegant mouse model of human Down Syndrome is

the aneuploid Tc1 mouse, which transmits an almost complete copy of human chromosome 21

(HsChr21) via the female germline (O’Doherty et al., 2005; Sheppard et al., 2012). More generally,

passage of aneuploid DNA via the female germline is preferred in the majority of trisomic mouse

models, most of which exhibit total male sterility (Davisson et al., 2007; Hernandez and Fisher,

1999). Across mammals, efficient and stable male germline transmission of foreign aneuploid DNA

has only been reported in mice for comparatively small human artificial or fragmented chromosomes

(Tomizuka et al., 1997; Voet et al., 2001; Weuts et al., 2012).

The mechanisms of mammalian gametogenesis disfavour paternally-derived aneuploidies as a

result of sexual dimorphism in meiosis: female meiosis can extend over decades and is thus more
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error-prone, whereas male meiosis is a continuous process with stringent quality checkpoints

(Hunt and Hassold, 2002). Indeed, human gametes show an order of magnitude difference in the

occurrence of chromosomal abnormalities between oocytes (20%) and sperm (2–4%) (Martin et al.,

1991).

Male- and female-derived haploid genomes furthermore differ in the epigenetic reprogramming

they experience during gametogenesis, fertilization, and zygotic activation (Kota and Feil, 2010;

Oswald et al., 2000). Throughout this process, the maternally passaged haploid genome remains

histone-bound (Cantone and Fisher, 2013; Kimmins and Sassone-Corsi, 2005). In stark contrast,

spermatogenesis results in a form of DNA that is 6–20 times more compact than histone-bound

DNA (Balhorn, 2007; Dadoune, 1995). This compaction is achieved by replacing histone proteins

with sperm-specific protamine proteins, leaving very few histones bound to DNA

(Brykczynska et al., 2010; Erkek et al., 2013; Hammoud et al., 2009). After gametic fusion, these

protamines must be removed and replaced de novo with histones by the zygote’s epigenetic

machinery to initiate development.

Sperm development is associated with massive and genome-wide derepression of transcription

(Soumillon et al., 2013). During male meiosis, almost all genes, as well as otherwise-silenced repeat

elements, are expressed at extremely high levels (Ward et al., 2013). Once sperm mature, transcrip-

tion is almost entirely silenced, only to be reactivated after fertilization during the maternal to

zygotic transition (Hammoud et al., 2014). Whether this male germline-specific transcriptional acti-

vation and repression can accurately handle exogenous repeat sequences is entirely unexplored.

Here, we reveal that an almost complete copy of human chromosome 21 can be readily transmit-

ted via mouse sperm in the Tc1 aneuploid mouse model of Down Syndrome. We demonstrate that

the male mouse-transmitted human chromosome is accurately regulated and transcribed in derived

somatic tissues, despite having undergone chromatin condensation and epigenetic reprogramming

associated with spermatogenesis.

Results

Male mice carrying human chromosome 21 exhibit a subfertility
phenotype
To assess the fertility of male mice carrying human chromosome 21 (Tc1), we performed phenotypic

and histological comparisons with wild-type littermates that did not inherit human chromosome 21

(Tc0). Tc1 males showed significantly decreased testis size and weight, as well as markedly

decreased sperm count (Figure 1A,B). Tc1-associated phenotypes appeared to be specific to testes,

as total body weight and liver weight (as a representative somatic tissue) were indistinguishable

between Tc1 and Tc0 mice (Figure 1B).

Histologically, Tc1 testes showed subfertility phenotypes as compared to normal testes from Tc0

littermates. The Tc1 males’ subfertility phenotype was characterized by the absence (spermatogenic

arrest) or reduced frequency (hypo-spermatogenesis) of secondary spermatocytes, as well as

the absence of any cell types derived from these (Figure 1C) (Borg et al., 2010). Neither Tc1 nor

Tc0 mice demonstrated other subfertility phenotypes, such as Sertoli cell-only syndrome, tubular

sclerosis, or fibrosis (Dohle et al., 2012).

Based on Dohle et al. and Creasy et al., we developed a system to grade spermatogenesis based

on a seminiferous tubule scoring ranging from completely normal spermatogenesis (Grade I) to mat-

uration arrest (no production of mature sperm: Grade VI) with two intermediate steps of hypo-sper-

matogenesis (mild: Grade II and severe: Grade III) (Figure 1—figure supplement 1A). While the vast

majority of tubules in wild-type littermates showed normal spermatogenesis, we found phenotypi-

cally normal tubules marked by the production of mature sperm (Figure 1C, blue arrowheads) at

lower frequencies than abnormal tubules that show very little or no sperm production in Tc1 males

(Figure 1—figure supplement 1B). Interestingly, while defective tubules in wild-types mainly dis-

played an absence of mature sperm, defective tubules in Tc1 males often displayed failures in chro-

mosome segregation during metaphase of meiosis I (Figure 1C, red arrowheads and Figure 1—

figure supplement 1C).

Because chromosomal aneuploidy has been associated with unrepaired DNA double-strand

breaks (DSBs) (Turner et al., 2004), we stained for the DSB marker gH2AFX (Rogakou et al., 1998).
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In wild-type mice, we confirmed that gH2AFX is found homogeneously across the nucleus in cells

undergoing meiotic recombination at the leptotene stage, followed by its restriction to the XY body

in pachytene cells (Hamer, 2002; Mahadevaiah et al., 2001) (Figure 1D and Figure 1—figure sup-

plement 2A). In contrast, Tc1 mice show a wider and more diffuse distribution of gH2AFX that does

not appear to be restricted to leptotene cells (Figure 1D and Figure 1—figure supplement 2B).
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Figure 1. Male mice carrying human chromosome 21 show subfertility phenotypes. (A) Comparison of testis size from 12-week-old Tc0 and Tc1

littermates. (B) Testis weight, sperm count, body weight and liver weight from Tc0 and Tc1 mice. Five mice of each genotype aged between 12–14

weeks were used for tissue and body weight measurements. Sperm samples were from mice aged between 16–32 weeks, and were counted for 2 Tc0

and 5 Tc1 animals. Statistical analysis was a student’s t-test (p<0.0001). Photomicrographs of testis tissue sections from adult Tc0 and Tc1 mice stained

with H&E (C) and IHC with anti-gH2AFX antibody (D) original magnification 20x. Blue arrowheads indicate mature sperm, red arrowheads indicate

failure in chromosome segregation. Infertile males did not produce any offspring over 6 month period kept with the same female.

