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Abstract A set of chemical reactions that require a metabolite to synthesize more of that

metabolite is an autocatalytic cycle. Here, we show that most of the reactions in the core of central

carbon metabolism are part of compact autocatalytic cycles. Such metabolic designs must meet

specific conditions to support stable fluxes, hence avoiding depletion of intermediate metabolites.

As such, they are subjected to constraints that may seem counter-intuitive: the enzymes of branch

reactions out of the cycle must be overexpressed and the affinity of these enzymes to their

substrates must be relatively weak. We use recent quantitative proteomics and fluxomics

measurements to show that the above conditions hold for functioning cycles in central carbon

metabolism of E. coli. This work demonstrates that the topology of a metabolic network can shape

kinetic parameters of enzymes and lead to seemingly wasteful enzyme usage.

DOI: 10.7554/eLife.20667.001

Introduction
An essential trait of living systems is their ability to reproduce. This fundamental ability makes all liv-

ing organisms autocatalytic by definition. Moreover, autocatalytic metabolism is considered to be

one of the essential components of life (Ganti et al., 2003).

In this work, we focus on autocatalytic cycles in chemical reaction systems, in the context of meta-

bolic networks. The components we consider are the metabolites of the system, with autocatalytic

cycles being formed using the reactions of the metabolic network. An illustrative example for a met-

abolic autocatalytic cycle is glycolysis. In glycolysis, 2 ATP molecules are consumed in the priming

phase, in order to produce 4 ATP molecules in the pay off phase. Therefore, in order to produce

ATP in glycolysis, ATP must already be present in the cell. Subsequently, autocatalysis of ATP in gly-

colysis (also referred to as ‘turbo design’) results in sensitivity to mutations in seemingly irrelevant

enzymes (Teusink et al., 1998). Autocatalytic cycles have also been shown to be optimal network

topologies that minimize the number of reactions needed for the production of precursor molecules

from different nutrient sources (Riehl et al., 2010).

Metabolic networks often require the availability of certain intermediate metabolites, in addition

to the nutrients consumed, in order to function. Examples of obligatorily autocatalytic internal

metabolites in different organisms, on top of ATP, are NADH, and coenzyme A (Kun et al., 2008).

We find that other central metabolites, such as phospho-sugars and organic acids, are autocatalytic

under common growth conditions. The requirement for availability of certain metabolites in order to

consume nutrients implies metabolic processes must be finely controlled to prevent such essential
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metabolites from running out; in such cases metabolism will come to a halt. Autocatalytic cycles

present control challenges because the inherent feed-back nature of autocatalytic cycles makes

them susceptible to instabilities such as divergence or drainage of their intermediate metabolites

(Teusink et al., 1998; Fell et al., 1999; Reznik and Segrè, 2010). The stability criteria typically rep-

resent one constraint among the parameters of the cycle enzymes. For large cycles, such as the

whole metabolic network, one such constraint adds little information. For compact autocatalytic

cycles embedded within metabolism, one such constraint is much more informative. We thus focus

our efforts on analyzing small autocatalytic cycles. Finding the unique constraints that metabolic

autocatalytic cycles impose is essential for understanding the limitations of existing metabolic net-

works, as well as for modifying them for synthetic biology and metabolic engineering applications.

A key example of an autocatalytic cycle in carbon metabolism is the Calvin-Benson-Bassham cycle

(CBB) (Benson et al., 1950). The carbon fixation CBB cycle, which fixes CO2 while transforming five-

carbon compounds into two three-carbon compounds, serves as the main gateway for converting

inorganic carbon to organic compounds in nature (Raven et al., 2012). The autocatalytic nature of

the CBB cycle stems from the fact that for every 5 five-carbon compounds the cycle consumes,

6 five-carbon compounds are produced (by the fixation of 5 CO2 molecules). Beyond the CBB cycle,

we show that most of the reactions and metabolites in the core of central carbon metabolism are

part of compact (i.e. consisting of around 10 reactions or fewer) metabolic autocatalytic cycles.

Some of the autocatalytic cycles we find are not usually considered as such. The span of autocatalytic

cycles in central carbon metabolism suggests that the constraints underlying their stable operation

have network-wide biological consequences.

