1	Fatty Acid Analogue N-Arachidonoyl Taurine Restores
2	Function of I _{Ks} Channels with Diverse Long QT Mutations
3	
4	Sara I Liin ^{1,2*} , Johan E Larsson ² , Rene Barro-Soria ¹ , Bo Hjorth Bentzen ³ and H Peter
5	Larsson ^{1*}
6	
7	¹ Department of Physiology and Biophysics, University of Miami, Miami, FL 33136, USA
8	² Department of Clinical and Experimental Medicine, Linköping University, SE-581 85
9	Linköping, Sweden
10	³ The Danish Arrhythmia Research Centre and Department of Biomedical Sciences,
11	University of Copenhagen, DK-2200 Copenhagen, Denmark
12	
13	*Corresponding authors:
14	H.P.L., Department of Physiology and Biophysics, University of Miami, Miami, FL 33136,
15	USA. +1 305 243 1021. PLarsson@med.miami.edu
16	or
17	S.I.L., Department of Clinical and Experimental Medicine, Linköping University, SE-581 85
18	Linköping, Sweden. +46 10 103 4371. sara.liin@liu.se
10	
17	

21 Abstract

22 About 300 loss-of-function mutations in the I_{Ks} channel have been identified in patients with 23 Long QT syndrome and cardiac arrhythmia. How specific mutations cause arrhythmia is 24 largely unknown and there are no approved IKs channel activators for treatment of these arrhythmias. We find that several Long QT syndrome-associated IKs channel mutations shift 25 26 channel voltage dependence and accelerate channel closing. Voltage-clamp fluorometry 27 experiments and kinetic modeling suggest that similar mutation-induced alterations in IKs 28 channel currents may be caused by different molecular mechanisms. Finally, we find that the 29 fatty acid analogue N-arachidonoyl taurine restores channel gating of many different mutant 30 channels, even though the mutations are in different domains of the IKs channel and affect the 31 channel by different molecular mechanisms. N-arachidonoyl taurine is therefore an 32 interesting prototype compound that may inspire development of future IKs channel activators 33 to treat Long QT syndrome caused by diverse I_{Ks} channel mutations. 34

35

37 Introduction

38 Long QT syndrome (LQTS) is a condition of the heart which in most cases is caused by a mutation in cardiac ion channels^{1, 2}. In LQTS, the action potential of the heart is prolonged, 39 40 which is observed as a prolonged QT interval in the electrocardiogram. LQTS patients have 41 an increased risk of developing ventricular tachyarrhythmias called torsades de pointes when exposed to triggers such as adrenergic stress^{2, 3}. These arrhythmias can cause palpitation, 42 43 syncope or sudden death due to ventricular fibrillation. To improve the clinical outcome of 44 LOTS patients, it is therefore critical to prevent these LOTS-induced life-threatening 45 arrhythmias. 46 47 Most mutations causing LQTS are located in the KCNQ1 gene¹. KCNQ1 codes for the 48 potassium channel K_V7.1, which in the heart co-assembles with the beta-subunit KCNE1 to form the slowly-activating, voltage-dependent potassium channel $I_{Ks}^{4,5}$. The I_{Ks} channel 49 50 provides one of the important delayed rectifier outward potassium currents that repolarizes the cardiomyocyte and terminates the cardiac action potential⁶. Reduced I_{Ks} function 51 52 therefore tends to delay cardiomyocyte repolarization, thereby causing prolonged cardiac action potential durations and a prolonged QT interval. The cardiac IKs channel consists of 53 four $K_V 7.1$ subunits and two to four KCNE1 subunits⁷⁻⁹. Throughout this work, we will refer 54 to the I_{Ks} channel as $K_V7.1$ +KCNE1. $K_V7.1$ has six transmembrane segments named S1-S6¹⁰ 55 56 (Fig. 1a). S1-S4 of each $K_V7.1$ subunit forms a voltage-sensing domain where S4 is the

57 voltage sensor with three positive gating charges. S5 and S6 from all four K_V 7.1 subunits

58 form the pore domain with a putative gate in S6 that needs to move to open the ion-

59 conducting pore of the channel. KCNE1 has a single-transmembrane segment (Fig. 1a) and is

60 proposed to be localized in the otherwise lipid-filled space between two voltage-sensing

61 domains of neighbouring K_V7.1 subunits¹¹. Upon cardiomyocyte depolarization, the voltage

62 sensor of $K_V 7.1$ moves outward in relation to the membrane. It has been proposed that this 63 movement of the voltage sensor is transferred to the pore domain via the S4-S5 linker and 64 induces channel opening by moving the S6 gate¹⁰.

65

66	Altogether, about 300 mutations in KCNQ1 and KCNE1 have been identified in patients
67	suffering from LQTS ¹ (http://www.fsm.it/cardmoc/). These mutations are distributed
68	throughout the channel sequence and are therefore likely to cause channel dysfunction by
69	different mechanisms, which are, however, largely unknown. Potential mechanisms for
70	K _V 7.1+KCNE1 channel loss of function by a mutation could, for example, be interference
71	with voltage sensor movement, gate opening, or membrane expression. LQTS is today treated
72	with drugs that prevent the triggering of arrhythmic activity, such as beta-blockers, or with
73	arrhythmia-terminating implantable cardioverter defibrillator ¹ . A different treatment strategy
74	for LQTS caused by loss-of-function mutations in the $K_V7.1$ +KCNE1 channel would be to
75	pharmacologically augment the K _V 7.1+KCNE1 channel function of these LQTS mutants,
76	thereby shortening the prolonged QT interval and lower the risk of arrhythmia development.
77	However, there is currently no clinically approved $K_V 7.1$ +KCNE1 channel activator.
78	
79	In this study, we investigate the biophysical properties and potential mechanism of action of
80	LQTS-associated $K_V7.1$ +KCNE1 channel mutations and test the ability of the fatty acid
81	analogue N-arachidonoyl taurine (N-AT) to restore the function of these mutants.
82	We selected eight mutations of residues mutated in patients with LQTS located in different
83	segments of the $K_V7.1$ +KCNE1 channel and that were previously shown to form active
84	channels ¹²⁻¹⁹ . We measure the movement of the S4 voltage sensor in selected mutants using
85	voltage clamp fluorometry to further our understanding of the molecular mechanisms
86	underlying the defects caused by the diverse mutations. We find that the eight LQTS-

associated mutants affect the voltage dependence and/or closing kinetics, in some cases by different molecular mechanisms. Moreover, we find that N-AT restores much of the channel activity in these eight LQTS-associated $K_V7.1$ +KCNE1 mutants. This suggests that N-AT may function as a general activator of $K_V7.1$ +KCNE1 channels with diverse mutational defects.

92

93 *Results*

94 LQTS mutants show altered biophysical properties

95 We first study the biophysical properties of six point mutations in $K_V 7.1$ (F193L, V215M,

96 S225L, L251P, F351S, R583C), and two in KCNE1 (K70N, S74L) identified in patients with

97 LQTS^{13, 17, 19-22} (Fig. 1a). As L251P and F351S did not produce functional channels^{21, 23} (Fig.

98 **1** – **figure supplement 1**), we engineered the milder L251A and F351A mutants instead.

99 L251A and F351A will be referred to as "LQTS-like mutants". When expressed alone in

100 Xenopus oocytes, all investigated K_V7.1 mutants, except F193L and V215M, display a shifted

101 conductance versus voltage curve (G(V)) compared to the wild-type K_V7.1 channel (Fig. 1 –

102 **figure supplement 2**; **Supplementary File 1**). S225L, L251A and F351A shift the *G*(*V*)

103 towards positive voltages compared to wild-type K_V7.1. In contrast, R583C shifts the half-

104 maximal activation, V_{50} , ~10 mV towards negative voltages compared to wild-type K_V7.1.

105 This apparent negative shift is likely caused by the pronounced inactivation of the R583C

106 mutant (Fig. 1 – figure supplement 3a), which is seen to considerable smaller extent in the

107 other $K_V 7.1$ mutants and wild-type $K_V 7.1$ (inset in Fig. 1 – figure supplement 3a). When a

108 fraction of channels are released from inactivation, by introducing a brief hyperpolarizing

- 109 pulse between the test pulse and the tail pulse, R583C has a V_{50} fairly comparable to wild-
- 110 type $K_V 7.1$ (Fig. 1 figure supplement 3b).

112	When the $K_V7.1$ mutants are co-expressed with KCNE1, all $K_V7.1$ and KCNE1 mutants
113	except K _V 7.1/F193L+KCNE1 have a $G(V)$ that is shifted towards positive voltages compared
114	to the wild-type $K_V7.1$ +KCNE1 channel (Fig. 1b). $K_V7.1$ /F351A causes the most dramatic
115	change by shifting V_{50} more than +30 mV. We are therefore only able to record the foot of
116	the $G(V)$ curve of K _V 7.1/F351A+KCNE1, and a shift in V_{50} of +30 mV is a lower estimate of
117	the change in $V_{50}(\Delta V_{50})$. One of the other mutants with dramatically shifted $G(V)$ is
118	K _V 7.1/S225L+KCNE1. V ₅₀ for K _V 7.1/S225L+KCNE1 is shifted almost +30 mV compared to
119	wild-type K _V 7.1+KCNE1 (Fig. 1c; Supplementary File 1). S225L also slows down
120	$K_V 7.1 + KCNE1$ channel opening kinetics (P < 0.01; Fig. 1d; Supplementary File 1). All
121	mutants, except for L251A, accelerate channel closing kinetics compared to wild-type
122	$K_V7.1$ +KCNE1 (Supplementary File 1). K70N has the most dramatic effect on
123	$K_V 7.1 + KCNE1$ channel closing by accelerating the closing kinetics by approximately a factor
124	of 5 (Fig. 1e; Supplementary File 1). When comparing the amplitude of K^+ currents
125	generated by these mutants with the current amplitude of the wild-type $K_V 7.1 + KCNE1$
126	channel in the same batch of oocytes, we note that all mutants generate smaller currents than
127	wild-type over a large voltage range (Fig. 1 – figure supplement 4). Although defective
128	trafficking may contribute to these reduced currents in Xenopus oocytes, the current
129	amplitudes for most mutants matches fairly well with the predicted current amplitude from
130	channels with $G(V)$ curves shifted towards positive voltages as observed for these mutants
131	(Fig. 1 – figure supplement 4a), suggesting that the reduced current amplitudes in <i>Xenopus</i>
132	oocytes are mainly a result of gating defects (and not trafficking defects).
133	

134 To summarize, all mutations change channel function by altering voltage dependence of

135 opening and/or the kinetics of opening and/or closing. Reduced function of the

136 K_V7.1+KCNE1 channel induced by these LQTS and LQTS-like mutations may largely be

137 explained by the right-shifted G(V) and the faster closing kinetics caused by these mutations.