DOI: 10.7554/eLife.20235.002

The following figure supplements are available for figure 1:

Figure supplement 1. Tc1 mouse testes have histological abnormalities that interfere with proper spermatogenesis.

DOI: 10.7554/eLife.20235.003

Figure supplement 2. gH2AFX staining of Tc1 male testes shows a higher number of double strand breaks persisting into the pachytene stage of

meiosis when compared to wild-type Tc0 littermates.

DOI: 10.7554/eLife.20235.004
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The strong gH2AFX staining detected in metaphase I cells could be caused by increased apoptosis

(Odorisio et al., 1998) indicating a potential arrest at this stage as previously suggested

(Cloutier et al., 2015).

In sum, Tc1 males display a subfertility phenotype but produce mature spermatozoa in a substan-

tial subset of seminiferous tubules.

Meiosis in Tc1 males arrests at metaphase I and displays chromosome
congression defects
To investigate the potential meiotic arrest at metaphase I, we staged seminiferous tubules stained

using the Periodic Acid Schiff (PAS) technique, according to a binary decision code (Meistrich and

Hess, 2013), see also Materials and methods). Due to the reduced number of spermatids in Tc1 ani-

mals, the distinction between tubules in early and middle stages of spermatogenesis was often not

as clear as for wild-type animals; however, stage XII tubules were reliably identified based on their

meiotic figures (Figure 2—figure supplement 1). This classification revealed a significant increase in

the percentage of stage XII tubules in Tc1 males, supporting an arrest at metaphase I (Figure 2A).

To confirm these observations, we used immunofluorescence (IF) to identify phosphorylated his-

tone H3 on Serine 10 (pH3) and a-tubulin and performed an interactive, learning-based quantifica-

tion of different cell types using ilastik (Sommer et al., 2011) (Figure 2B and C). Cell identity was

manually annotated to train the classifier, which was subsequently used to distinguish between cells

of the germinal epithelium (purple), primary (4N) spermatocytes (green), meiotic cells (red) as well as

round and elongating spermatids (light and dark blue, respectively) (Figure 2C, Figure 2—figure

supplement 2A and B). Separate identification of spermatogonia or Sertoli cells was not possible

using this approach, resulting in these cells being classified as either 4N spermatocytes or round

spermatids depending on cell size. We expect any mis-identification to be consistent between Tc1

and wild-type mice, as neither cell type appeared to be affected by the presence of the human chro-

mosome. In contrast, quantification revealed a significant increase in the percentage of primary sper-

matocytes in Tc1 animals over wild-types and a corresponding decrease in both round and

elongating spermatids.

Meiotic cells have a high level of pH3 staining, a histone modification commonly found on meta-

phase chromosomes (Wei et al., 1999); on average, the percentage of meiotic cells was almost

twice as high in Tc1 animals. pH3-positive cells were manually classified into meiotic stages based

on DNA condensation and their spindle structure (Figure 2D, Figure 2—figure supplement 2C and

D). Despite variability especially amongst Tc1 animals, we observe an almost 2-fold increase in the

ratio of metaphase I to pro-metaphase cells (1.02 for Tc1 and 0.52 for Tc0), supporting an arrest at

metaphase I. Interestingly, we observed abnormal metaphase cells with congression defects more

frequently in Tc1 males compared to wild-types, which may contribute to the metaphase I arrest

(Figure 2E, Figure 2—figure supplement 2D).

Finally, we observed a drastic increase in the percentage of cells displaying positive staining for

cleaved caspase-3 within stage XII tubules of Tc1 males (Figure 2F), consistent with increased apo-

ptosis due to the activation of the spindle checkpoint at metaphase I (Eaker et al., 2001). This

increase parallels the increased staining observed for yH2AFX.

Thus, our results demonstrate that spermatogenesis in Tc1 males is impaired primarily at epithe-

lial stage XII due to the activation of the spindle checkpoint at metaphase I.

Efficient passage of a complete human chromosome through mouse
male meiosis
We then asked whether mouse sperm containing 42 MB of the transchromosomic HsChr21 can suc-

cessfully fertilize a wild-type egg and produce aneuploid offspring. Numerous trisomic mouse mod-

els and transchromosomic mouse strains have reported that the transmission of extra-chromosomal

material through the male germline is difficult, if not impossible, depending on the size of the exog-

enous DNA (Davisson et al., 2007; O’Doherty et al., 2005; Voet et al., 2001). Indeed, the estab-

lished protocol to passage HsChr21 is via the female germline by breeding Tc1 females with wild-

type males (129S8 x C57BL/6J F1).

We first confirmed that successful transmission of human chromosome 21 occurs in 35% of off-

spring born to aneuploid Tc1 mothers (O’Doherty et al., 2005) (Figure 3). We produced 824

Ernst et al. eLife 2016;5:e20235. DOI: 10.7554/eLife.20235 4 of 21

Research article Genes and chromosomes

http://dx.doi.org/10.7554/eLife.20235


B

Primary

Spermatocytes

Round

spermatids

Elongating

spermatids

pH3
Hoechst

α-tubulin

Tc0 Tc1

C

0

20

40

60

Stage

I-III

Stage

IV-VI

Stage

VII-VIII

Stage

IX-XI

Stage

XII

%
 o

f 
tu

b
u
le

s
 c

o
u
n
te

d

**

*

ns
** **

Tc0

Tc1 Infertile

Tc1 Fertile

A

Tc0 Tc1

0 25 50

Meiotic

0 1 2

% Total Cell Count

F

Tc0 Tc1

α-tubulinHoechst pH3 Merged

%
 o

f 
c
e
lls

100

0

25

50

75

D

E

13 7
8

11 12 16 17

XII XII

CC3

Tc1

2

50 µm

5 µm

P/M

M

M*

A/T

Stage XII 

P
e

rc
e

n
t 
p
o
s
it i

v
e

 n
u
c
le

i

CC3

Stage VII-VIII 

Tc0

Tc1

0

5

10

15

20

25

100 µm

**

**

*

Figure 2. Meiosis in Tc1 males arrests at metaphase I and shows congression defects. (A) Percentage of tubules per spermatogenic stage are shown for

individual Tc0 and Tc1 males. Infertile males did not produce offspring over a six month period kept with the same female. Statistical analysis was a

student’s t-test (*p<0.05; **p<0.005). (B) Representative immunofluorescent images of stage XII tubules from Tc0 and Tc1 animals stained with Hoechst

in blue, anti-phospho histone H3 on serine 10 (pH3) in green, anti-a-tubulin in red. (C) An illustration using the Tc1 tubule presented in (B) of the

annotation generated by the interactive learning algorithm which was used to quantify different cell populations from all animals to generate the % cell

counts shown. Cells of the germinal epithelium (purple), 4N spermatocytes (green), meiotic cells (red) as well as round spermatids (light blue) and

elongating spermatids (dark blue) were quantified for each individual animal. Statistical analysis was a student’s t-test (*p<0.05; **p<0.005). (D) Manual

quantification of the percentage of cells in different meiotic stages (pro-metaphase (P/M), metaphase (M) abnormal metaphase (M*), ana- and