In this study, we present the specific requirements metabolic autocatalytic cycles must meet in

order to achieve at least one, non-zero, steady state which is stable in respect to fluctuations of

either metabolites or enzyme levels close to the steady state point. The mathematical tools we use

are part of dynamical systems theory (Strogatz, 2014). We identify the kinetic parameters of

enzymes at metabolic branch points out of an autocatalytic cycle as critical values that determine

whether the cycle can operate stably. We show that the affinity of enzymes consuming intermediate

metabolites of autocatalytic cycles must be limited to prevent depletion of these metabolites.

eLife digest Many bacteria are able to produce all the molecules they need to survive from a

limited supply of nutrients. This allows the bacteria to thrive even in harsh environments where other

organisms struggle to live. The bacteria act as miniature chemical factories to convert nutrients into

the desired molecules via a series of chemical reactions. Some molecules are made in sets of

reactions termed autocatalytic cycles. These reaction sets require a molecule to be present in the

cell in order to produce more of that molecule; like how a savings account needs to contain some

money before it can generate more via interest.

Bacteria have many different enzymes that each drive specific chemical reactions. In order for an

autocatalytic cycle to work properly, the cell needs to maintain adequate supplies of the molecule it

is trying to make and all of the “intermediate” molecules in the cycle. If less of an intermediate

molecule is produced, for example, the cell needs to reduce the demand for that molecule by

controlling later chemical reactions in the cycle. Bacteria control chemical reactions by regulating the

activities of the enzymes involved, but it is not clear exactly how they regulate the enzymes that

drive autocatalytic cycles.

Barenholz et al. combined two approaches called proteomics and fluxomics to study autocatalytic

cycles in a bacterium known as E. coli. The experiments suggest several core principles allow

autocatalytic cycles to work smoothly in the bacteria. The next step is to apply these principles to

different kinds of molecules produced in bacterial cells. A future challenge is to search for other

structures that regulate chemical reactions in E. coli and other bacteria. Extending our

understanding of autocatalytic cycles and other pathways of chemical reactions is essential for

designing and engineering new reactions in bacteria. Such knowledge can be used to modify

bacteria to produce valuable chemicals in environmentally friendly ways.

DOI: 10.7554/eLife.20667.002

Barenholz et al. eLife 2017;6:e20667. DOI: 10.7554/eLife.20667 2 of 32

Research article Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.20667.002
http://dx.doi.org/10.7554/eLife.20667


Moreover, we show that the stable operation of such cycles requires low saturation, and thus excess

expression, of these enzymes. Low saturation of enzymes has previously been suggested to stem

from a number of reasons in different contexts: (A) to achieve a desired flux in reactions close to

equilibrium, for example in glycolysis (Staples and Suarez, 1997; Eanes et al., 2006;

Flamholz et al., 2013); (B) to provide safety factors in the face of varying nutrient availability, for

example in the brush-border of the mouse intestine (Weiss et al., 1998); (C) to accommodate rapid

shifts in demand from the metabolic networks in muscles with low glycolytic flux (Suarez et al.,

1997); (D) to allow fast response times, for example to pulses of oxidative load in erythrocytes,

resulting from their adherence to phagocytes (Salvador and Savageau, 2003). Our findings add to

these reasons the essential stabilizing effect of low saturation of branch reactions on the stability of

fluxes through autocatalytic cycles.

We use recent fluxomics and proteomics data to test the predictions we make. We find them to

hold in all cases tested where autocatalytic cycles support flux. Our analysis demonstrates how the

requirement for stable operation of autocatalytic cycles results in design principles that are followed

by autocatalytic cycles in-vivo. The results and design principles presented here can be further used

in synthetic metabolic engineering applications that require proper functioning of autocatalytic

cycles.

Results

Compact autocatalytic cycles are common and play important roles in
the core of central carbon metabolism
Different definitions exist for autocatalytic sets in the context of chemical reaction networks

(Hordijk and Steel, 2004; Eigen and Schuster, 2012; Kun et al., 2008). Here we define an autocat-

alytic cycle as a set of reactions and metabolites that form a cycle, and that, when the reactions are

applied to the substrates at the given stoichiometric ratios, increase the amount of the intermediate

metabolites. A minimal example of a metabolic autocatalytic cycle is shown in Figure 1, where an

internal metabolite joins with an external assimilated metabolite to give rise to 1þ d copies of the

internal metabolite, representing an increase by d copies. For stable operation, d copies have to

branch out of the cycle, and this consumption must be robust to small fluctuations in enzyme levels

δ·Internal metabolite
Internal

metabolite

Assimilated
metabolite

Internal metabolite + Assimilated metabolite → (1 + δ) Internal metabolite

Figure 1. A basic autocatalytic cycle requires an internal metabolite to be present in order to assimilate the

external metabolite into the cycle, increasing the amount of the internal metabolite by some amount, d.

DOI: 10.7554/eLife.20667.003
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and metabolite concentrations. For a formal, mathematical definition, see Materials and methods

section "Formal definition of an autocatalytic metabolic cycle".