138 F193L does not alter the G(V), but speeds up K_V7.1+KCNE1 channel closing by a factor of 2

(Supplementary File 1). These results are consistent with previous reported findings for
some of these mutants¹²⁻¹⁸.

141

142 *Heterozygous expression reduces LQTS mutant severity*

143 Patients with LQTS mutations can be either homozygous or heterozygous for the mutation.

144 To mimic heterozygous expression, we co-inject the mutated K_V7.1 subunit and KCNE1

145 subunit together with the wild-type $K_V7.1$ subunit (or wild-type KCNE1 subunit for KCNE1

146 mutants) (cartoon in Fig. 2). We refer to this as heterozygous expression. Figure 2a-b

147 compares homozygous expression ($K_V 7.1^{wt} + KCNE1^{mut}$ or $K_V 7.1^{mut} + KCNE1^{wt}$) with

148 heterozygous expression ($K_V 7.1^{wt}+K_V 7.1^{mut}+KCNE1^{wt}$ or $K_V 7.1^{wt}+KCNE1^{wt}+KCNE1^{mut}$) for

149 $K_V 7.1/S225L$ (Fig. 2a) and KCNE1/K70N (Fig. 2b). Both of these examples show that

150 heterozygous expression generates channels with more wild-type like opening or closing

151 kinetics and G(V) compared to homozygous expression of the mutant subunit. A milder

152 biophysical phenotype upon heterozygous expression is generally seen for the LQTS and

153 LQTS-like mutants in terms of G(V), current amplitude, and/or closing kinetics (Fig. 2c-d,

154 Fig. 1 – figure supplement 4, Supplementary File 2). This milder phenotype indicates that

155 the wild-type subunit can partly restore K_V7.1+KCNE1 function. Alternatively, for mutants

156 with a G(V) that is very shifted to positive voltages (e.g. F351A), it may be that channel

- 157 complexes that contain the mutated subunits are largely out of the physiological voltage
- range and therefore do not contribute substantially to the recorded current. Also, for mutants
- 159 with low membrane expression (e.g. possibly $F193L^{13}$), it may be that channels containing

160 the wild-type subunit are favoured so that in most $K_V 7.1$ +KCNE1 channel complexes the 161 majority (or all) of the subunits will be wild-type subunits.

162

184

163 Different mutants display different fluorescence versus voltage profiles

164 Although most of the mutants shift channel voltage dependence and affect channel closing 165 kinetics, the underlying mechanism of mutation-induced changes in $K_V7.1+KCNE1$ channel 166 function is most likely different for different mutations. For instance, mutations located in S5 167 and S6 (e.g. F351A) may mainly affect gate movement, while mutations in S1-S4 (e.g. 168 S225L) are more likely to affect voltage sensor movement. To explore whether different 169 mutations interfere with different gating transitions, we use voltage clamp fluorometry, in 170 which the movement of the voltage sensor in K_V 7.1 can be tracked by the fluorescence 171 change from the fluorescent probe Alexa-488-maleimide attached to G219C in the S3-S4 loop (referred to as $G219C^*$)²⁴⁻²⁶. Voltage sensor movement (measured by fluorescence) and 172 173 gate movement (measured by ionic currents) are then monitored under two-electrode voltage 174 clamp. The K_V7.1/G219C* construct by itself or co-expressed with KCNE1 gives voltage-175 dependent fluorescence changes (Fig. 3a). As previously reported, the fluorescence versus 176 voltage (F(V)) curve of K_V7.1/G219C* correlates well with the G(V) curve (Fig. 3a, left 177 panel), while the F(V) curve of K_V7.1/G219C*+KCNE1 is divided into two components (Fig. **3a**, right panel)²⁴⁻²⁶. For $K_V 7.1/G219C^*$ +KCNE1, the first fluorescence component (F1) has 178 179 been suggested to represent the main voltage sensor movement and the second fluorescence component (F2) to be correlated with gate opening²⁴. We introduce G219C into $K_V7.1/S225L$ 180 181 and $K_V7.1/F351A$. The G(V) curves of both $K_V7.1/G219C^*/S225L$ and 182 $K_V7.1/G219C^*/F351A$ are shifted towards more positive voltages compared to the wild-type 183 channel, but the F(V) curves are differentially affected by the two mutations (Fig. 3b-c, left

8

panels). For $K_V 7.1/G219C^*/S225L$, the F(V) curve is shifted to a similar extent as the G(V)

185 curve, while for $K_V 7.1/G219C^*/F351A$, the F(V) curve is shifted to a considerably smaller

186 extent²⁵. When these mutants are co-expressed with KCNE1, we observe different effects on

187 the voltage dependence of the two fluorescent components F1 and F2 induced by the

- 188 mutations. The S225L mutation primarily shifts F1 towards positive voltages so that F1 and
- 189 *F*2 of $K_V 7.1/G219C^*/S225L+KCNE1$ are hardly distinguishable in the *F*(*V*) curve (**Fig. 3b**,
- 190 right panel). In contrast, the F351A mutation primarily shifts F2 towards positive voltages so
- 191 that F1 and F2 are clearly separated (Fig. 3c, right panel). Thus, S225L and F351A seem to
- 192 shift the G(V) curve of K_V7.1+KCNE1 towards positive voltages by interfering with different
- 193 gating transitions.

194 *Kinetic modeling recapitulates experimental findings*

- 195 To further explore the different effects of S225L and F351A in the voltage-clamp
- 196 fluorometry experiments, we use two kinetic models previously developed to reproduce the
- 197 currents and fluorescence from $K_V 7.1/G219C^{*26}$ and $K_V 7.1/G219C^{*+}KCNE1$ channels²⁴,
- 198 respectively. The $K_V 7.1/G219C^*$ model is an allosteric model with 10 states (Fig. 3 figure
- 199 supplement 1a), where the horizontal transition is the main S4 movement (which generates
- 200 the main fluorescence component F1) and the vertical transition is channel opening
- 201 accompanied by an additional smaller S4 movement (that generates a smaller additional
- 202 fluorescence component F2)^{26, 27}. The K_V7.1/G219C* model allows for channel opening after
- 203 only a subset of four S4s are activated, which thereby generates F(V) and G(V) that are close
- in voltage dependence (reference²⁶; and **Fig. 3**–**figure supplement 2a**). The
- 205 $K_V 7.1/G219C^*+KCNE1$ model has 6 states (Fig. 3 figure supplement 1b), where the
- 206 horizontal transition is the main S4 movement (which generates the main fluorescence
- 207 component F1) and the vertical transition is channel opening accompanied by an additional
- smaller S4 movement (that generates a smaller additional fluorescence component F2)^{26, 27}.
- 209 The K_V7.1/G219C*+KCNE1 model only allows for channel opening after all four S4s are

activated, which thereby generates F(V) and G(V) that are separated in voltage dependence (reference²⁴; and **Fig. 3 –figure supplement 2a**).

212

235 In summary, our voltage-clamp fluorometry experiments together with kinetic modeling are 236 compatible with a model in which the S225L mutant primarily interferes with the main S4 237 movement, whereas the F351A mutant interferes with later gating transitions associated with 238 pore opening. One note of caution is that the interpretation of the mutational effects is 239 dependent on the models used for the wild-type channels. Other models for $K_V 7.1$ and $K_V7.1$ +KCNE1 channels have been proposed^{27, 28}, but these have not been as extensively 240 241 tested or developed as our models. Although other alternative mechanisms for the effects of 242 these mutations are possible, the different impacts of S225L and F351A on the fluorescence 243 *versus* voltage relationships suggest that these mutations introduce distinct molecular defects. 244

N-AT enhances the activity of all tested LQTS and LQTS-like mutants 245

246

We previously observed that the effect of regular polyunsaturated fatty acids, such as docosahexaenoic acid, on $K_V7.1$ is impaired by co-expression with the KCNE1 subunit²⁹. In 247 248 contrast, we found that the PUFA analogue N-arachidonoyl taurine (N-AT, structure in Fig. 249 4) retained its ability to activate the $K_V 7.1$ channel also in the presence of KCNE1. N-AT activated the wild-type $K_V 7.1$ +KCNE1 by shifting the G(V) roughly -30 mV²⁹ (Fig. 4 – 250 251 figure supplement 1). The magnitude of this N-AT-induced shift is comparable to, but in 252 opposite direction, to the G(V) shifts observed for several of the LQTS and LQTS-like 253 mutants. We therefore here test the ability of N-AT to enhance the function of the eight 254 $K_V7.1$ +KCNE1 mutant channels. Figure 4a-b shows representative effects of 7-70 μ M N-AT 255 on K_V7.1/S225L+KCNE1. 70 µM N-AT increases current amplitude by a factor of 16 at +20 256 mV (Fig. 4a) and shifts the G(V) curve by about -50 mV (Fig. 4b, Supplementary File 3). 257 Steady state of N-AT effects is reached within a few minutes (Fig. 4 – figure supplement 2). 258 We note a small instantaneous 'leak' component in the 70 µM N-AT trace of 259 $K_V7.1/S225L+KCNE1$ (Fig. 4a). This leak component in $K_V7.1/S225L+KCNE1$ is observed

260	also in the absence of N-AT, but at more positive voltages (Fig. 4 – figure supplement 3).
261	We do not observe this leak component in wild-type $K_V 7.1 + KCNE1$ upon application of N-
262	AT (Fig. 4 – figure supplement 1a), which suggests that this phenomenon is associated with
263	the S225L mutation. The human ventricular action potential has duration of about 300-400
264	ms and a systolic voltage range of about 0 to $+40 \text{ mV}^{30, 31}$. To test the behaviour of the S225L
265	mutation during shorter stimulating pulses, we apply repetitive 300-ms pulses to +40 mV at a
266	frequency of 1 Hz and at 28°C (37°C was not tolerated by the oocytes). In response to this
267	protocol, the $K_V 7.1/S225L+KCNE1$ channel barely opens and thus generates only minor
268	currents (Fig. 4c). In contrast, we observe large $K_V7.1/S225L+KCNE1$ currents upon
269	application of 70 μ M N-AT (Fig. 4c). N-AT also restores the gradual increase in current
270	amplitude during repetitive pulsing seen experimentally (inset in Fig. 4c) and in computer
271	simulations ³² for the wild-type $K_V 7.1$ +KCNE1 channel.
272	
273	Further testing of N-AT show that 70 μ M N-AT shifts the $G(V)$ curve of all tested mutants by