Figure 2 continued on next page

Ernst et al. eLife 2016;5:e20235. DOI: 10.7554/eLife.20235 5 of 21

Research article Genes and chromosomes

http://dx.doi.org/10.7554/eLife.20235


offspring in 153 litters from 38 actively breeding Tc1 female mice, 290 of these offspring were Tc1

positive (Figure 3—figure supplement 1).

Remarkably, parallel breeding experiments with aneuploid Tc1 males, where the human chromo-

some is passaged via sperm, produced successful transmission of human chromosome 21 in 11% of

offspring born to wild-type mothers. Twenty-seven breeding Tc1 males produced 138 litters with a

total of 910 offspring, 98 of which were Tc1 positive. Male germline-derived offspring are macro-

scopically indistinguishable from female germline-derived offspring and no novel histological altera-

tions were identified across different tissues (Figure 3—figure supplement 2). Despite the

subfertility phenotypes we observed for Tc1 males, the majority of males used for breeding (21 out

of 27) were fertile. 19 out of these 21 breeders transmitted human chromosome 21 at least once to

their offspring, with individual breeders showing varying transmission rates and inconsistent litter fre-

quencies (Figure 3—figure supplement 3). Male germline-derived offspring are themselves fertile

and can successfully transmit human chromosome 21.

To see whether the comparably low rates of transmission via males originates from a specific loss

of aneuploid cells during meiosis, we genotyped meiotic cells using fluorescence in situ hybridization

(FISH). Distinct meiotic cell populations were identified and isolated based on DNA content using

fluorescence activated cell sorting (FACS) (Bastos et al., 2005) (Figure 3—figure supplement 4A).

The cell profiles obtained for wild-type and Tc1 males further confirmed our previous quantification,

showing an increase in 4N spermatocytes and a reduction in round and elongating spermatids in

Tc1 males (Figure 3—figure supplement 4B–D). To determine the percentage of cells carrying

human chromosome 21 before and after the two consecutive meiotic divisions, we genotyped 4N

spermatocytes and 1N spermatids using a probe specific for HsChr21 (Figure 3—figure supplement

4E–G). Almost all of the 4N spermatocytes (~94%) were positive for HsChr21, showing a surprisingly

low level of mosaicism compared to previously published rates in somatic tissues (O’Doherty et al.,

2005; Wilson et al., 2008). Among the haploid population, approximately 34% of round and elon-

gating spermatids carried HsChr21. Since the best-case scenario is that 50% of haploid mouse cells

carry the aneuploid human chromosome, our results suggest only a modest loss of HsChr21 during

male meiosis. However, this loss cannot fully account for the low transmission rate of HsChr21 we

observe in males.

Although occurring at an appreciably lower frequency than via female germline transmission, our

results demonstrate conclusively that the mouse male germline can successfully package an exoge-

nous and aneuploid 42 MB human chromosome into protamines to generate reproductively active

sperm.

Accurate and precise transcription initiation in adult tissues of a human
chromosome that has been passaged through mouse spermatogenesis
We asked whether the male-germline specific process of stripping the human chromosome of the

vast majority of its histones, followed by its reconstruction post-fertilization using mouse epigenetic

machinery, impacted the transcriptional deployment of the chromosome in derived adult mouse

tissues.

We first compared sites of transcriptional initiation across female and male germline-derived

human chromosome 21. As a proxy for transcriptional activation, we mapped trimethylation of lysine

4 on histone 3 (H3K4me3) (Bernstein et al., 2006; Guenther et al., 2007; Heintzman et al., 2007)

Figure 2 continued

telophase (A/T) for individual animals. (E) Representative confocal image of a Tc1 metaphase cell with congression defect. Scale bar is 5 mm. (F)

Representative tissue sections from Tc0 and Tc1 testes stained with anti-CC3 (cleaved caspase-3) antibody. Original magnification 20x; scale bar is 100

mm. Nuclei positive for cleaved caspase-3 were quantified in epithelial stage VII-VII and stage XII tubules.

DOI: 10.7554/eLife.20235.005

The following figure supplements are available for figure 2:

Figure supplement 1. Staging of seminiferous tubules in Tc0 and Tc1 animals on periodic acid schiff (PAS)-stained tissue sections.

DOI: 10.7554/eLife.20235.006

Figure supplement 2. Quantification of different cell populations and identification of meiotic cells in seminiferous tubules

DOI: 10.7554/eLife.20235.007
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using chromatin immuno-precipitation followed by high-throughput sequencing (ChIP-Seq) in a num-

ber of adult somatic tissues.

Across the entire human chromosome, we observed neither qualitative nor quantitative differen-

ces in the locations of transcription initiation in endoderm-derived livers from male and female

Breeders
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Figure 3. Male germline transmission of human chromosome 21 is a third as efficient as female germline

transmission. Oogenesis (left, top panel) can allow the transmission of epigenetic information deposited on

retained maternal histones, whereas the majority of histones are replaced by protamines during spermatogenesis

(right, top panel). Germline transmission of the full aneuploid chromosome HsChr21 was successful using male Tc1

mice as transmitters, but at a substantially reduced frequency compared with female transmission via eggs (11%

versus 35%).

DOI: 10.7554/eLife.20235.008

The following figure supplements are available for figure 3:

Figure supplement 1. Transmission rates of aneuploid human chromosome 21 when passaged by the eggs of

breeding Tc1-positive females.

DOI: 10.7554/eLife.20235.009

Figure supplement 2. Histology across multiple somatic tissues in wild-type mice and female and male germline-

derived Tc1 mice.