While rarely discussed as such, a systematic search in the central carbon metabolism core model

of E. coli (see Materials and methods section "Systematic identification of autocatalytic cycles in met-

abolic networks") shows the ubiquity of compact autocatalytic cycles. On top of the previously dis-

cussed CBB cycle (Figure 2, example I), we show two other prominent examples:

. The glyoxylate cycle within the TCA cycle, which turns an internal malate and two external ace-
tyl-CoAs into two malate molecules. This is achieved by transforming malate to isocitrate,
while assimilating acetyl-CoA, and then splitting the isocitrate to produce two malate mole-
cules, assimilating another acetyl-CoA (Kornberg, 1966) (Figure 2, example II).
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5 rubp + 5 CO2 → 6 rubp

+rubp

5 CO2

5 rubp

II

mal + 2 accoa → 2 mal

+mal

2 accoa

mal

III

pep + gluc → 2 pep + pyr

+pep
pep

pyr

gluc

Figure 2. Three representative autocatalytic cycles in central carbon metabolism: (I) The Calvin-Benson-Bassham cycle (yellow); (II) The glyoxylate cycle

(magenta); (III) A cycle using the phosphotransferase system (PTS) to assimilate glucose (cyan). Assimilation reactions are indicated in green. Arrow

width in panels represent the relative carbon flux.

DOI: 10.7554/eLife.20667.004

The following figure supplements are available for figure 2:

Figure supplement 1. An autocatalytic cycle assimilating ribose-5-phosphate using the pentose phosphate pathway.

DOI: 10.7554/eLife.20667.005

Figure supplement 2. An autocatalytic cycle assimilating dhap while consuming gap using the fba reaction in the gluconeogenic direction.

DOI: 10.7554/eLife.20667.006
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. A cycle formed by the glucose phosphotransferase system (PTS) in bacteria. This transport sys-
tem imports a glucose molecule using phosphoenolpyruvate (pep) as a co-factor. The
imported glucose is further catabolized, producing two pep molecules via glycolysis (Figure 2,
example III).

Two additional examples are presented in Figure 2—figure supplements 1 and 2 and discussed

below.

The ubiquity of compact autocatalytic cycles in the core of central carbon metabolism motivates

the study of unique features of autocatalytic cycles, as derived below, which may constrain and

shape the kinetic parameters of a broad set of enzymes at the heart of metabolism.

Steady state existence and stability analysis of a simple autocatalytic
cycle
To explore general principles governing the dynamic behavior of autocatalytic cycles, we consider

the simple autocatalytic cycle depicted in Figure 3A. This cycle has a single intermediate metabolite,

X. We denote the flux through the autocatalytic reaction of the cycle by fa, such that for any unit of

X consumed, it produces two units of X. The autocatalytic reaction assimilates an external metabolite

(denoted A), which we assume to be at a constant concentration. We denote the flux through the

reaction branching out of the cycle by fb. Biologically, fb represents the consumption of the interme-

diate metabolite X. In the cycles we find in central carbon metabolism, the branch reactions provide

Figure 3. Analysis of a simple autocatalytic cycle. (A) A simple autocatalytic cycle induces two fluxes, fa and fb as a function of the concentration of X.

These fluxes follow simple Michaelis-Menten kinetics. A steady state occurs when fa ¼ fb, implying that _X ¼ 0. The cycle always has a steady state (i.e.

_X ¼ 0) at X ¼ 0. The slope of each reaction at X ¼ 0 is Vmax=KM . A steady state is stable if at the steady state concentration d _X
dX

< 0. (B) Each set of kinetic

parameters, Vmax;a;Vmax;b;KM;a;KM;b determines two dynamical properties of the system: If Vmax;b >Vmax;a, then a stable steady state concentration must

exist, as for high concentrations of X the branching reaction will reduce the concentration of X (cyan domain, cases (I) and (II)). If
Vmax;b

KM;b
<

Vmax;a

KM;a
, implying

that
Vmax;b

Vmax;a
<

KM;b

KM;a
, then zero is a non-stable steady state concentration as if X is slightly higher than zero, the autocatalytic reaction will carry higher flux,

further increasing the concentration of X (magenta domain, cases (I) and (IV)). At the intersection of these two domains a non-zero, stable steady state

concentration exists, case (I).

DOI: 10.7554/eLife.20667.007

Barenholz et al. eLife 2017;6:e20667. DOI: 10.7554/eLife.20667 5 of 32

Research article Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.20667.007
http://dx.doi.org/10.7554/eLife.20667


precursors that support growth through subsequent reactions. We thus also sometimes consider fb
to represent biomass generation.