274 30-50 mV towards more negative voltages (Fig. 4d-e, Supplementary File 3). The G(V)

275 curve of wild-type $K_V 7.1$ +KCNE1 is shifted by $-27.0 \pm 2.5 \text{ mV}^{29}$. Thus, 70 μ M N-AT

276 completely corrects the positive G(V) shifts induced by the mutations so that in the presence

of N-AT the G(V) is similar to or shifted negative compared to the G(V) of the wild-type

278 K_v7.1+KCNE1 channel (Fig. 4d, F351A homozygous expression was not included in this

analysis because of the very shifted G(V) curve of this mutant). The G(V) of mutants is

shifted about equally by N-AT for homozygous and heterozygous expression (Fig. 4e). The

- slope of the G(V) curve varies slightly (10.4 to 16.3) among the mutants (Supplementary
- File 3). To correct for this difference in slope and to better compare the functional effect of

283 N-AT-induced G(V) shifts on the different mutants, we also calculate the change in Gibbs

free energy for channel opening ($\Delta\Delta Go$) that 70 μ M N-AT induces. 70 μ M N-AT reduces the

285	energy required to open the channel by 5.3-9.0 kJ/mol depending on mutant (4.9 \pm 0.7 kJ/mol
286	(n = 5) for wild-type) (Fig. 4f). To estimate the functional effect of N-AT on the
287	K_V 7.1+KCNE1 current amplitude of each mutant, we calculate the ratio of the current
288	amplitude at the end of the 5-s test pulse before and after application of N-AT at $+20$ and $+40$
289	mV. The 5-s voltage pulse to $+20$ mV (or $+40$ mV) at room temperature was chosen to make
290	the $K_V 7.1$ +KCNE1 channel activate to a similar extent as during a ventricular action potential
291	(300-400 ms) at body temperature (note that $K_V 7.1 + KCNE1$ channels have a relatively high
292	Q_{10} of around 5-7.5 ^{33, 34}). 70 μ M N-AT increases the current amplitude of all mutants at these
293	voltages (Fig. 4 – figure supplement 4a-b, Supplementary File 3). As expected, current
294	amplitude is most increased for those mutants that have the most shifted $G(V)$ curve towards
295	more positive voltages (e.g. V215M and S225L). This is because these mutants are still at the
296	foot of their $G(V)$ curve at +20 and +40 mV and a N-AT-induced shift towards more negative
297	voltages results in a relatively larger increase in the current amplitude. By multiplying these
298	relative N-AT-induced increases in current amplitude with the relative current amplitude of
299	each mutant (compared to wild-type $K_V7.1$ +KCNE1 channels, from Fig. 1 – figure
300	supplement 4c-d), we observe that 70 μ M N-AT compensates fairly well (or
301	overcompensates) for the mutation-induced reduction in current amplitude (Fig. 4g, Fig. 4 –
302	figure supplement 4c). Moreover, for all mutant and wild-type K _V 7.1+KCNE1 channels, 70
303	μ M N-AT speeds up the opening kinetics at +40 mV by a factor of 1.3-2.5 (Supplementary
304	File 3). 70 μ M N-AT also slows down the closing kinetics for most mutants and wild-type
305	K _V 7.1+KCNE1 (Supplementary File 3). For F351A heterozygous expression and R583C
306	homozygous expression, 70 μ M N-AT restores the closing kinetics so that the closing
307	kinetics is not statistically different (P > 0.05) from wild-type $K_V 7.1 + KCNE1$ closing kinetics
308	$(737 \pm 62 \text{ ms and } 833 \pm 74 \text{ ms}, \text{ respectively compared to } 967 \pm 47 \text{ ms for wild-type})$. In the
309	presence of KCNE1, channels made with F193L heterozygous expression, L251A

homozygous expression, and R583C heterozygous expression have wild-type like closing
kinetics already before application of N-AT.

312

313 *N-AT affects both S4 movement and gate opening in mutants*

- 314 We next use voltage clamp fluorometry on $K_V7.1/G219C^*/S225L+KCNE1$ and
- 315 $K_V 7.1/G219C^*/F351A+KCNE1$ to explore the mechanism by which N-AT enhances the
- 316 activity of two mechanistically different mutants. Surprisingly, N-AT caused a dramatic
- 317 decrease in the fluorescence from Alexa488-labeled $K_V 7.1/G219C^*+KCNE1$ channels (Fig.
- 318 **5 figure supplement 1a**). In contrast, N-AT did not decrease the fluorescence from
- 319 Alexa488-labeled K_V7.1/G219C* channels nor from unbound Alexa488 (even up to
- 320 concentrations of 0.5 M N-AT; Fig. 5 figure supplement 1b), suggesting that N-AT is not
- 321 a collisional quencher of Alexa488. The mechanism of the N-AT-induced decrease of
- 322 fluorescence from Alexa488-labeled K_V7.1/G219C*+KCNE1 channels is not clear, but could
- 323 be due to N-AT inducing a conformational change in KCNE1 or K_V 7.1 that brings a
- 324 quenching residue close to Alexa488.
- 325
- 326 Due to the dramatic decrease in the fluorescence signal from Alexa488-labeled
- 327 $K_V 7.1/G219C^*$ +KCNE1 channels, we have to normalize the F(V) curves obtained in N-AT to
- 328 the amplitude of the F(V) in control solutions. With this normalization, voltage clamp
- 329 fluorometry experiments on K_V7.1/G219C*/S225L+KCNE1 indicate that N-AT shifts both
- 330 the voltage dependence of the first part (which represents F1) and the second part (which
- represents F2) of the F(V) curve towards more negative voltages (Fig. 5 figure supplement
- **1c**). However, due to the not completely saturating F(V) for K_V7.1/G219C*/F351A+KCNE1,
- 333 we are unable to reliably normalize the F(V) curves in the presence of N-AT to the control
- F(V) curves. We instead explore the effect of N-AT on the kinetics of the two fluorescence

335	components: $F1$, which is seen as a fast fluorescence change at negative voltages, and $F2$,
336	which is seen as a slow fluorescence change on top of the $F1$ component at positive
337	voltages ²⁴ . F1 correlates with the measured gating currents in $K_V7.1$ +KCNE1 channels (and
338	the initial delay in the $K_V7.1$ +KCNE1 ionic currents), whereas F2 correlates with the opening
339	of K _V 7.1+KCNE1 channels ²⁴ . For both mutants, 70 μ M N-AT speeds up <i>F</i> 1 kinetics (Fig.
340	5a,d, measured at -40 mV where virtually no channels open and the fluorescence is mainly
341	composed of $F1$). Numeric values for N-AT effects on channel kinetics are summarized in
342	Figure 5f. Moreover, N-AT accelerates the channel opening kinetics (Fig. 5b,e) and both the
343	<i>F1</i> and <i>F2</i> fluorescence components at +80 mV for $K_V7.1/G219C^*/S225L+KCNE1$ (Fig. 5f).
344	The change in the $F2$ component is probably larger than what the fits of a double-exponential
345	function suggest, because the slow part of the fluorescence, mainly $F2$, overlay nicely on the
346	currents in both the presence and absence of 70 μ M N-AT (Fig. 5c, upper panel). As a
347	control, we show that the fluorescence in N-AT does not, however, overlay the currents in
348	control solutions and vice versa (Fig. 5c, middle and lower panel). For
349	$K_V7.1/G219C^*/F351A+KCNE1$, the $G(V)$ curve and the F2 component are so shifted
350	towards depolarizing voltages that we cannot reliably quantify the $F2$ component in our
351	fluorescence traces. 70 μ M N-AT does, however, speed up K _V 7.1/G219C*/F351A+KCNE1
352	current kinetics (Fig. 5e), which suggests that N-AT also speeds up F2 in
353	$K_V 7.1/G219C^*/F351A+KCNE1$. Altogether, these results suggest that N-AT accelerates both
354	conformational changes during the main gating charge movement and channel opening.
355	

356 Discussion

- 357 We show that all studied LQTS and LQTS-like mutations i) shift the G(V) of K_V7.1+KCNE1
- 358 towards more positive voltages, and/or ii) accelerate K_V7.1+KCNE1 closing. This suggests
- that at least part of the mechanism underlying the reduced ability of these mutants to generate

360	K^+ currents is by altering these biophysical properties of the $K_V7.1$ +KCNE1 channel. Using
361	voltage clamp fluorometry in combination with kinetic modeling, we further suggest that
362	these altered biophysical properties in mutants may be caused by interference with different
363	gating transitions. Our experimental data and kinetic modeling are consistent with a model in
364	which $K_V 7.1/S225L$ primarily causes reduced channel function by altering the main voltage
365	sensor movement, while $K_V 7.1/F351A$ alters later gating transitions associated with pore
366	opening. The different effects of S225L and F351A on the fluorescence versus voltage
367	relationships in $K_V7.1/G219C^*$ and $K_V7.1/G219C^*+KCNE1$ suggest that these mutations
368	cause channel dysfunction via different molecular mechanisms. Note that we used the LQTS-
369	like F351A mutant, because the LQTS mutant F351S did not generate any currents (Fig. $1 -$
370	figure supplement 1). However, during the review process of this manuscript a new LQTS
371	mutant, F351L, was found ³⁵ . The current and fluorescence of this LQTS mutant is very
372	similar to the current and fluorescence of F351A (Fig. 3 – figure supplement 3), suggesting
373	that our conclusions on the LQTS-like F351A is also relevant for the LQTS mutant F351L.
374	
375	One of the mutants, F193L, has only minor effects on the biophysical properties of
376	K _v 7.1+KCNE1. This mutant was previously reported to have reduced current amplitude
377	compared to the wild-type $K_V 7.1$ +KCNE1 channel and a mild clinical phenotype ¹³ . The
378	F193L mutation may therefore cause loss of function by faster deactivation kinetics and
379	lower current density. Heterozygous expression of mutated subunits and wild-type subunits in
380	equal molar ratios results in general in a milder biophysical phenotype (more close to the
381	wild-type phenotype). This is in line with a milder clinical phenotype generally reported for
382	heterozygous carriers of LQTS mutations compared to individuals with homozygous
383	genotypes ³⁶⁻³⁸ . Moreover, for different mutations different biophysical effects of the
384	mutations could be dominant or recessive: For S225L and L251A, heterozygous expression