DOI: 10.7554/eLife.20235.010

Figure supplement 3. Transmission rates of aneuploid human chromosome 21 when passaged by the sperm of

breeding Tc1-positive males.

DOI: 10.7554/eLife.20235.011

Figure supplement 4. Genotyping of meiotic cells from Tc1 males showed a high percentage of aneuploid

haploid cells.

DOI: 10.7554/eLife.20235.012
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germline-derived Tc1 mice (Figure 4A). The stability of the eventual intensity of transcription initia-

tion was found at all unidirectional and bidirectional promoters, regardless of their proximal or distal

positioning relative to coding and noncoding genes (Figure 4B).

Finally, we mapped the sites of transcription initiation in multiple tissues representing the other

two germ layers, including kidney (mesoderm), muscle (mesoderm) and brain (ectoderm). In all pro-

filed tissues, the large-scale remodelling caused by male germline passage of the human chromo-

some resulted in transcription initiation indistinguishable from female germline-derived HsChr21

(Figure 4—figure supplement 1). These results strongly argue that the process of chromatin decon-

densation (and complete rebuild by the mouse machinery) after fertilization does not distort the

transcriptional deployment of the aneuploid human chromosome during mouse embryogenesis.
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Figure 4. Transcription initiation across aneuploid human chromosome 21 in terminally differentiated liver is unaffected by the differing epigenetic

handling during spermatogenesis or oogenesis. (A) The occupancy of H3K4me3, which reports transcription initiation locations, is shown as an

enrichment track across the q arm of human chromosome 21 from livers of Tc1 mice derived from aneuploid sperm (blue) or eggs (purple). (B)

Transcription initiation patterns at diverse promoter types on human chromosome 21 are indistinguishable between male and female germline

transmission.

DOI: 10.7554/eLife.20235.013

The following figure supplement is available for figure 4:

Figure supplement 1. Transcription initiation is accurately established across multiple somatic tissues after male germline transmission.

DOI: 10.7554/eLife.20235.014
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Human repeats on the male germline passaged human chromosome
The process of spermatogenesis can transiently unmask repetitive elements on a transcriptional level

(Carmell et al., 2007). We therefore asked whether passage of the HsChr21 through the Tc1 male

spermatogenic programme could cause persistent activation of human-specific repeat elements

through fertilization and development.

Our previous comparisons between Tc1 mice and humans in liver showed that the mouse nuclear

environment unmasks a number of human- and primate-specific repetitive elements across chromo-

some 21 passaged through the female germline (Ward et al., 2013). Because spermatogenesis and

later post-fertilization depackaging involves substantial transient transcriptional activation of repeti-

tive elements (Carmell et al., 2007; Fadloun et al., 2013), we asked whether human repeats on

HsChr21 transmitted via sperm would retain enhanced activation in derived Tc1 somatic tissues.

However, the previously-reported mouse-specific transcription initiation events located at human

repeat elements were accurately regenerated when the aneuploid human chromosome was passed

through the male germline (Figure 5).

Massive male germline-specific epigenomic remodelling results in stable
transcriptional deployment of the human chromosome
We considered the possibility that the process of decondensation could adversely affect other layers

of transcriptional control on the human chromosome, including enhancers, promoters, DNA methyla-

tion, tissue-specific transcription factor (TF) binding, and the core transcriptional machinery. Using

liver as a representative somatic tissue, in addition to H3K4me3 (marking active transcription initia-

tion at promoters) we epigenetically profiled the genomic occupancy of H3K27ac (active enhancer

regions), two tissue specific TFs (CEBPA (CCAAT/enhancer-binding protein alpha) and HNF4A

(hepatocyte nuclear factor 4 alpha)) and RNA polymerase 2 (Pol II) (the basal transcriptional machin-

ery), as well as total RNA-Seq (active transcription) and non-methylated DNA across human chromo-

some 21 in female and male germline-derived Tc1 mice (Figure 6).

Promoter and enhancer activity is highly correlated between male and female germline-derived

mice (r2 = 0.99 and 0.96, respectively) with no significantly differentially bound sites on chromosome

21 (Figure 6A,B). We used the presence of the entire mouse genome in both Tc1 samples as inter-

nal technical controls to evaluate what genome-wide correlation in transcription initiation would be

expected between diploid individuals. Differential binding analysis across the mouse genome

revealed a total of 10 out of 20,001 sites for H3K4me3 and 471 out of 47,254 sites for H3K27ac that

showed a fold change greater than 2.5 (FDR < 0.1) (Figure 6—figure supplement 1A,B). These

modest differences did not appear to be due to the presence of HsChr21, as these numbers are

comparable to technical noise levels we calculated using previously published wild-type mouse repli-

cates for H3K27ac (599 out of 41,327) (Figure 6—figure supplement 1C) (Villar et al., 2015).

To identify whether different germline passaging would lead to alterations in the DNA methyla-

tion underlying the chromatin, we identified hypomethylated regions on human chromosome 21 pas-

saged via either egg or sperm using BioCAP-sequencing (biotinylated CxxC affinity purification)

(Blackledge et al., 2012; Long et al., 2016). As with the chromatin marks above, DNA methylation

in adult somatic tissues converges on the same molecular phenotype (r2 = 0.97) (Figure 6C).

Unsurprisingly, the correlation in genomic occupancy between male and female germline-derived

mice for two liver-specific transcription factors (CEBPA and HNF4A) and Pol II were slightly noisier

(r2 = 0.72–0.83) (Stefflova et al., 2013); nevertheless, almost no sites were identified reliably as dif-

ferentially bound (Figure 6D-F). In most cases, differences were due to modest changes in overall

ChIP intensity, not the occurrence of entirely novel occupancy in male- or female-derived Tc1 mice.

The noisier correlation of Pol II is likely due to the more distributed nature of polymerase genome

occupancy: Pol II typically binds across tens of kilobases at comparatively low intensity, as opposed

to more sharply defined regions occupied by modified histones in active regions of the genome.

Notably, the modest differences observed in polymerase occupancy do not impact the transcrip-

tome, which shows exceptionally high correlation between livers of Tc1 female- and male-derived

offspring (r2 = 0.97), with no genes identified as differentially expressed (Figure 6G).

