Dyslexics' faster decay of implicit memory for sounds and words is manifested in their shorter neural adaptation
Abstract
Dyslexia is a prevalent reading disability whose underlying mechanisms are still disputed. We studied the neural mechanisms underlying dyslexia using a simple frequency-discrimination task. Though participants were asked to compare the two tones in each trial, implicit memory of previous trials affected their responses. We hypothesized that implicit memory decays faster among dyslexics. We tested this by increasing the temporal intervals between consecutive trials, and measuring the behavioral impact and ERP responses from the auditory cortex. Dyslexics showed a faster decay of implicit memory effects on both measures, with similar time constants. Finally, faster decay also characterized dyslexics' benefits in oral reading rate. It decreased faster as a function of the time interval from the previous reading of the same non-word. We propose that dyslexics' shorter neural adaptation paradoxically accounts for their longer reading times, since it induces noisier and less reliable predictions for both simple and complex stimuli.
Article and author information
Author details
Funding
Israel Science Foundation (616/11)
- Merav Ahissar
Israel Science Foundation (2425/15)
- Merav Ahissar
Gatsby Charitable Foundation
- Merav Ahissar
EPFL-HUJI collaboration
- Merav Ahissar
German-Israeli Foundation for Scientific Research and Development (I-1303-105.4/2015)
- Merav Ahissar
Canadian Institutes of Health Research
- Merav Ahissar
International Development Research Centre
- Merav Ahissar
Azrieli Foundation
- Merav Ahissar
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Informed consent was acquired from all participants. The study was approved by The Hebrew University Committee for the Use of Human Subject in Research.
Copyright
© 2017, Jaffe-Dax et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,910
- views
-
- 539
- downloads
-
- 48
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain–behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within = 0.36, LC1out = 0.03; LC2within = 0.34, LC2out = 0.05; LC3within = 0.35, LC3out = 0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.
-
- Medicine
- Neuroscience
It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature. Here, we show that cold exposure predominantly increases the expressions of the lipid lipolysis genes and proteins within the paraventricular nucleus of the hypothalamus (PVH) in male mice. Mechanistically, by using innovatively combined brain-region selective pharmacology and in vivo time-lapse photometry monitoring of lipid metabolism, we find that cold activates cells within the PVH and pharmacological inactivation of cells blunts cold-induced effects on lipid peroxidation, accumulation of lipid droplets, and lipid lipolysis in the PVH. Together, these findings suggest that PVH lipid metabolism is cold sensitive and integral to cold-induced broader regulatory responses.