385	in the presence of KCNE1 partially or completely restores wild-type like V_{50} , whereas
386	heterozygous expression does not improve closing kinetics compared to homozygous
387	expression. For KCNE1/K70N and KCNE1/S74L, co-expression with wild-type KCNE1
388	subunits also restores wild-type like V_{50} , whereas wild-type like closing kinetics is only
389	partially restored. In contrast, for $K_V 7.1/R583C$, heterozygous expression restores wild-type
390	like closing kinetics, but not wild-type like V_{50} . However, because of uncertainties regarding
391	the stoichiometry of mutant to wild-type subunits in assembled $K_V 7.1$ +KCNE1 channels (as
392	mentioned in the Results section), further studies will be required to understand the
393	mechanisms underlying these apparent dominant or recessive effects and to evaluate possible
394	physiological impact of these effects.
395	
396	Our results show that all tested mutants respond to N-AT. This is in contrast to previously
397	reported K_V7 channel activators on disease-causing K_V7 mutants, for which mutants show
398	markedly different sensitivity ³⁹⁻⁴¹ . 70 μ M N-AT shifts the <i>G</i> (<i>V</i>) curve of the wild-type
399	K _v 7.1+KCNE1 channel and of all LQTS and LQTS-like mutants by approximately (-50)-(-
400	30) mV, accelerates channel opening and slows down channel closing. In the presence of 70
401	μ M N-AT, the V ₅₀ of all LQTS and LQTS-like mutants are similar to or more negative than
402	V_{50} for the wild-type K _V 7.1+KCNE1 channel. For most mutants, 70 µM N-AT
403	overcompensates for the shift in $G(V)$ and reduction in current amplitude caused by the
404	mutations, indicating that a lower N-AT concentration or a less potent N-AT analogue could
405	be used to restore wild-type like $G(V)$ and current amplitudes. Moreover, K _V 7.1+KCNE1
406	opening and closing kinetics are partially or completely restored by N-AT. Also, although the
407	disease aetiology of the F193L mutant is likely mainly reduced channel expression, the N-AT
408	induced augmentation caused by a shift in $G(V)$ and increased currents may at least in part
409	overcome the reduction in currents caused by the reduced channel expression. This general

ability of N-AT to, at least partly, compensate for the reduced function of mutants in different parts of the $K_V7.1+KCNE1$ channel complex and with seemingly different molecular defects, as long as a population of these mutant channels reaches the plasma membrane, suggests that N-AT is an interesting model compound for development of future anti-arrhythmics to treat LQTS caused by diverse $K_V7.1+KCNE1$ mutations.

415

416 Defective trafficking of mutant K_V11.1 ion channels is a common cause of LQTS type 2. 417 About 80-90% of LQTS type 2-associated hERG mutants are estimated to suffer from defective trafficking^{42, 43}. The corresponding number for LQTS-associated K_V7.1 and 418 419 KCNE1 mutants is not clear. Previous studies identify both trafficking defective and trafficking competent K_V7.1 and KCNE1 mutants^{e.g. 12, 18, 44}. We are particularly interested to 420 421 understand the mechanism that underlies abnormal gating of $K_V 7.1$ and KCNE1 mutants. To 422 avoid mutants with severe trafficking defects, we therefore selected mutants that have 423 previously been shown to localize abundantly enough to the cell membrane to generate 424 detectable K⁺ currents. Several of the selected mutants have been shown to traffic well in mammalian systems ($K_V 7.1/V215M$ and KCNE1/S74L^{14, 18}) or generate clearly detectable 425 currents in mammalian cells ($K_V 7.1/R583C^{17}$). Our *Xenopus* oocyte experiments that 426 427 compare mutant current amplitudes with wild-type current amplitudes (Fig. 1 - figure 428 supplement 4) suggest that the reduced ability of the selected mutants to generate currents in 429 *Xenopus* oocytes may largely be explained by the shifted G(V) of mutants. Trafficking 430 defects could be disguised in *Xenopus* oocytes that are cultured at low temperatures that may rescue some trafficking defects^{42, 45}. These current amplitude experiments should therefore be 431 432 interpreted with caution until trafficking of specific K_V 7.1 and KCNE1 LQTS mutants in 433 mammalian systems has been explored. Previous studies show that membrane expression of 434 trafficking-defect channel mutants (e.g. for $K_V 11.1$ and CFTR) can be pharmacologically

435rescued using compounds that are suggested to stabilize channel conformation during folding436and trafficking^{42, 45, 46}. However, rescue of membrane expression may only partially437compensate for mutation-induced loss of function, if these mutants also suffer from defective438gating⁴⁷. Our proposed N-AT model for pharmacological correction of "G(V)" LQTS mutants439could therefore potentially complement pharmacological correction of trafficking-defect440LQTS mutants to improve the outcome of patients suffering from LQTS.

441

442 We previously suggested that polyunsaturated fatty acids and their analogues (such as N-AT) 443 attract the voltage sensor S4 in K_V 7.1 by an electrostatic mechanism and thereby shift the G(V) towards more negative voltages and speed up channel opening²⁹. We therefore initially 444 445 hypothesized that N-AT only would restore the function of those LQTS mutations with 446 altered S4 movement. We were pleasantly surprised when N-AT seems to be able to restore 447 the function of many LQTS and LQTS-like mutants, with diverse mutational defects (such as 448 S225L and F351A). Using voltage clamp fluorometry, we have previously shown that both 449 the main gating charge movement and the gate opening of $K_V 7.1 + KCNE1$ channels are accompanied by fluorescence signals from fluorophores attached to $S4^{24}$. This suggests that 450 451 S4 moves both during the main gating charge movement and during the subsequent channel opening in $K_V 7.1$ +KCNE1 channels²⁴, which is similar to observations in Shaker K_V 452 453 channels⁴⁸⁻⁵⁰. Therefore, N-AT could affect both the main gating charge movement and gate 454 opening by acting on the S4 voltage sensor, as has been shown for hanatoxin which targets 455 the voltage-sensing domain in the Shaker K_V channel⁵¹. This hypothesis is supported by our 456 voltage-clamp fluorometry experiments using K_V7.1/S225L and K_V7.1/F351A in which N-457 AT accelerates the fluorescence components associated with both the main S4 movement 458 (F1) and gate opening (F2), as well as accelerates the kinetics of channel opening. This 459 proposed mechanism would explain why N-AT can restore the function of mutations that

460	mainly target the main S4 movement or gate opening. However, the dramatic decrease in the
461	fluorescence signal caused by N-AT makes it hard for us to explore the effect of N-AT on the
462	F(V) of mutants. Therefore, the complete mechanism of N-AT in the different mutations is
463	not clear.
464	
465	Careful future studies are required to assess the clinical utility of PUFA analogues in
466	cardiomyocytes and animal models. We see channel specificity of PUFA analogues as one
467	major challenge and appreciate the need to improve PUFA analogue affinity to
468	K _V 7.1+KCNE1 to reduce required therapeutic concentrations and minimize potential adverse
469	effects. Despite these challenges, our data show that the magnitude of N-AT-induced voltage
470	shifts are in the range of shifts induced by several LQTS mutations, and serve as proof of
471	concept that this PUFA analogue, at least partly, restores channel function in diverse LQTS
472	and LQTS-like mutants.
473	
474	
475	
476	
477	
4//	
478	
479	
480	

481 *Materials and Methods*

482 Experiments were approved by The Linköping Animal Ethics Committee at Linköping

483 University and The Animal Experiments Inspectorate under the Danish Ministry of Food,

484 Agriculture and Fisheries (University of Copenhagen).

485

486 *Experiments on Xenopus laevis oocytes*

487 Molecular biology

- 488 Expression plasmids human K_V7.1 (GenBank Acc.No. NM_000218) in pXOOM and KCNE1
- 489 (NM_000219) in pGEM have been previously described^{52, 53}. LQTS and LQTS-like point
- 490 mutations and G219C were introduced into K_V7.1 or KCNE1 using site-directed mutagenesis
- 491 (QuikChange Stratagene, CA, USA). All newly generated constructs were sequenced to
- 492 ensure integrity (Genewiz, NJ, USA). cRNA was prepared from linearized DNA using the T7
- 493 mMessage mMachine transcription kit (Ambion, TX, USA). RNA quality was checked by
- 494 gel electrophoresis, and RNA concentrations were quantified by UV spectroscopy.

495

496 Two-electrode voltage-clamp electrophysiology

- 497 Xenopus laevis oocytes (from EcoCyte Bioscience, TX, USA, or prepared in house) were
- 498 isolated and maintained as previously described⁵⁴. 50 nl cRNA (~50 ng K_V7.1 for K_V7.1-only
- 499 expression, 25 ng K_V7.1 + 8 ng KCNE1 for homozygous expression, or 12.5 ng K_V7.1^{wt} +

500 12.5 ng K_V7.1^{mut} + 8 ng KCNE1^{wt} alternatively 25 ng K_V7.1^{wt} + 4 ng KCNE1^{wt} + 4 ng

- 501 KCNE1^{mut} for heterozygous expression) was injected into each oocyte. Currents were
- 502 measured at room temperature 2-5 days after injection with the two-electrode voltage-clamp
- 503 technique (CA-1B amplifier, Dagan, MN, USA). For the current amplitude experiments

504	presented in Figure 1- figure supplement 4, the current amplitude of mutants were
505	normalized to the current amplitude of wild-type $K_V 7.1 + KCNE1$ expressed in the same batch
506	of oocytes and incubated under identical conditions for the same time period. Currents were
507	sampled at 1-3.3 kHz, filtered at 500 Hz, and not leakage corrected. The control solution
508	contained (in mM): 88 NaCl, 1 KCl, 15 HEPES, 0.4 CaCl ₂ , and 0.8 MgCl ₂ (pH adjusted to
509	7.4 using NaOH). The holding voltage was generally set to -80 mV. Activation curves were
510	generally elicited by stepping to test voltages between -110 and $+60$ mV (3-5 s durations and
511	10 mV increments) followed by a tail voltage of -20 mV. Voltage clamp fluorometry
512	experiments were performed as previously described on oocytes labeled for 30 min with 100
513	μ M Alexa-488-maleimide (Molecular Probes) at 4°C ²⁴⁻²⁶ . For voltage clamp fluorometry
514	experiments on $K_V 7.1/G219C^*$, the holding voltage was -80 mV, the pre-pulse -120 mV for
515	2 s, and test voltages ranging between -140 and $+80$ mV for 3 s in 20 mV increments. The
516	tail voltage was -80 mV. For K _V 7.1/G219C*/KCNE1, the holding voltage was -80 mV, the
517	pre-pulse -160 mV for 5 s, and test voltages ranging between $-160 \text{ and } +80 \text{ mV}$ for 5 s in 20
518	mV increments. The tail voltage was -40 mV. N-arachidonoyl taurine was purchased from
519	Cayman Chemical (MI, USA) and stored, diluted and applied to the oocyte chamber as
520	previously described ²⁹ . Control solution was added to the bath using a gravity-driven
521	perfusion system.