Overall, despite the massive epigenetic remodelling and chromatin condensation associated with

male germline transmission, human chromosome 21 is accurately deployed in multiple diverse tis-

sues during development by the mouse epigenetic machinery.
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Discussion
The creation of haploid gametes is one of the most tightly regulated processes in cell biology, as

failure to accurately evaluate DNA content can result in catastrophic organismal aneuploidies.

Embryos containing aneuploidies are spontaneously aborted during development, though a few,

such as in humans with Down syndrome, can be tolerated despite developmental defects

(Hassold and Hunt, 2001).

Aneuploid female mice that carry large amounts of exogenous DNA are fertile and can pass aneu-

ploid DNA on to their offspring; however, aneuploid male mice have strongly suppressed fertility

and are often entirely sterile (Co et al., 2000; Hernandez and Fisher, 1999). Male sterility is com-

monly observed amongst transchromosomic mouse models, and is attributed to the presence of an

extra chromosome rather than the trisomic gene content, causing spermatogenic arrest at meta-

phase I (Hernandez and Fisher, 1999).

How Tc1 male testes handle human chromosome 21 during spermatogenesis, particularly during

prophase I, has been previously studied (Mahadevaiah et al., 2008). In more than 50% of the cases,
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human chromosome 21 is incorporated into the large gH2AFX domain together with X and Y chro-

mosome to mask their incomplete synapsis, resulting in transcriptional silencing (Handel, 2004).

However, independent of whether human chromosome 21 would be unsynapsed and in proximity to

the XY body or self-synapsed and located away from XY, the presence of human chromosome 21

did not lead to increased pachytene apoptosis in epithelial stage IV tubules (Mahadevaiah et al.,

2008). Whether this would allow the production of viable sperm and the transmission of chromo-

some 21 to the next generation, however, was not tested.

The first successful passage of human DNA via mouse germline followed the development of

microcell-mediated chromosome transfer of human chromosome fragments into mouse ES cells.

Mice derived from these ES cells were able to passage fragmented regions of human DNA via the

female and occasionally male germline (Tomizuka et al., 1997). To date, the largest successful and

stable germline transmission of human DNA via mouse sperm was of a circularized 5–10 megabase

human artificial chromosome (Voet et al., 2001); a linearized version of this same artificial chromo-

some containing short telomeres can also be passaged via sperm (Weuts et al., 2012).

We demonstrated that mouse male meiosis can produce viable sperm that both carries and trans-

mits the complete 42 MB copy of human chromosome 21 to generate viable aneuploid offspring.

Consistent with the reduced fertility described above for aneuploid males, Tc1 testes show macro-

and microscopically visible disruptions to their tissue architecture. Nevertheless, despite frequent

spermatogenic arrest at metaphase I leading to increased apoptosis, the majority of Tc1 males

tested in this study were able to produce viable aneuploid offspring, albeit at lower frequencies. The
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germline offspring profiled by BioCAP-sequencing (log2 read count). (G) Differential gene expression analysis of RNA-Seq in liver between male and

female germline-derived offspring (log10 mean expression).

DOI: 10.7554/eLife.20235.016

The following figure supplement is available for figure 6:

Figure supplement 1. Differential binding analysis for H3K4me3 and H3K27ac across the mouse genome in Tc1 and BL6 mice.

DOI: 10.7554/eLife.20235.017
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observed lower transmission rate of HsChr21, however, cannot be fully accounted for by the reduced

number of HsChr21 positive cells produced during male meiosis. This indicates that failures are likely

to occur further downstream, i.e. during sperm maturation, at fertilization or during early embryonic

development, eventually resulting in only ~ 11% aneuploid offspring. If the deficit in Tc1-positive off-

spring arises post-fertilization, then these embryos lost during early development may have been

unable to accurately deploy the Tc1 chromosome. While female meiosis is more error-prone than

male meiosis due to weaker checkpoint mechanisms (Morelli and Cohen, 2005), the percentage of

aneuploid cells produced via male meiosis (34%) is strikingly similar to the percentage of aneuploid

offspring generated via female germline transmission.

Attempts to establish the Tc1 chromosome on three different inbred genetic backgrounds led to

a complete loss of HsChr21 over only a few generations (O’Doherty et al., 2005). The loss of the

human chromosome was independent of the sex of the transmitting parent, and stable transmission

was only observed when Tc1 mice were crossed with F1 hybrids between BL6 and 129S8 mice. It is

currently unclear why a heterozygous genetic background is necessary to maintain stable transmis-

sion of HsChr21 or to what extent strain-specific checkpoint mechanisms may be involved. Studies in

XO females have suggested that C3H mice have a weaker spindle assembly checkpoint (SAC) than

C57/BL6 (LeMaire-Adkins and Hunt, 2000; Nagaoka et al., 2011); no equivalent studies are avail-

able for the 129S8 strain. However, few transcriptional differences exist between the testes of

129S8xBL6 F1 hybrids (Tc0) and inbred wild-type BL6 mice (data not shown).

The Tc1 mouse has long been an elegant model of human Down syndrome that recapitulates

many clinical features of human trisomy 21 (O’Doherty et al., 2005). Histologically, the subfertility

phenotypes we observed for the Tc1 mouse may be similar to developmental abnormalities reported

for human males trisomic for chromosome 21 (Johannisson et al., 1983). Down syndrome, especially

when paternally inherited, exhibits a strong sex bias (up to a 3.5 male/female ratio), which has been

attributed to a preference of the extra chromosome to segregate with the Y chromosome

(Hassold et al., 1984; Nicolaidis and Petersen, 1998; Petersen et al., 1993). In contrast, however,

we did not observe a sex bias amongst aneuploid offspring from either female or male germline

transmission (1.0 and 1.1, respectively), possibly reflecting interspecies differences in segregation

patterns.

The successful passage of the human chromosome through the male germline held the potential

to further unmask human-specific repetitive elements, because of the genome-wide transcriptional

activation occurring during spermatogenesis and the (assumed) absence of species-specific mecha-

nisms that co-evolved to repress human repeats (Jacobs et al., 2014; Zamudio and Bourc’his,

2010). However, no additional repeat elements appeared to be transcriptionally activated in somatic

tissues following male germline transmission. Instead, the massive epigenomic remodelling associ-

ated with histone removal during spermatogenesis and the subsequent rebuilding post fertilization

resulted in the same patterns of DNA hypomethylation, transcriptional activation, enhancer deploy-

ment, transcription factor binding, and RNA transcription in male-derived offspring as was found in

female germline passaged mice.