For simplicity in the derivation, we assume irreversible Michaelis-Menten kinetics for the two reac-

tions. Even though fa should follow bisubstrate velocity equation, assuming constant concentration

of A reduces the bisubstrate equation to a simple Michaelis-Menten equation. The apparent kinetic

constants of the equation depend on the constant value of A (see Materials and methods section

"Connecting bisubstrate reaction kinetic constants with simple Michaelis-Menten constants"). We

extend our analysis to bisubstrate reaction equations in the next section. We therefore assume that:

fa ¼
Vmax;aX

KM;a þX

fb ¼
Vmax;bX

KM;b þX

where Vmax is the maximal flux each reaction can carry and KM is the substrate concentration at which

half the maximal flux is attained. Physiologically, these kinetic parameters must be positive. Using

these simple forms allows us to obtain an analytic solution. We discuss more general cases below.

We characterize the metabolic state of this system by the concentration of the metabolite X. We

note that knowing the concentration of X suffices in order to calculate the fluxes originating from it,

fa and fb, thus fully defining the state of the system. A steady state of the system is defined as a con-

centration, X�, which induces fluxes that keep the concentration constant, such that the total in-flux

to X is exactly equal to the total out-flux from it. In our example, the outgoing flux from X is fa þ fb

and the incoming flux to X is 2fa, so at steady state it holds that:

_X ¼
dX

dt
¼ 2fa�ðfaþ fbÞ ¼ 0 (1)

Intuitively, at steady state, the branch reaction must consume all the excess intermediate metabo-

lite that is produced by the autocatalytic reaction. Indeed, expanding the condition above gives:

fa ¼ fb )
Vmax;aX

�

KM;a þX�
¼

Vmax;bX
�

KM;bþX�

which is satisfied either if X� ¼ 0 or if:

X� ¼
Vmax;bKM;a �Vmax;aKM;b

Vmax;a �Vmax;b
(2)

implying that:

X�

KM;a
¼

Vmax;b

Vmax;a
�

KM;b

KM;a

1�
Vmax;b

Vmax;a

(3)

The concentration of X cannot be negative, and thus we get a constraint on the kinetic parame-

ters for which a positive steady state exists. Either both the numerator and the denominator of

Equation 3 are positive, such that:

1 >
Vmax;b

Vmax;a
>

KM;b

KM;a
;

or both are negative, such that:

1 <
Vmax;b

Vmax;a
<

KM;b

KM;a

These constraints are graphically illustrated in Figure 3B, cases (III) and (I).

In order to gain intuition for this relationship we note that Vmax

Km
is the slope of the Michaelis

Menten function at X ¼ 0. The existence of a positive steady state can be used to get that:
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X� > 0)
Vmax;bKM;a �Vmax;aKM;b

Vmax;a �Vmax;b
> 0)

Vmax;b

KM;b
�

Vmax;a

KM;a

Vmax;a �Vmax;b
> 0

The last inequality above implies that in order for a positive steady state to exist, the reaction

with higher maximal flux must have a shallower slope at X ¼ 0. Mathematically, the constraint states

that if Vmax;a > Vmax;b then
Vmax;a

KM;a
<

Vmax;b

KM;b
. Alternatively, if Vmax;a < Vmax;b then

Vmax;a

KM;a
>

Vmax;b

KM;b
. This condition

can be intuitively understood, as the reaction with shallower slope at X ¼ 0 has smaller fluxes for

small values of X compared with the other reaction, so unless it has higher fluxes than the other reac-

tion for large values of X (meaning that its maximal flux is higher), the two will never intersect (see

Figure 3B).

While having a steady state at positive concentration is an essential condition to sustain flux, it is

not sufficient in terms of biological function. The steady state at positive concentration must also be

stable to small perturbations. Stability with respect to small perturbations is determined by the

response of the system to small deviations from the steady state, X� (at which, by definition _X ¼ 0).

Assuming X ¼ X� þ DX, stability implies that if DX is positive then _X needs to be negative at X� þ DX,

reducing X back to X�, and if DX is negative, _X will need to be positive, increasing X back to X�. It

then follows that in order for X� to be stable, d _X
dX

< 0 at X ¼ X�, implying that upon a small deviation

from the steady state X� (where _X ¼ 0), the net flux _X will oppose the direction of the deviation.