523 Electrophysiological analysis

524 To quantify effects on the G(V), tail currents (measured shortly after initiation of tail voltage) 525 were plotted against the pre-pulse (test) voltage. The following Boltzmann relation was fitted 526 to the data

527

528
$$G_{\rm K}(V) = G_{\rm max} / (1 + \exp((V_{50} - V) / s)), \tag{1}$$

530 where V_{50} is the midpoint (i.e. the voltage at which the conductance is half the maximal 531 conductance estimated from the fit) and s the slope factor (shared slope for control and N-AT 532 curves within the same cell). In figures showing Itail vs voltage, the curves are normalized to the fitted G_{max} . The same single Boltzmann relation was used to fit the F(V) from voltage 533 534 clamp fluorometry recordings of K_V7.1 without KCNE1 co-expression, where fluorescence at the end of the test pulse was plotted *versus* the test voltage²⁴. For voltage-clamp fluorometry 535 536 recordings of $K_V7.1$ with KCNE1 co-expression (and F351A without KCNE1), a double Boltzmann relation was used²⁴. For experiments where conductance or fluorescence did not 537 538 clearly show signs of saturation in the experimental voltage range, these fits should be 539 considered as an approximation. To estimate the effect of N-AT on Gibbs free energy, the 540 following relation was used:

541

542
$$\Delta \Delta G_{\rm o} = z * \Delta V_{50} * \mathrm{F}, \qquad (2)$$

543

544 Where z is the gating charge of each channel deduced from the slope of the Boltzmann fits 545 according to z = 25/s, ΔV_{50} is the N-AT induced shift in the V_{50} values from the Boltzmann fits, and F is Faraday's constant⁵⁵⁻⁵⁷. This analysis assumes a two-state model and tends to 546 547 underestimate the z^{58} . The calculated $\Delta\Delta G_0$ should therefore be seen as an approximation. 548 For opening and closing kinetics, T_{50.open} was defined as the time it takes to reach 50% of the 549 current in the end of a 3 s (5 s for KCNE1 co-expression) long test pulse to +40 mV. T_{50.close} 550 was defined as the time it takes to reduce the amplitude (= instantaneous tail current – steady 551 state tail current) of the tail current by 50% when stepping to a tail pulse to -20 for 5 s. To 552 analyze the effect of N-AT on fluorescence and current kinetics, single or double

exponentials were fitted to the fluorescence or current traces. The ratios of time constantsbefore and after application of N-AT were then calculated.

555

556 Modeling

Fluorescence and currents from the K_v7.1+KCNE1 models were simulated using Berkeley
Madonna (Berkeley, CA).

559

560 *Statistics*

561 Average values are expressed as mean \pm SEM. Mutant parameters (e.g. V_{50} and $\Delta\Delta G_0$) were

562 compared to wild-type parameters using one-way ANOVA with Dunnett's Multiple

563 Comparison Test. Comparison of homozygous and heterozygous expression was done using

564 one-way ANOVA with pair-wise Bonferroni's Test. Effects of N-AT on fluorescence and

565 current kinetics were analysed using two-tailed one sample *t*-test where ratios were compared

566 with a hypothetical value of 1. P < 0.05 is considered as statistically significant.

567

568 Acknowledgements

569 We thank Frida Starck Härlin (Linköping University) and Briana Watkins (University of

570 Miami) for help with some experiments and Drs. Fredrik Elinder (Linköping University),

571 Laura Bianchi and Feng Qiu (University of Miami), Nicole Schmitt, Mark Skarsfeldt and

572 Federico Denti (University of Copenhagen) for valuable comments.

573

575 Competing Interests

- 576 A patent application (62/032,739) based on these results has been submitted by the University
- 577 of Miami with S.I.L. and H.P.L. identified as inventors.

578

References

581	1.	Hedley, P.L., Jorgensen, P., Schlamowitz, S., Wangari, R., Moolman-Smook, J.,
582		Brink, P.A., Kanters, J.K., Corfield, V.A. & Christiansen, M. The genetic basis of
583		long QT and short QT syndromes: a mutation update. Hum Mutat 30, 1486-1511
584		(2009).
585	2.	Morita, H., Wu, J. & Zipes, D.P. The QT syndromes: long and short. Lancet 372, 750-
586		763 (2008).
587	3.	Cerrone, M., Cummings, S., Alansari, T. & Priori, S.G. A clinical approach to
588		inherited arrhythmias. Circ Cardiovasc Genet 5, 581-590 (2012).
589	4.	Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M. & Romey, G.
590		K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium
591		current. Nature 384 , 78-80 (1996).
592	5.	Sanguinetti, M.C., Curran, M.E., Zou, A., Shen, J., Spector, P.S., Atkinson, D.L. &
593		Keating, M.T. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac
594		I(Ks) potassium channel. Nature 384, 80-83 (1996).
595	6.	Nerbonne, J.M. & Kass, R.S. Molecular physiology of cardiac repolarization. Physiol
596		<i>Rev</i> 85, 1205-1253 (2005).
597	7.	Nakajo, K., Ulbrich, M.H., Kubo, Y. & Isacoff, E.Y. Stoichiometry of the KCNQ1 -
598		KCNE1 ion channel complex. Proc Natl Acad Sci U S A 107, 18862-18867 (2010).
599	8.	Plant, L.D., Xiong, D., Dai, H. & Goldstein, S.A. Individual IKs channels at the
600		surface of mammalian cells contain two KCNE1 accessory subunits. Proc Natl Acad
601		<i>Sci U S A</i> 111, E1438-1446 (2014).
602	9.	Murray, C.I., Westhoff, M., Eldstrom, J., Thompson, E., Emes, R. & Fedida, D.
603		Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a
604		KCNE1:KCNQ1 stoichiometry of up to 4:4. Elife 5, e11815 (2016).

605	10.	Liin, S.I., Barro-Soria, R. & Larsson, H.P. The KCNQ1 channel - remarkable
606		flexibility in gating allows for functional versatility. J Physiol 593, 2605-2615 (2015).
607	11.	Nakajo, K. & Kubo, Y. KCNQ1 channel modulation by KCNE proteins via the
608		voltage-sensing domain. J Physiol 593, 2617-2625 (2015).
609	12.	Bianchi, L., Priori, S.G., Napolitano, C., Surewicz, K.A., Dennis, A.T., Memmi, M.,
610		Schwartz, P.J. & Brown, A.M. Mechanisms of I(Ks) suppression in LQT1 mutants.
611		Am J Physiol Heart Circ Physiol 279, H3003-3011 (2000).
612	13.	Yamaguchi, M., Shimizu, M., Ino, H., Terai, H., Hayashi, K., Mabuchi, H., Hoshi, N.
613		& Higashida, H. Clinical and electrophysiological characterization of a novel
614		mutation (F193L) in the KCNQ1 gene associated with long QT syndrome. Clin Sci
615		(Lond) 104, 377-382 (2003).
616	14.	Eldstrom, J., Xu, H., Werry, D., Kang, C., Loewen, M.E., Degenhardt, A., Sanatani,
617		S., Tibbits, G.F., Sanders, C. & Fedida, D. Mechanistic basis for LQT1 caused by S3
618		mutations in the KCNQ1 subunit of IKs. J Gen Physiol 135, 433-448 (2010).
619	15.	Henrion, U., Strutz-Seebohm, N., Duszenko, M., Lang, F. & Seebohm, G. Long QT
620		syndrome-associated mutations in the voltage sensor of I(Ks) channels. Cell Physiol
621		<i>Biochem</i> 24 , 11-16 (2009).
622	16.	Yang, T., Smith, J.A., Leake, B.F., Sanders, C.R., Meiler, J. & Roden, D.M. An
623		allosteric mechanism for drug block of the human cardiac potassium channel KCNQ1.
624		Mol Pharmacol 83, 481-489 (2012).
625	17.	Yang, P., Kanki, H., Drolet, B., Yang, T., Wei, J., Viswanathan, P.C., Hohnloser,
626		S.H., Shimizu, W., Schwartz, P.J., Stanton, M., Murray, K.T., Norris, K., George,
627		A.L., Jr. & Roden, D.M. Allelic variants in long-QT disease genes in patients with
628		drug-associated torsades de pointes. Circulation 105, 1943-1948 (2002).

629	18.	Harmer, S.C., Wilson, A.J., Aldridge, R. & Tinker, A. Mechanisms of disease
630		pathogenesis in long QT syndrome type 5. Am J Physiol Cell Physiol 298, C263-273
631		(2010).
632	19.	Splawski, I., Tristani-Firouzi, M., Lehmann, M.H., Sanguinetti, M.C. & Keating,
633		M.T. Mutations in the hminK gene cause long QT syndrome and suppress IKs
634		function. Nat Genet 17, 338-340 (1997).
635	20.	Priori, S.G., Napolitano, C. & Schwartz, P.J. Low penetrance in the long-QT
636		syndrome: clinical impact. Circulation 99, 529-533 (1999).
637	21.	Napolitano, C., Priori, S.G., Schwartz, P.J., Bloise, R., Ronchetti, E., Nastoli, J.,
638		Bottelli, G., Cerrone, M. & Leonardi, S. Genetic testing in the long QT syndrome:
639		development and validation of an efficient approach to genotyping in clinical practice.
640		Jama 294, 2975-2980 (2005).
641	22.	Lai, L.P., Su, Y.N., Hsieh, F.J., Chiang, F.T., Juang, J.M., Liu, Y.B., Ho, Y.L., Chen,
642		W.J., Yeh, S.J., Wang, C.C., Ko, Y.L., Wu, T.J., Ueng, K.C., Lei, M.H., Tsao, H.M.,
643		Chen, S.A., Lin, T.K., Wu, M.H., Lo, H.M., Huang, S.K. & Lin, J.L. Denaturing
644		high-performance liquid chromatography screening of the long QT syndrome-related
645		cardiac sodium and potassium channel genes and identification of novel mutations
646		and single nucleotide polymorphisms. J Hum Genet 50, 490-496 (2005).
647	23.	Deschenes, D., Acharfi, S., Pouliot, V., Hegele, R., Krahn, A., Daleau, P. & Chahine,
648		M. Biophysical characteristics of a new mutation on the KCNQ1 potassium channel
649		(L251P) causing long QT syndrome. Can J Physiol Pharmacol 81, 129-134 (2003).
650	24.	Barro-Soria, R., Rebolledo, S., Liin, S.I., Perez, M.E., Sampson, K.J., Kass, R.S. &
651		Larsson, H.P. KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1
652		channels into two steps. Nat Commun 5, 3750 (2014).