Our results reveal the remarkable insight that mouse male meiosis can tolerate the presence of

an aneuploid 42 MB human chromosome to generate viable sperm. The radically differing develop-

mental dynamics of male- versus female-germline passage of this aneuploid chromosome can never-

theless result in indistinguishable transcriptional and regulatory phenotypes.

Materials and methods

Mouse material
The Tc1 mouse line was obtained from Dr. E. Fisher and Dr. V. Tybulewicz (O’Doherty et al., 2005)

and housed in the Biological Resources Unit (BRU) in the Cancer Research UK – Cambridge Institute

under the Home Office Licence (PPL 70/7535). For maintenance of the transgenic line, the human

chromosome 21 (HsChr21) was transmitted through the female germline by breeding female Tc1

mice to male (129S8 x C57BL/6J) F1 mice (conventional breeding setup). For male germline trans-

mission, female (129S8 x C57BL/6J) F1 mice were crossed with male Tc1 mice. Tc1-negative litter-

mates (Tc0) were used as control animals. Tissues were obtained from at least two independent

males at an age between 8–12 weeks and were either flash frozen for RNA-Seq and BioCAP-Seq,
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cross-linked with 4% formalin for histology or cross-linked with 1% formaldehyde for ChIP-Seq as

previously described (Schmidt et al., 2009).

Mouse sperm was obtained from male mice at an age between 16–32 weeks according to

Hisano et al. (2013) and quantified using a hemocytometer.

Histology
Tissues were fixed in neutral buffered formalin (NBF) for 24 hr, transferred to 70% ethanol, machine

processed and paraffin embedded. All formalin-fixed paraffin-embedded (FFPE) sections were 3 mm

in thickness and stained with haematoxylin and eosin (H & E) for morphological assessment and clas-

sification. Slides were scanned using Aperio XT (Leica Biosystems, UK).

Immunohistochemistry (IHC) was performed on FFPE sections using the BondÔ Polymer Refine

Kit (DS9800, Leica Microsystems) on the automated Bond platform. De-waxing and re-hydration

prior to IHC and post-IHC de-hydration and clearing were performed on the automated Leica

ST5020; mounting was performed on the Leica CV5030. Antibodies against phospho-Histone H2A.X

(Ser139) (Millipore, MABE205, 1:5000 dilution) and cleaved Caspase-3 (Cell Signaling Technology,

9664, 1:200 dilution) were used with DAB Enhancer (Leica Microsystems, AR9432). Heat-induced epi-

tope retrieval was performed for 20 min at 100˚C on the Bond platform with sodium citrate (for

gH2AFX) and Tris EDTA (for CC3). Slides were scanned using Aperio XT (Leica Biosystems) and CC3

quantification was performed using the Aperio eSlide Manager (Leica Biosystems).

Immunofluorescence staining of seminiferous tubules
FFPE sections (standard 3 mm sections for widefield microscopy and thicker 10 mm sections for con-

focal microscopy) were de-waxed on the automated Leica ST5020 and antigen retrieval was per-

formed by boiling the slides for 10 min in 10 mM sodium citrate + 0.05% Tween-20. Sections were

permeabilized in PBS + 0.3% Triton-X100 for 30 min and blocked with 5% BSA in PBS + 0.3% Triton-

X100 for 1 hr. Incubation with primary antibodies against a-tubulin (Sigma, USA, T9026, 1:500 dilu-

tion) and phospho-Histone H3 (Ser10) (Millipore, 06–570, 1:1000 dilution) in 5% BSA in PBS + 0.1%

Tween-20 was performed for 2–3 hr at 37˚C in a humidifying chamber. Slides were washed in

PBS + 0.1% Tween-20 and incubated with secondary antibodies anti-mouse IgG conjugated to Alex-

aFluor-488 and anti-rabbit IgG conjugated to AlexaFluor-555 (ThermoFisher Scientific, UK, A21206

and A31570) for 1 hr at room temperature. Slides were washed, stained with Hoechst 33342 (1 mg/

ml) for 15 min and mounted in ProLong Diamond Antifade Mountant (ThermoFisher Scientific).

Widefield microscopy of tissue sections was performed using a Zeiss Axio Obsever Z1 with a Pl

APO 0.8 NA 20X dry objective (Carl Zeiss Microscopy, DE) fitted with a CoolLED PE-4000 LED light-

source and Zeiss Axiocam 506 camera. A 2D tile-scan across the entire tissue section was performed

with 10% tile overlap. Voxel size was 0.23 mm.

Confocal microscopy was performed using a Leica TCS SP8 STED 3X microscope with an HC PL

APO CS2 1.4NA 100X oil objective (Leica Microsystems). A 405 nm diode laser was used to excite

Hoechst at 405 nm and a white light pulsed laser (SuperK EXTREME, NKT Photonics, DK) was used

to excite the secondary antibody fluorophores. Voxel size was 0.07 mm and a Z-stack was acquired

through the sample with 0.3 mm spacing. Each channel was acquired sequentially. Post-acquisition

the data deconvolved using Huygens Professional (Scientific Volume Imaging, Version 15.10.1p2).

Interactive learning using ilastik
The open source interactive learning toolkit ilastik was used to segment and classify cells in the

stained tissue sections (Sommer et al., 2011). This was done with a two-stage process: pixel classifi-

cation followed by object classification. Pixel classification was performed to segment the nuclear

regions, and object classification to split each nucleus into one of five classes: germinal epithelium,

primary spermatocytes, meiotic, round spermatids and elongating spermatids. The training data

contained two cropped images from each tissue section and image annotation was done blindly

with respect to condition. Each tile was classified independently and Matlab (2015b, MathWorks)

was used to process the results and remove duplicated objects.

The subset of cells identified as meiotic by the ilastik toolbox were manually classified as either

pro-metaphase, metaphase, phenotypic metaphase, anaphase or non-mitotic. A randomly selected

subset of 200 meiotic cells were analysed from each section. To eliminate user bias and facilitate
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blind analysis, the order of the cells was randomised. This was performed using Matlab (2015b,

MathWorks) with a bridge to ImageJ for visualisation (Sage et al., 2012).