For the simple kinetics we chose, the stability condition dictates that:

d _X

dX

�

�

�

X¼X�
¼

Vmax;aKM;a

ðKM;a þX�Þ2
�

Vmax;bKM;b

ðKM;bþX�Þ2
< 0 (4)

The analysis is straightforward for the case of X� ¼ 0, yielding that 0 is a stable steady state con-

centration if
Vmax;b

KM;b
>

Vmax;a

KM;a
, corresponding to the area above the diagonal in Figure 3B, where

Vmax;b

Vmax;a
>

KM;b

KM;a
. These cases are denoted as cases (II) and (III). If the relation is reversed (i.e.

Vmax;b

KM;b
<

Vmax;a

KM;a
),

then 0 is an unstable steady state. The criterion that is of interest, however, is the criterion for stabil-

ity of the non-zero steady state, X� ¼
Vmax;bKM;a�Vmax;aKM;b

Vmax;a�Vmax;b
. In this case, substituting X� in Equation 4 gives

the opposite condition to that of X� ¼ 0. This steady state is thus stable if
Vmax;b

KM;b
<

Vmax;a

KM;a
, corresponding

to the magenta domain in Figure 3B, containing cases (I) and (IV), and unstable otherwise.

The stability criterion can be generally stated in metabolic control terms (Fell, 1997) using the

notion of elasticity coefficients of reactions, defined as:

"fX ¼
qf

qX

X

f

In these terms, stability is obtained if and only if the elasticity of the branch reaction at the posi-

tive steady state concentration is greater than the elasticity of the autocatalytic reaction:

dfb

dX

�

�

�

X¼X�
>

dfa

dX

�

�

�

X¼X�
) "fbX > "faX

The complete analysis is summarized in Figure 3B. Domain (I) is the only domain where a positive,

stable steady state exists. Domains (I) and (III) are the domains at which a positive steady state con-

centration exists, but in domain (III) that steady state is not stable. The domains below the diagonal

(cases (I) and (IV)) are the domains where X� ¼ 0 is an unstable steady state concentration, so that if

another steady state exists, it is stable, but in domain (IV) no positive steady state exists. The

domains above the diagonal (cases (II) and (III)) are the domains where X� ¼ 0 is a stable steady state

concentration, so that the other steady state, if it exists, is unstable.

Aside from existence and stability, a quantitative relationship between the affinity of the biomass

generating, branching reaction and the flux it carries can be obtained. This relationship is opposite

to the standard one, meaning that unlike the common case where the flux f increases when the affin-

ity becomes stronger, in this case, because the steady state concentration increases when KM;b

becomes weaker (Equation 7 in Materials and methods section "Steady state concentration
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dependence on kinetic parameters of autocatalytic and branch reactions"), fb also increases when

KM;b becomes weaker.

To conclude, for this simple cycle, we get that in order for a positive-concentration stable steady

state to exist (case (I)), two conditions must be satisfied:

Vmax;b > Vmax;a

Vmax;b

KM;b
<

Vmax;a

KM;a

(

(5)

The first requirement states that the maximal flux of the biomass generating, branching reaction

should be higher than the maximal flux of the autocatalytic reaction. This requirement ensures a sta-

ble solution exists, as large concentrations of X will result in its reduction by the branch reaction. The

second requirement states that for concentrations of X that are close enough to 0, the autocatalytic

reaction is higher than the branch reaction (as can be inferred from the slopes). This requirement

implies that the two fluxes will be equal for some positive concentration of X, ensuring a positive

steady state exists. As this requirement further implies that below the positive steady state the

branch reaction will carry less flux than the autocatalytic reaction, it follows that small deviations of

the concentration of X below the steady state will result in an increase in its concentration by the

autocatalytic reaction, driving it back to the steady state. Meeting the second constraint has another

consequence.

Interestingly, these conditions imply that if KM;b < KM;a then no positive stable steady state can

be achieved. Specifically, changes to the expression levels of the enzymes catalyzing fa and fb only

affect Vmax;a and Vmax;b, and therefore do not suffice to attain a stable positive steady state. This indi-

cates that stability of autocatalytic cycles, that are represented by the model analyzed above,

depends on inherent kinetic properties of the enzymes involved and cannot always be achieved by

modulating expression levels. We suggest this property to be a design principle that can be critical

in metabolic engineering.

Integrating the bisubstrate nature of the autocatalytic reaction into the
simple model
In the model above, to keep the analysis concise, we neglected the bisubstrate nature of the auto-

catalytic reaction. We extend the analysis to the most common classes of bisubstrate reaction mech-

anisms in the Materials and methods, sections "Connecting bisubstrate reaction kinetic constants

with simple Michaelis-Menten constants", "Constraints on concentration of assimilated metabolite

and kinetic constants of bisubstrate reactions", and "Dependence of steady state concentration on

assimilated metabolite". All bisubstrate reaction schemes analyzed take a Michaelis-Menten like

form once the concentration of the assimilated metabolite is kept constant (Equations 8, 10, 12,

and 14 in Materials and methods section "Connecting bisubstrate reaction kinetic constants with

simple Michaelis-Menten constants").