653	25.	Osteen, J.D., Gonzalez, C., Sampson, K.J., Iyer, V., Rebolledo, S., Larsson, H.P. &
654		Kass, R.S. KCNE1 alters the voltage sensor movements necessary to open the
655		KCNQ1 channel gate. Proc Natl Acad Sci U S A 107, 22710-22715 (2010).
656	26.	Osteen, J.D., Barro-Soria, R., Robey, S., Sampson, K.J., Kass, R.S. & Larsson, H.P.
657		Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium
658		channels. Proc Natl Acad Sci U S A 109, 7103-7108 (2012).
659	27.	Zaydman, M.A., Kasimova, M.A., McFarland, K., Beller, Z., Hou, P., Kinser, H.E.,
660		Liang, H., Zhang, G., Shi, J., Tarek, M. & Cui, J. Domain-domain interactions
661		determine the gating, permeation, pharmacology, and subunit modulation of the IKs
662		ion channel. <i>Elife</i> 3 , e03606 (2014).
663	28.	Ruscic, K.J., Miceli, F., Villalba-Galea, C.A., Dai, H., Mishina, Y., Bezanilla, F. &
664		Goldstein, S.A. IKs channels open slowly because KCNE1 accessory subunits slow
665		the movement of S4 voltage sensors in KCNQ1 pore-forming subunits. Proc Natl
666		<i>Acad Sci U S A</i> 110, E559-566 (2013).
667	29.	Liin, S.I., Silvera Ejneby, M., Barro-Soria, R., Skarsfeldt, M.A., Larsson, J.E., Starck
668		Harlin, F., Parkkari, T., Bentzen, B.H., Schmitt, N., Larsson, H.P. & Elinder, F.
669		Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel.
670		Proc Natl Acad Sci U S A 112, 5714-5719 (2015).
671	30.	O'Hara, T., Virag, L., Varro, A. & Rudy, Y. Simulation of the undiseased human
672		cardiac ventricular action potential: model formulation and experimental validation.
673		PLoS Comput Biol 7, e1002061 (2011).
674	31.	Piacentino, V., 3rd, Weber, C.R., Chen, X., Weisser-Thomas, J., Margulies, K.B.,
675		Bers, D.M. & Houser, S.R. Cellular basis of abnormal calcium transients of failing
676		human ventricular myocytes. Circ Res 92, 651-658 (2003).

677	32.	Silva, J. & Rudy, Y. Subunit interaction determines IKs participation in cardiac
678		repolarization and repolarization reserve. Circulation 112, 1384-1391 (2005).
679	33.	Busch, A.E. & Lang, F. Effects of [Ca2+]i and temperature on minK channels
680		expressed in Xenopus oocytes. FEBS Lett 334, 221-224 (1993).
681	34.	Seebohm, G., Lerche, C., Busch, A.E. & Bachmann, A. Dependence of I(Ks)
682		biophysical properties on the expression system. Pflugers Arch 442, 891-895 (2001).
683	35.	Vyas, B., Puri, R.D., Namboodiri, N., Saxena, R., Nair, M., Balakrishnan, P.,
684		Jayakrishnan, M.P., Udyavar, A., Kishore, R. & Verma, I.C. Phenotype guided
685		characterization and molecular analysis of Indian patients with long QT syndromes.
686		Indian Pacing Electrophysiol J 16, 8-18 (2016).
687	36.	Priori, S.G., Schwartz, P.J., Napolitano, C., Bianchi, L., Dennis, A., De Fusco, M.,
688		Brown, A.M. & Casari, G. A recessive variant of the Romano-Ward long-QT
689		syndrome? Circulation 97, 2420-2425 (1998).
690	37.	Jackson, H.A., McIntosh, S., Whittome, B., Asuri, S., Casey, B., Kerr, C., Tang, A. &
691		Arbour, L.T. LQTS in Northern BC: homozygosity for KCNQ1 V205M presents with
692		a more severe cardiac phenotype but with minimal impact on auditory function. Clin
693		Genet 86, 85-90 (2014).
694	38.	Zhang, S., Yin, K., Ren, X., Wang, P., Zhang, S., Cheng, L., Yang, J., Liu, J.Y., Liu,
695		M. & Wang, Q.K. Identification of a novel KCNQ1 mutation associated with both
696		Jervell and Lange-Nielsen and Romano-Ward forms of long QT syndrome in a
697		Chinese family. BMC Med Genet 9, 24 (2008).
698	39.	Seebohm, G., Pusch, M., Chen, J. & Sanguinetti, M.C. Pharmacological activation of
699		normal and arrhythmia-associated mutant KCNQ1 potassium channels. Circ Res 93,
700		941-947 (2003).

- 40. Xiong, Q., Sun, H. & Li, M. Zinc pyrithione-mediated activation of voltage-gated
- KCNQ potassium channels rescues epileptogenic mutants. *Nat Chem Biol* 3, 287-296
 (2007).
- 41. Leitner, M.G., Feuer, A., Ebers, O., Schreiber, D.N., Halaszovich, C.R. & Oliver, D.
 Restoration of ion channel function in deafness-causing KCNQ4 mutants by synthetic
- 706 channel openers. *Br J Pharmacol* **165**, 2244-2259 (2012).
- 42. Anderson, C.L., Kuzmicki, C.E., Childs, R.R., Hintz, C.J., Delisle, B.P. & January,
- C.T. Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2
 long QT syndrome. *Nat Commun* 5, 5535 (2014).
- 710 43. Sanguinetti, M.C. HERG1 channelopathies. *Pflugers Arch* 460, 265-276 (2010).
- 711 44. Wilson, A.J., Quinn, K.V., Graves, F.M., Bitner-Glindzicz, M. & Tinker, A.
- Abnormal KCNQ1 trafficking influences disease pathogenesis in hereditary long QT
 syndromes (LQT1). *Cardiovasc Res* 67, 476-486 (2005).
- 714 45. Delisle, B.P., Anson, B.D., Rajamani, S. & January, C.T. Biology of cardiac

arrhythmias: ion channel protein trafficking. *Circ Res* **94**, 1418-1428 (2004).

- 716 46. Sato, S., Ward, C.L., Krouse, M.E., Wine, J.J. & Kopito, R.R. Glycerol reverses the
- misfolding phenotype of the most common cystic fibrosis mutation. *J Biol Chem* 271,
 635-638 (1996).
- 719 47. Perry, M.D., Ng, C.A., Phan, K., David, E., Steer, K., Hunter, M.J., Mann, S.A.,
- 720 Imtiaz, M., Hill, A.P., Ke, Y. & Vandenberg, J.I. Rescue of protein expression defects
- may not be enough to abolish the pro-arrhythmic phenotype of long QT type 2
- 722 mutations. *J Physiol* **594**, 4031-4049 (2016).
- 48. Börjesson, S.I. & Elinder, F. An electrostatic potassium channel opener targeting the
 final voltage sensor transition. *J Gen Physiol* 137, 563-577 (2011).

725	49.	Pathak, M., Kurtz, L., Tombola, F. & Isacoff, E. The cooperative voltage sensor
726		motion that gates a potassium channel. J Gen Physiol 125, 57-69 (2005).
727	50.	Phillips, L.R. & Swartz, K.J. Position and motions of the S4 helix during opening of
728		the Shaker potassium channel. J Gen Physiol 136, 629-644 (2010).
729	51.	Milescu, M., Lee, H.C., Bae, C.H., Kim, J.I. & Swartz, K.J. Opening the shaker K+
730		channel with hanatoxin. J Gen Physiol 141, 203-216 (2013).
731	52.	Jespersen, T., Grunnet, M., Angelo, K., Klaerke, D.A. & Olesen, S.P. Dual-function
732		vector for protein expression in both mammalian cells and Xenopus laevis oocytes.
733		Biotechniques 32, 536-538, 540 (2002).
734	53.	Schmitt, N., Calloe, K., Nielsen, N.H., Buschmann, M., Speckmann, E.J., Schulze-
735		Bahr, E. & Schwarz, M. The novel C-terminal KCNQ1 mutation M520R alters
736		protein trafficking. Biochem Biophys Res Commun 358, 304-310 (2007).
737	54.	Börjesson, S.I., Parkkari, T., Hammarström, S. & Elinder, F. Electrostatic Tuning of
738		Cellular Excitability. <i>Biophys J</i> 98, 396-403 (2010).
739	55.	Li-Smerin, Y. & Swartz, K.J. Helical structure of the COOH terminus of S3 and its
740		contribution to the gating modifier toxin receptor in voltage-gated ion channels. J Gen
741		<i>Physiol</i> 117, 205-218 (2001).
742	56.	Monks, S.A., Needleman, D.J. & Miller, C. Helical structure and packing orientation
743		of the S2 segment in the Shaker K+ channel. J Gen Physiol 113, 415-423 (1999).
744	57.	DeCaen, P.G., Yarov-Yarovoy, V., Zhao, Y., Scheuer, T. & Catterall, W.A. Disulfide
745		locking a sodium channel voltage sensor reveals ion pair formation during activation.
746		Proc Natl Acad Sci U S A 105, 15142-15147 (2008).
747	58.	Chowdhury, S. & Chanda, B. Estimating the voltage-dependent free energy change of
748		ion channels using the median voltage for activation. J Gen Physiol 139, 3-17 (2011).
749		