Purification of meiotic cell populations using fluorescence-activated cell
sorting
Spermatogenic cells were isolated from adult mouse testes (16–36 weeks old) as described in

Goh et al. (2015) with minor modifications. One testis from wild-type males and both testes from

Tc1 males were used per experiment. In brief, the albuginea was removed and tissue was digested

in dissociation buffer (25 mg/ml Collagenase A, 25 mg/ml Dispase II and 2.5 mg/ml DNase I) for 30

min at 37˚C. Enzymatic digestions were quenched with DMEM + 10% FCS, resuspending the cells at

a concentration of 1 million cells per ml. Hoechst 33342 was added to a final concentration of 5 mg/

ml and stained for 45 min at 37˚C in the dark. Cells were resuspended in PBS + 1% FCS+2 mM

EDTA for sorting and propidium iodide was added to a final concentration of 1 mg/ml for dead cell

exclusion. Cells were sorted on an Aria IIu cell sorter (Becton Dickinson, UK) using a 100 mm nozzle.

Hoechst was excited with a UV laser at 355 nm and fluorescence was recorded with a 424/44 filter

(Hoechst blue) and 675LP filter (Hoechst red). Four different cell populations distinguished by DNA

content were sorted corresponding to cells in S phase, primary spermatocytes (4N), secondary sper-

matocytes (2N) and spermatids (1N) were collected into PBS + 1% FCS+2 mM EDTA.

Fluorescence in situ hybridization of human chromosome 21 in meiotic
cells
Meiotic cell populations obtained from FACS sorting were spun onto Superfrost Plus slides using a

Cytospin at 1000 rpm for 3 min and fixed with methanol:acetic acid (3:1) for 30 min. Genotyping was

performed by fluorescence in situ hybridization (FISH) using a human chromosome 21-specific probe

XA 21q22 (Metasystems, DE, D-5601–100-OR). In brief, slides were treated with 0.01M HCl + 0.5

ug/ml pepsin at 37˚C for 10 min, washed in water and dehydrated in 70% and 10% ethanol.

The probe was applied, sealed with a coverslip and denatured at 80˚C for 2 min followed by hybrid-

isation for 16 hr at 37˚C. The coverslip was removed in 2X SSC + 0.05% Tween-20, slides were

washed in 0.4X SSC for 2 min at 72˚C, rinsed again in 2X SSC + 0.05% Tween-20 and mounted in

Prolong Gold + DAPI.

Widefield microscopy was performed as described for immunofluorescence. The percentage of

cells containing human chromosome 21 was quantified using FIJI (Schindelin et al., 2012). Repre-

sentative high-resolution images were captured using a Nikon TE-2000 inverted microscope with

NIS-elements software using a Plan Apochromat x100 objective and Andor Neo 5.5 sCMOS camera.

Classification of seminiferous tubules
To assess the overall subfertility phenotype, H & E stained tissue sections of testis were scored by

two blinded independent individuals (C.E. and S.J.A) using Aperio eSlide Manager (Leica Biosys-

tems). Seminiferous tubules were scored according to the predominant histological pattern of sper-

matogenesis in each individual tubule. Grade I: normal spermatogenesis; Grade II: mild hypo-

spermatogenesis (all germ cell stages present but visible meiotic disruption and suboptimal fre-

quency of spermatozoa); Grade III: severe hypo-spermatogenesis (all germ cell stages present

including occasional spermatozoa); Grade IV: maturation arrest (incomplete spermatogenesis, not

beyond the spermatocyte stage) (Creasy et al., 2012; Dohle et al., 2012).

Classification of seminiferous tubules according to epithelial stage of spermatogenesis was per-

formed on PAS stained tissue sections. Different stages were identified as described in the binary

decision key by Meistrich and Hess (2013). Stage I-III: Two generations of spermatids but no acro-

some cap over the nucleus of round spermatids; Stage IV-VI: Two generations of spermatids and

acrosomic system forming a cap over the nucleus of round spermatids; Stage VII-VIII: Two genera-

tions of spermatids with elongated spermatids lining the lumen; Stage IX-XI: Only one generation of

spermatids but no visible meiotic figures or secondary spermatocytes; Stage XII: Only one genera-

tion of spermatids and visible meiotic figures as well as secondary spermatocytes.
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Chromatin immuno-precipitation followed by high-throughput
sequencing (ChIP-Seq)
Mouse tissue samples were harvested after direct liver perfusion with PBS, cross-linked in 1% formal-

dehyde solution (v/v) for 20 min, followed by quenching of formaldehyde by addition of 250 mM gly-

cine for 10 min. Cross-linked tissues were washed twice in PBS and either used directly for tissue

lysis or frozen for storage at �80˚C. Tissues were homogenized in a dounce tissue grinder, washed

twice with PBS and lysed according to published protocols (Schmidt et al., 2009). Sonication was

performed on a Misonix sonicator 3000 with a 418 tip to fragment chromatin to an average length

of 300 bp. The following antibodies were used for immuno-precipitation: H3K4me3 (Millipore 05–

1339 CMA304, Lot numbers 236661 and 2504863), H3K27ac (abcam, UK, ab4729, Lot numbers

GR150367 and GR200563), CEBPA (Santa Cruz, USA, sc-9314, Lot L1113), HNF4A (ARP31946, Lot

numbers QC22894 and QC1455(R1)100317), RNA polymerase II (abcam, ab5408, Lot number

GR106949) according to Schmidt et al.. Immuno-precipitated DNA or 50 ng of input DNA was used

for library preparation following the standard Illumina TruSeq ChIP Sample preparation protocol or

the ThruPLEX DNA-Seq library preparation protocol (Rubicon Genomics, UK). Libraries were

sequenced on HiSeq2000 or HiSeq2500 according to manufacturer’s instructions using single-end 50

bp reads. Individual library preparations are detailed under ArrayExpress submission.

RNA-Seq and differential expression analysis
Total RNA was extracted from flash-frozen liver using QIAzol Lysis Reagent (Qiagen, USA), DNase

treated using the Turbo DNA-free kit (Thermo Fisher, AM1907) and depleted of ribosomal RNA

(Illumina, UK, RiboZero, Epicenter) according to manufacturers instructions. Strand-specific libraries

were prepared using dUTPs (Kutter et al., 2012) together with the Illumina TruSeq RNA Kit. RNA-

Seq libraries were sequenced as 50 bp single-end reads on an Illumina HiSeq 2000.

RNA-Seq libraries were aligned against the reference genome using the Genomic Short-read

Nucleotide Alignment Program (GSNAP) (Wu and Nacu, 2010). Tc1 libraries were aligned against

GRCm38/mm10 with the addition of human chromosome 21 (hg19). Differential expression analysis

was performed using edgeR (Robinson et al., 2010) with six biological replicates for female germ-

line-derived animals and two biological replicates for male germline-derived animals.

