Unconventional secretory processing diversifies neuronal ion channel properties

  1. Cyril Hanus  Is a corresponding author
  2. Helene Geptin
  3. Georgi Tushev
  4. Sakshi Garg
  5. Beatriz Alvarez-Castelao
  6. Sivakumar Sambandan
  7. Lisa Kochen
  8. Anne-Sophie Hafner
  9. Julian D Langer
  10. Erin M Schuman  Is a corresponding author
  1. Max Planck Institute for Brain Research, Germany
  2. Max Planck Institute for Brain Research and Max Planck Institute for Biophysics, Germany

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript updated
  3. Accepted Manuscript published
  4. Accepted
  5. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cyril Hanus
  2. Helene Geptin
  3. Georgi Tushev
  4. Sakshi Garg
  5. Beatriz Alvarez-Castelao
  6. Sivakumar Sambandan
  7. Lisa Kochen
  8. Anne-Sophie Hafner
  9. Julian D Langer
  10. Erin M Schuman
(2016)
Unconventional secretory processing diversifies neuronal ion channel properties
eLife 5:e20609.
https://doi.org/10.7554/eLife.20609

Share this article

https://doi.org/10.7554/eLife.20609