752 Figure legends

753 Figure 1. Biophysical properties of LQTS and LQTS-like K_V7.1+KCNE1 channel

754 mutants expressed in *Xenopus* oocytes. (a) Topology of K_V7.1 and KCNE1, and position of

- tested LQTS and LQTS-like mutants. (b) G(V) midpoints (V_{50}) from the Boltzmann fits for
- mutants co-expressed with KCNE1. n = 5-11. Data as mean \pm SEM. Statistics represent one-
- 757 way ANOVA with Dunnett's Multiple Comparison Test to compare mutants to wild-type
- 758 K_V 7.1+KCNE1; **P < 0.01; ns is P \ge 0.05. # denotes lowest estimate. Dashed line denotes
- vild-type V_{50} . (c) Representative example of K_V7.1/S225L+KCNE1 G(V) (black line and
- symbols) compared to wild-type $K_V7.1$ +KCNE1 (blue line and symbols, mean ± SEM, n =
- 5). (d-e) Representative example of $K_V 7.1/S225L+KCNE1$ opening kinetics and
- 762 K_V7.1+KCNE1/K70N closing kinetics (black lines) compared to wild-type K_V7.1+KCNE1
- (blue lines). The following figure supplements are available for figure 1: figure supplement 1,
- figure supplement 2, figure supplement 3, figure supplement 4.
- 765

766 Figure 2. Comparison of homozygous and heterozygous expression of LQTS and LQTS-

- 767 **like mutants.** (a-b) Representative example of kinetics (middle panel) and *G*(*V*) (right panel)
- for homozygous expression and heterozygous expression of S225L (a) and K70N (b).
- 769 Currents in response to steps from -80 mV to +40 mV (a, middle pane) and from +40 mV to
- 770 –20 mV (b, middle panel). Homozygous expression (black), heterozygous expression (gray),
- and K_V7.1+KCNE1 wild-type (blue). n = 7-13. (c-d) Summary of V_{50} (c) and T₅₀ for closing
- (d) for homozygous and heterozygous expression. Data as mean \pm SEM. n = 5-13. Statistics
- represent one-way ANOVA with pair-wise Bonferroni's Test to compare homozygous and
- heterozygous expression; **P < 0.01; ***P < 0.001; ns is P \ge 0.05. # denotes lowest estimate.
- 775 Not determined (nd). Statistics was not calculated for F351A. Dashed lines denote
- corresponding values for wild-type $K_V 7.1$ +KCNE1.

778 Figure 3. Voltage-clamp fluorometry recordings of wild-type and mutated

779 $K_V7.1+KCNE1$ channels. (a-c) Representative fluorescence traces and mean F(V)/G(V)780 curves for $K_V7.1/G219C^*$ (a), S225L (b), and F351A (c). Left panels without KCNE1 and 781 right panels with KCNE1. The holding voltage is -80 mV, the pre-pulse -120 mV for 2 s (left 782 panels) and -160 mV for 5 s (right panels), and test voltages between -140 and +80 mV for 3 783 s (left panels) and between -160 and +80 mV for 5 s (right panels) in 20 mV increments. The 784 tail voltage is -80 mV (left panels) and -40 mV (right panels). For 785 $K_V7.1/G219C^*/F351A+KCNE1$, the pre-pulse is -120 mV for 3 s, and test voltages ranging 786 between -160 and +100 mV. The bottom of the fit of the K_V7.1/G219C*/S225L+KCNE1 787 F(V) curve (which saturates fairly well at negative voltages) is set to 0 in the normalized F(V)788 curves in the right panels. The F1 amplitude of K_V7.1/G219C*/F351A+KCNE1 is 789 normalized to the F1 amplitude of wild-type. Data as mean \pm SEM. n = 4-14. The dashed 790 lines in (b) and (c) denote F(V) (red) and G(V) (black) for wild-type (from a). The following 791 figure supplements are available for figure 3: figure supplement 1, figure supplement 2, 792 figure supplement 3.

793

794	Figure 4. Effect of N-AT	on LQTS and L	QTS-like mutants.	All these expe	eriments are
	a		•		

done in the presence of KCNE1. Structure of N-AT is shown. (a-b) Representative effect of

- 796 7-70 μ M N-AT on current amplitude (a) and G(V) (b) of K_V7.1/S225L+KCNE1. Dashed line
- in (a) denotes 0 μ A. (c) Representative currents generated by K_V7.1/S225L+KCNE1 during
- pulsing at 1 Hz and +28°C in control solution (black) and after the cell had been bathed
- 799 continuously in 70 μM N-AT (light to dark green, # denotes sweep order). Inset:
- 800 corresponding currents from wild-type K_V7.1+KCNE1 scaled similarly as
- 801 K_v7.1/S225L+KCNE1. Light grey trace denotes sweep #1, grey trace denotes sweep #2, and

802	dark grey trace denotes sweep #20. (d) Summary of V_{50} for LQTS and LQTS-like mutants
803	before and after 70 μ M N-AT application. Dashed line denotes V_{50} for wild-type
804	K _V 7.1+KCNE1. (e-f) Summary of ΔV_{50} (e) and $\Delta \Delta G_0$ (f) for LQTS and LQTS-like mutants
805	induced by 70 μ M N-AT. # denotes an approximation. Dashed lines denote corresponding
806	ΔV_{50} and $\Delta \Delta G_{o}$ induced by 70 μ M N-AT for wild-type K _V 7.1+KCNE1. Statistics in (f)
807	represent one-way ANOVA with Dunnett's Multiple Comparison Test to compare the N-AT-
808	induced change in $\Delta\Delta G_0$ of mutants to N-AT-induced change in $\Delta\Delta G_0$ of wild-type
809	K _V 7.1+KCNE1; *P \leq 0.05. Only significant differences shown in (f), other comparisons have
810	$P > 0.05$. (g) Estimate of the ability of 70 μ M N-AT to restore LQTS and LQTS-like mutant
811	current amplitude at +40 mV. The mean N-AT induced increase in current amplitude for each
812	mutant (from Figure 4 – figure supplement 4b) is multiplied with the control amplitude for
813	each mutant (from Figure 1 – figure supplement 4d). Not determined (nd). Data as mean \pm
814	SEM. $n = 5-12$. Dashed line denotes relative wild-type K _V 7.1+KCNE1 current amplitude in
815	control solution (i.e. without N-AT). The following figure supplements are available for
816	figure 4: figure supplement 1, figure supplement 2, figure supplement 3, figure supplement 4.
817	
818	Figure 5. Effect of 70 μ M N-AT on S4 movement and gate opening in S225L and F351A
819	mutants. (a-c) Representative example of effect of 70 μ M N-AT on F1 kinetics (a), current
820	opening kinetics (b), and F2 kinetics (c) in K _V 7.1/G219C*/S225L+KCNE1. Control
821	fluorescence (red) and current (black). N-AT fluorescence (magenta) and current (green).
822	Top in (c) shows overlay of the later part of the fluorescence (after most of $F1$ has occurred)
823	and the later part of the currents (after the initial delay) before and after application of N-AT.
824	Middle and lower (c) show that there is not a great overlap of the fluorescence in the presence
825	of N-AT and the current in control solution (middle) or the fluorescence in control solution
826	and the current in the presence of N-AT (lower). (d-e) Representative example of effect of 70

 μ M N-AT on F1 kinetics (d) and current opening kinetics (e) in

828 K_V7.1/G219C*/F351A+KCNE1. Same colouring as in (a-b). Dashed line in (b) and (e)

- 829 denotes 0 µA. Fluorescence traces and all traces in (c) have been normalized to better allow
- 830 temporal comparison. (f) Summary of the effect of 70 μM N-AT on kinetic parameters of
- 831 $K_V 7.1/G219C*/S225L+KCNE1$ and $K_V 7.1/G219C*/F351A+KCNE1$. Kinetics of the fast
- 832 (F1) and slow (F2) fluorescence components were deduced from a double-exponential
- 833 function fitted to the fluorescence traces. Kinetics of currents were deduced from a single-
- exponential function fitted to current traces. Ratios of time constants (τ_{N-AT}/τ_{Ctrl}) were
- 835 calculated pair-wise (control compared to N-AT) in each oocyte and analysed using two-
- tailed one sample *t*-test where ratios were compared with a hypothetical value of 1. Data as
- 837 mean \pm SEM. n = 4 (3 for fluorescence kinetics for K_V7.1/G219C*/F351A+KCNE1). *P <
- 838 0.05; **P < 0.01. nd = not determined. The following figure supplement is available for
- figure 5: figure supplement 1.
- 840

841 Figure 1 – figure supplement 1. K_V7.1/F3518 mutant expressed in *Xenopus* oocytes. The

842 K_v7.1/F351S mutant does not generate currents when expressed in *Xenopus* oocytes. The

holding voltage is -80 mV, and test voltages range between -80 and +60 mV for 3 s in 10

- 844 mV increments. The tail voltage is -20 mV.
- 845

Figure 1 – figure supplement 2. V₅₀ of LQTS and LQTS-like K_V7.1 mutants expressed in

847 **Xenopus oocytes.** G(V) midpoints (V_{50}) for LQTS and LQTS-like mutants without co-

848 expression of KCNE1. Mean \pm SEM. n = 5-12. Statistics represent one-way ANOVA with

B49 Dunnett's Multiple Comparison Test to compare V_{50} of mutant to V_{50} of wild-type K_V7.1;

850 **P < 0.01; ns P \geq 0.05. Dashed line denotes wild-type V_{50} .

Figure 1 – figure supplement 3. K_V7.1/R583C mutant expressed in *Xenopus* oocytes. (a)

853 The K_V7.1/R583C mutant generates currents that inactivate at positive voltages. The holding

voltage is -80 mV, and test voltages range between -80 and +40 mV for 3 s in 20 mV

855 increments. The tail voltage is -20 mV. Tail currents are measured at the arrow. Inset:

representative current trace at +40 mV for wild-type K_V 7.1. (b) Representative example of

G(V) curves generated using the protocol in panel a (filled circles) or a triple pulse protocol

858 (open circles) with a brief hyperpolarizing pulse (-140 mV for 20 ms) between the test pulse

and the tail pulse to release a fraction of channels from inactivation. The triple pulse protocol

860 generates a G(V) that is shifted ~9 mV towards positive voltages ($V_{50} = ~-39$ mV for the

861 regular protocol and -30 mV for the triple pulse protocol), which matches the G(V) of the

862 wild-type $K_V 7.1$ fairly well ($V_{50} = -29.4$ mV).