BioCAP and differential methylation analysis
BioCAP-sequencing was performed as previously described (Blackledge et al., 2012) in flash frozen

liver samples from Tc1 mice derived of female and male germline transmission (two biological repli-

cates each). BioCAP-Seq libraries were aligned against a composite genome containing all mouse

chromosomes and human chromosome 21 (mm9 + hg19 HsChr21) using bowtie (Langmead et al.,

2009). Hypomethylated regions of DNA (HMRs) were identified using MACS1.4 (Zhang et al., 2008)

with settings –tsize = 50 –bw = 300 –mfold = 10,30 pvalue=1e-5 –verbose = 10 –g 4.8e + 8 against

an input control. Only HMRs that were identified in both biological replicates were retained and

HMRs overlapping known breakpoints or deletions of HsChr21 in the Tc1 mouse were removed.

For differential methylation analysis, HMRs obtained for female and male germline-derived Tc1

mice were merged and read counts over genomic intervals were obtained using bedtools genome-

cov (Quinlan and Hall, 2010).

ChIP-Seq peak calling
ChIP-Seq libraries were aligned against the reference genome using Burrows-Wheeler Aligner (BWA)

(Li and Durbin, 2009). Human and wild-type mouse libraries were aligned against GRCh37/hg19

and GRCm38/mm10, respectively. Tc1 libraries were aligned against GRCm38/mm10 with the addi-

tion of human chromosome 21 (hg19). Regions with a mapping quality score of 0 were removed and

only uniquely mapping reads were used for downstream analysis. ChIP-Seq libraries were filtered

against ENCODE blacklisted regions (hg19/GRCh37 and mm9 liftover to mm10) (Dunham et al.,

2012). Regions on human chromosome 21 that are deleted or duplicated in the Tc1 mouse were

removed from both Tc1 and human libraries (Gribble et al., 2013). ChIP-Seq peaks were called

using the Model-based Analysis of ChIP-Seq (MACS) algorithm version 2.0 (MACS2) (Feng et al.,

2012). Concatenated input samples of higher complexity were used as control. The ‘callpeak’ func-

tion was specified as well as ‘SPMR’ to generate signal per million reads pileup files for visualization.
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For broad spanning factors such as H3K27ac and RNA Polymerase II ‘–broad’ was specified. ‘macs2

bdgcmp –m FE’ was used to generate signal tracks showing the fold enrichment of treatment over

control. These tracks were used for visualization on the UCSC Genome Browser (Kent et al., 2002).

Differential binding analysis
Differential binding analysis on enriched regions was performed as in Ross-Innes et al. (Ross-

Innes et al., 2012), using the R/Bioconductor package DiffBind (version 1.14.5). Using dba.count,

peaks were required to be present in at least one fourth of all replicates and reads were normalised

using the Trimmed Mean of M-values (TMM) method using the effective library size after subtracting

control reads (Robinson and Oshlack, 2010). Differentially bound sites were defined to have at least

2.5-fold difference in binding intensity with an FDR of less than 0.1 between conditions. The log2

mean read concentration as defined by DiffBind was plotted using ggplot2 (Wickham, 2009). The

correlation between samples was calculated using Pearson’s correlation.

Functional annotation for genomic regions were obtained using the R/Bioconductor package

compEpiTools function GRannotateSimple (Kishore et al., 2015).

Generation of ChIP-Seq intensity heatmaps
Pileup bedGraph files normalised to reads per million as generated by macs2 were used to plot

ChIP-Seq intensity heatmaps. Bigwig files for ChIP and input libraries were uploaded onto Galaxy

(Afgan et al., 2016) and input reads were subtracted from ChIP reads. Heatmaps were generated

using the ‘computeMatrix’ and ‘plotHeatmap’ function from deepTools (Ramı́rez et al., 2014).

Regions were sorted by decreasing signal strength in tissues from female germline-derived Tc1

mice, each row representing a 5 kb window around a H3K4me3 peak summit.

Repeat overlap
Peak summits for shared and Tc1-specific sites were redefined in DiffBind using dba.count (sum-

mits = 25) and obtained using dba.peakset. The obtained 50 bp windows centred on H3K4me3

peak summits were then overlapped with repetitive elements on HsChr21 obtained from Repeat-

Masker (Smit, AFA., Hubley, R., Green P., RepeatMasker Open-3.0.1996–2010) with simple, telo-

meric and centromeric repeats removed.
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Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J,
Nekrutenko A, Goecks J. 2016. The Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic Acids Research 44:gkw343. doi: 10.1093/nar/gkw343, PMID: 27137889

Balhorn R. 2007. The protamine family of sperm nuclear proteins. Genome Biology 8:227. doi: 10.1186/gb-2007-
8-9-227

Bastos H, Lassalle B, Chicheportiche A, Riou L, Testart J, Allemand I, Fouchet P. 2005. Flow cytometric
characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis.
Cytometry Part A 65A:40–49. doi: 10.1002/cyto.a.20129

Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch
R, Wagschal A, Feil R, Schreiber SL, Lander ES. 2006. A bivalent chromatin structure marks key developmental
genes in embryonic stem cells. Cell 125:315–326. doi: 10.1016/j.cell.2006.02.041, PMID: 16630819

Blackledge NP, Long HK, Zhou JC, Kriaucionis S, Patient R, Klose RJ. 2012. Bio-CAP: a versatile and highly
sensitive technique to purify and characterise regions of non-methylated DNA. Nucleic Acids Research 40:e32.
doi: 10.1093/nar/gkr1207, PMID: 22156374

Borg CL, Wolski KM, Gibbs GM, O’Bryan MK. 2010. Phenotyping male infertility in the mouse: how to get the
most out of a ’non-performer’. Human Reproduction Update 16:205–224. doi: 10.1093/humupd/dmp032

Co DO, Borowski AH, Leung JD, van der Kaa J, Hengst S, Platenburg GJ, Pieper FR, Perez CF, Jirik FR, Drayer JI.
2000. Generation of transgenic mice and germline transmission of a mammalian artificial chromosome
introduced into embryos by pronuclear microinjection. Chromosome Research 8:183–191. doi: 10.1023/A:
1009206926548, PMID: 10841045

Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schübeler D, Stadler MB, Peters
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