For any set of kinetic parameters, under all ternary enzyme complex schemes, a lower bound on

the concentration of A exists, under which the conditions for the existence and stability of a positive

steady state cannot be satisfied (Equations 18 and 23 in Materials and methods section "Con-

straints on concentration of assimilated metabolite and kinetic constants of bisubstrate reactions").

The exact value of the minimal concentration of A depends on the specific bisubstrate reaction

scheme and the kinetic parameters of it.

In the simplified model analyzed above, stability implied the affinity of the branch reaction

towards its substrate was limited. A similar limit exists in most cases of bisubstrate reaction schemes

(Equations 16, 19, and 21 in Materials and methods section "Constraints on concentration of assim-

ilated metabolite and kinetic constants of bisubstrate reactions"). Interestingly, if the bisubstrate

reaction is ordered with the internal metabolite binding first, then no strict constraints exist on KM;b

and a stable steady state solution can always be achieved by setting appropriate values to Vmax;b and

Vmax, the maximal flux of the bisubstrate autocatalytic reaction.

Finally, regarding the dynamic behavior of the system when the concentration of A varies, we

note that in all three ternary enzyme complex cases, as the concentration of A approaches its lower

bound, the steady state concentration of X approaches 0, reducing both the autocatalytic and the

branch fluxes (Equations 24, 25, and 26 in Materials and methods section "Dependence of steady
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state concentration on assimilated metabolite"). In the substituted enzyme mechanism, the lower

bound on the concentration of A is 0, at which the steady state concentration of X is trivially 0 as

well. In all cases, if the maximal flux of the autocatalytic reaction is higher than the maximal flux of

the branch reaction, an upper bound on the concentration of A may also exist, to satisfy the condi-

tion that Vmax;a < Vmax;b. However, this bound can be removed by increasing Vmax;b or reducing Vmax.

Extensions of the simple autocatalytic cycle model
Generalizing for different autocatalytic stoichiometries
Our didactic analysis considered an autocatalytic reaction with 1:2 stoichiometry, such that for every

substrate molecule consumed, two are produced. Real-world autocatalytic cycles may have different

stoichiometries. For example, the CBB cycle has a stoichiometry of 5:6 so that for every 5 molecules

of five-carbon sugar that the autocatalytic reaction consumes, 6 five-carbon molecules are produced.

We can generalize our analysis by defining a positive d such that for every molecule of X that fa con-

sumes, it produces 1þ d molecules of X, where d may be a fraction. This extension implies that

Equation (1) becomes:

_X ¼
dX

dt
¼ ð1þ dÞfa �ðfa þ fbÞ ¼ 0) d � fa ¼ fb )

d �Vmax;aX

KM;aþX
¼

Vmax;bX

KM;b þX

Therefore, all of the results above can be extended to different stoichiometries by replacing

Vmax;a with d �Vmax;a. As a result, the qualitative conditions and observations from the 1:2 stoichiome-

try case remain valid but with a constant factor that changes the quantitative relations according to

the relevant stoichiometry.

Input flux increases the range of parameters for which a stable steady state
solution exists
Autocatalytic cycles are embedded within a larger metabolic network. Specifically, such cycles may

have independent input fluxes to some of their intermediate metabolites, not requiring the use of

other intermediate metabolites of the cycle. For example, in the glucose based, PTS-dependent

autocatalytic cycle, the existence of alternative transporters can generate flux of glucose 6-phos-

phate into the cycle without the use of pep (Ferenci, 1996).

When adding a constant input flux, fi to our simple system (Figure 4A) the steady state condition

changes to include this flux, giving:

_X ¼
dX

dt
¼ fiþ fa � fb ¼ 0

In this situation, at X ¼ 0, _X ¼ fi > 0 so the concentration of X increases and there is no steady

state at zero. If Vmax;b > fi þVmax;a then at a large enough value of X, _X will be negative, implying that

at some value of X between these two extremes, _X attains the value of zero, such that under this

condition a positive stable steady state concentration exists (Figure 4I). This case therefore differs

from the case with no input flux analyzed above, as now a positive stable steady state can always be

achieved by modifying only Vmax;a and/or Vmax;b. In this setup, cells can therefore tune the expression

levels of enzymes to meet the needs of a stable steady state flux.