863

Figure 1 – figure supplement 4. Comparison of current amplitude of wild-type

865 K_V7.1+KCNE1 and LQTS and LQTS-like mutants when expressed in *Xenopus* oocytes.

866 K_V7.1 and KCNE1 were co-injected in oocytes for homozygous (a) and heterozygous (b)

867 expression, as described in Materials and Methods. Current were recorded after 2 days of

868 incubation at 16°C. The holding voltage is -80 mV, and test voltages range between 0 and

+60 mV for 5 s in 20 mV increments. The tail voltage is -20 mV. Current amplitudes at the

870 end of the 5 s test pulse are normalized to the wild-type $K_V 7.1$ +KCNE1 current amplitude at

+60 mV recorded in the same batch of oocytes. Dashed line in (a) is the wild-type curve

872 shifted +25 mV. (c-d) Detailed comparison of current amplitudes at +20 mV (c) and +40 mV

- 873 (d). Mutant current amplitudes are normalized to the wild-type K_V7.1+KCNE1 current
- amplitude at indicated voltage. Dashed lines denote relative wild-type K_V7.1+KCNE1 current
- 875 amplitude (= 1). Statistics represent one-way ANOVA with Dunnett's Multiple Comparison

876 Test to compare current amplitude of mutants to wild-type current amplitudes. *P < 0.05; **P 877 < 0.01; ***P < 0.001; ns is P \ge 0.05. Mean \pm SEM. n = 4-12.

878

879	Figure 3 - figure supplement 1. Kinetic models for $K_V7.1$ and $K_V7.1$ +KCNE1 channel
880	gating. (a) A 10-state allosteric gating scheme for $K_V 7.1$ channels. Horizontal transitions
881	represent independent S4 movements that increase the fluorescence to an intermediate level
882	(which generates the $F1$ component). The vertical transition represents concerted channel
883	opening with a concomitant additional fluorescence increase (which generates the $F2$
884	component). Cartoon shows $K_V 7.1$ channel labeled with a fluorophore on S3-S4 with all four
885	voltage sensors in the resting state (C_0), with one (C_1), or four (C_4) voltage sensor activated in
886	the closed channel (top) or with all four voltage sensors in the resting state (O_0) , with one
887	(O_1) , or four (O_4) voltage sensor activated with the channel opened (bottom). (b) A 6-state
888	allosteric gating scheme for $K_V7.1$ +KCNE1 channels. Horizontal transitions represent
889	independent S4 movements that increase the fluorescence to an intermediate level (which
890	generates the $F1$ component). The vertical transition represents concerted channel opening
891	with a concomitant additional fluorescence increase (which generates the $F2$ component).
892	Cartoon shows K_V 7.1 channel labeled with a fluorophore on S3-S4 with all four voltage
893	sensors in the resting state (C_0), with one (C_1), or four (C_4) voltage sensor activated without
894	channel opening (top) that is followed by a concerted conformational change of all four S4s
895	associated with channel opening (O ₄) (bottom).
896	
897	Figure 3 - figure supplement 2. Simulations of wild-type and mutant $K_V 7.1$ and

898 K_V 7.1+KCNE1 channels reproduce currents and fluorescence. Simulated G(V) (black)

- and F(V) (red) curves for (a) wild-type, (b) S225L, and (c) F351A K_V7.1 (left) and
- 900 K_V7.1+KCNE1 (right) channels using the K_V7.1 and K_V7.1+KCNE1 models in Figure 3 -

- 901 figure supplement 1. Parameters for the wild-type models were determined in earlier studies
- 902 (see Supplementary File 4 for all rate constants). Current and fluorescence traces were
- 903 simulated using Berkeley Madonna (Berkeley, CA).
- 904

905 Figure 3 – figure supplement 3. Voltage-clamp fluorometry recordings of the

- 906 $K_V 7.1/G219C^*/F351L$ mutant with and without KCNE1 co-expressed. Mean F(V)/G(V)
- 907 curves for $K_V 7.1/G219C^*/F351L$ (mean \pm SEM) are shown together with corresponding
- 908 mean F(V)/G(V) curves for WT K_V7.1/G219C* (blue lines) and K_V7.1/G219C*/F351A
- 909 (dashed red/black lines). Experiments are performed and data normalized as described in
- 910 Figure 3. Note that all data presented in this graph are done on constructs with a
- 911 Kv7.1/C214A/C331A background (Barro-Soria *et al.*, 2014²⁴; Barro-Soria *et al.*, 2015⁵⁹). The
- 912 F(V)/G(V) curves are therefore shifted towards negative voltages compared the data
- 913 presented in Figure 3 (which are done in WT background). n = 4-6.
- 914
- 915 24. Barro-Soria, R., Rebolledo, S., Liin, S.I., Perez, M.E., Sampson, K.J., Kass, R.S. & Larsson, H.P.
- KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps. *Nat Commun* 5, 3750 (2014).
- 918 59. Barro-Soria, R., Perez, M.E. & Larsson, H.P. KCNE3 acts by promoting voltage sensor activation in
 919 KCNQ1. *Proc Natl Acad Sci U S A* 112, E7286-7292 (2015).
- 920

921 Figure 4 – figure supplement 1. N-AT effect on wild-type K_V7.1+KCNE1 expressed in

922 **Xenopus oocytes.** Representative effect of 70 μ M N-AT on current amplitude (a) and G(V)

- 923 (b) of wild-type $K_V7.1$ +KCNE1. The holding voltage is -80 mV and the tail current
- 924 amplitude in (b) measured at -20 mV after 5 s test pulses. Dashed line in (a) denotes 0 μA
- 925 current. G(V) curves in (b) are normalized to the fitted G_{max} (as described in Materials and
- 926 Methods).

Figure 4 – figure supplement 2. Time course of N-AT wash-in on K_V7.1/S225L+KCNE1 expressed in *Xenopus* oocytes. Representative example showing that N-AT effects on

930 current amplitude reaches steady state for each concentration within minutes. The holding

voltage is -80 mV and current amplitude measured at the end of a 5 s test pulse to +20 mV.

932 Dashed line denotes baseline (control amplitude).

933

934 Figure 4 – figure supplement 3. 'Leak' component of K_V7.1/S225L+KCNE1. Currents

935 generated by the K_V7.1/S225L+KCNE1 mutant have a small instantaneous 'leak' component

- 936 at positive voltages. Dashed line denotes $0 \mu A$.
- 937

938 Figure 4 – figure supplement 4. Effect of N-AT on current amplitude of LQTS and

939 LQTS-like mutants. (a-b) Current amplitudes in the presence of 70 µM N-AT measured at

940 the end of a 5 s test pulse to +20 mV (a) or +40 mV (b). The currents are normalized to the

941 current amplitude in control solution in the same oocyte. Dashed lines denote N-AT effects

on wild-type K_V7.1+KCNE1 current amplitude (a factor 2.9 ± 0.4 and 1.9 ± 0.3 (n = 5),

943 respectively). (c) Ability of 70 μ M N-AT to restore LQTS and LQTS-like mutant current

amplitude at +20 mV. The mean N-AT-induced fold increase in current amplitude for each

945 mutant (data from panel a) is multiplied by the relative current amplitude for each mutant

946 compared to wild-type K_V7.1+KCNE1 in control solution (from Figure 1 – figure supplement

947 4). Dashed line denotes relative wild-type $K_V 7.1 + KCNE1$ current amplitude in control

solution (i.e. without N-AT). Mean \pm SEM. n = 4-12. nd = not determined.

949

950 Figure 5 – figure supplement 1. Effect of N-AT on the F(V) of K_V7.1/G219C*/S225L

951 mutant co-expressed with KCNE1 in *Xenopus* oocytes. (a) Representative example of the

952	time course of the reduction in fluorescence intensity upon N-AT application. The
953	fluorescence intensities shown is the fluorescence measured at +80 mV (during repeated
954	applications of the voltage protocol used to measure the complete $F(V)$ as in panel c),
955	normalized to the fluorescence intensity at +80 mV recorded in the first $F(V)$ in control
956	solution. Red symbols denote control (without N-AT) and purple symbols denote in the
957	presence of N-AT. The fluorescence signal reduces with time in the presence of N-AT. In
958	contrast, the fluorescence signal is preserved in the absence of N-AT (red symbol, recorded in
959	another cell). (b) Summary of fluorescence emission monitored from unbound Alexa488 in
960	control solution and in N-AT-supplemented control solution (0.25 or 0.5 M N-AT). In these
961	experiments, no oocytes or channels were present. A.U. denotes arbitrary units. Data as mean
962	\pm SEM. $n = 3$. (c) Mean $F(V)$ curve for K _v 7.1/G219C*/S225L+KCNE1 in the absence (red
963	symbols, data from Figure 3B) or presence of 70 μ M N-AT. The holding voltage is -80 mV,
964	the pre-pulse -160 mV for 5 s, and test voltages between $-160 \text{ and } +100 \text{ mV}$ for 5 s in 20 mV
965	increments. The tail voltage is -40 mV. Each $F(V)$ curve is normalized between 0 and 1
966	based on the bottom and top deduced from the double Boltzmann fits for each curve (see
967	Methods). Data as mean \pm SEM. $n = 3$ for N-AT.
968	
969	

- 971 List of figure supplements and supplementary files
- 972
- 973 Figure 1 figure supplement 1
- 974 Figure 1 figure supplement 2
- 975 Figure 1 figure supplement 3
- 976 Figure 1 figure supplement 4
- 977
- 978 Figure 3 figure supplement 1
- 979 Figure 3 figure supplement 2
- 980 Figure 3 figure supplement 3
- 981
- 982 Figure 4 figure supplement 1
- 983 Figure 4 figure supplement 2
- 984 Figure 4 figure supplement 3
- 985 Figure 4 figure supplement 4
- 986
- 987 Figure 5 figure supplement 1
- 988
- 989 Supplementary File 1
- 990 Supplementary File 2
- 991 Supplementary File 3
- 992 Supplementary File 4

Figure 2

Figure 3

a

d

Figure 3 - figure supplement 1

Figure 3 - figure supplement 2

Kv7.1 + E1

b

R583C

K70N S74L

L251A F351A

S225L

V215M

F193L

	F _{Alexa488} (A.U.)
Control	1.43 ± 0.04
0.25 M N-AT	1.60 ± 0.07
0.5 M N-AT	1.78 ± 0.06

c