In cases where Vmax;b < fi þ Vmax;a either no steady states exist (Figure 4II), or two positive steady

states exist (Figure 4III). The latter case implies that there exists a positive concentration X that

satisfies:

_X ¼ 0) fiþ faðXÞ� fbðXÞ ¼ 0) fiþ
Vmax;aX

KM;aþX
¼

Vmax;bX

KM;b þX

In this case, the lower concentration steady state will be stable.

To conclude, input fluxes change the steady state(s) of autocatalytic cycles. When an input flux is

present, an autocatalytic cycle can always achieve a non zero, stable steady state by tuning the

expression levels of the enzymes forming the cycle.

Interestingly, we find that in the two autocatalytic cycles shown in Figure 2—figure supplements

1 and 2, reactions that generate direct input flux into the cycle exist. In the ribose-5P assimilating
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autocatalytic cycle (Figure 2—figure supplement 1), the rpi reaction serves as a shortcut, allowing

input flux directly from ribose-5P into the cycle. In the glycerone-phosphate assimilating cycle (Fig-

ure 2—figure supplement 2), the tpi reaction similarly serves as such a shortcut. Interestingly, in

these two cases, these shortcuts relax the constraints imposed by the strict use of the corresponding

autocatalytic cycles as they prevent zero from being a stable steady state concentration. Another

example of the effects of the addition of an input flux to an autocatalytic cycle is the input flux of

fructose-6-phosphate from the catabolism of starch into the CBB cycle. This input flux can be used

to ’kick start’ the cycle even without using the intermediate metabolites of the cycle.

Reversible branch reaction can either be far from equilibrium, resulting in
the simple case, or near equilibrium, pushing the stability conditions down
the branch pathway
The simple model assumed both the autocatalytic and the branch reactions are irreversible under

physiological conditions. Assuming the branch reaction, fb, can be reversible, with a product Y , the

system can be analyzed in two extreme cases.

If Y is consumed very rapidly by subsequent reactions, keeping its concentration low, then fb

operates far from equilibrium. In this case, the reversible reaction equation reduces to an irreversible

Michaelis-Menten equation, resulting in the same constraints as in the simple, irreversible case ana-

lyzed above.

If Y is consumed very slowly, and if the maximal consumption of Y is larger than Vmax;a, then, as

long as Vmax;b > Vmax;a, a stable steady state exists both when Vmax;b ! ¥, making fb operate near

equilibrium, and when Vmax;b ! Vmax;a. A mathematical analysis is provided in the

Materials and methods section "Reversible branch reaction analysis". The assumptions on the con-

sumption of Y in this case are analogous to the constraints in Equation 5, namely that the reaction

downstream of Y is less saturated than the autocatalytic reaction, and that it consumes Y at a lower

rate than the rate at which the autocatalytic reaction produces X near X ¼ 0.

Figure 4. Analysis of an autocatalytic cycle with input flux. (A) The effect of a fixed input flux, fi, on the possible

steady states of a simple autocatalytic cycle. A steady state occurs when fa þ fi ¼ fb. If Vmax;b >Vmax;a þ fi then there

is always a single stable steady state (I). If Vmax;b <Vmax;a þ fi then there can either be no steady states (II), or two

steady states where the smaller one is stable (III).

DOI: 10.7554/eLife.20667.008
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Analysis of a reversible autocatalytic cycle reaction
The simple model assumed both the autocatalytic and the branch reactions are irreversible under

physiological conditions. The autocatalytic reaction in the simple model represents an effective over-

all reaction for all of the steps in autocatalytic cycles found in real metabolic networks. In order for

the combined autocatalytic reaction to be physiologically reversible, all of the reactions in the real

metabolic network must be reversible under physiological conditions. We note that this is not the

case in any of the cycles we identify in central carbon metabolism. Nevertheless, this case can be

mathematically analyzed.

If the autocatalytic reaction is reversible, then it must be driven by the displacement from thermo-

dynamic equilibrium of the concentration of A versus the concentration of X. Therefore, for any fixed

concentration of A, Â, a concentration of X exists such that faðX; ÂÞ ¼ 0 < fbðXÞ. It then follows that a

sufficient condition for a positive steady state to exist is that at X ¼ 0, _XðÂÞ > 0, which implies that

qfa

qX

�

�

�

X¼0;A¼Â
>

Vmax;b

KM;b

This condition can always be satisfied by high expression of the autocatalytic enzyme, increasing

Vmax;a. For this case, it therefore follows that for any concentration of A, a minimal value for Vmax;a

exists, above which a positive steady state is achieved.

Stability analysis for multiple-reaction cycles
Even the most compact real-world autocatalytic cycles are composed of several reactions. It is thus

useful to extend the simple criteria we derived to more complex autocatalytic cycles. In such cycles

the criteria for the existence of a steady state become nuanced and detail specific. We therefore

focus on evaluating stability of such cycles, under the assumption that a non-zero steady state exists,

which is usually known based on experimental measurements.

We analyze the stability criteria for the autocatalytic cycles depicted in Figure 5A and B in the

Materials and methods, section "Extending the stability analysis from single to multiple reaction

cycles". The analysis is performed for autocatalytic ratios up to 1:2, which is the case for all the

X1X2

fa1

fa2

A

fb1

fb2

X1

X2

Xn

fa1

fan

A

fb1

fb2

fbn

fa2
. . . fan−1

(A) (B)

Figure 5. Generalization of analysis to multiple-reaction autocatalytic cycles with a single assimilating reaction. (A)

A two reaction system. (B) A generic n-reaction system. The system is at steady state when the total consumption

of intermediate metabolites by the branch reactions is equal to the flux through the autocatalytic reaction,

because the autocatalysis is in a 1:2 ratio. A sufficient condition for the stability of a steady state in these systems

is that the derivative of at least one branch reaction with respect to the substrate concentration is larger than the

derivative of the equivalent autocatalytic reaction at the steady state concentration. Given the connection between

derivatives of fluxes and saturation levels of reactions (see methods), this condition implies that at a stable steady

state, the saturation level of at least one branch reactions is smaller than the saturation level of the corresponding

autocatalytic reaction.

DOI: 10.7554/eLife.20667.009
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autocatalytic cycles we identify. We find that in the multiple reaction case a steady state is stable if

there exists i such that bi > ai (where i can be any number in the range 1 . . . n, ai ¼
qfai
qXi

, and bi ¼
qfbi
qXi
),

Materials and methods section "Limits on derivatives of branch reactions for complex autocatalytic

cycles".

Using the connection between derivatives of reactions and saturation levels

(Materials and methods section "Inverse relationship between derivatives, affinities, and saturation

levels"), we conclude that if bi>ai for some i at the steady state point, then the saturation of the

branch reaction, denoted Sðf Þ, must be lower than the saturation of the corresponding cycle reaction

at Xi:

SðfbiÞ<SðfaiÞ (6)

This condition also dictates that the affinity of the branch reaction to the intermediate metabolite

of the cycle it consumes must be weaker than the affinity of the corresponding recycling reaction of

the cycle.

While having a single branch point at which bi > ai is a sufficient condition for stability, we note

that the larger the number of branch points satisfying this condition, the more robust the steady

state point will be to perturbations, as such branch points reduce the propagation of deviations

along the cycle (see Materials and methods section "Multiple unsaturated branch reactions increase

convergence speed and dampen oscillations"). As we show below, these predictions hold for func-

tioning autocatalytic cycles.

Using different kinetic equations
Although we utilized the widely-used irreversible Michaelis-Menten kinetics equation to model

enzyme kinetics, our results can be extended to different kinetic equations. Generally, two condi-

tions must be met for a stable flux through an autocatalytic cycle to exist: (A) there should be a posi-

tive concentration of the intermediate metabolites for which the outgoing fluxes balance the

autocatalytic fluxes, resulting in a steady state, and, (B) at the steady state point at least one deriva-

tive of an outgoing reaction out of the cycle should be higher than the derivative of the correspond-

ing cycle reaction, as is implied by Equation 31, to enforce stability in the presence of small

perturbations. Therefore, these two conditions should be explicitly evaluated for every case with dif-

ferent kinetic equations and autocatalytic cycles topologies to assert whether it can carry stable

fluxes or not.

Testing the predictions of the analysis with experimental data on
functioning autocatalytic cycles
To evaluate the validity of our analysis of autocatalytic cycles we searched for growth conditions

under which the autocatalytic cycles we identified in central carbon metabolism carry substantial flux

in-vivo. We used recent in-vivo flux measurements in E. coli from Gerosa et al. (2015). According to

the data, two autocatalytic cycles carry substantial flux under at least one of the growth conditions

measured: a cycle using the PTS carries significant fluxes in growth on glucose and on fructose; the

glyoxylate cycle carries significant flux in growth on acetate and on galactose.

As noted above, we predict a design principle for functioning autocatalytic cycles: that at least

one branch reaction should have a steeper response than the corresponding autocatalytic reaction

at steady state. This requirement is sufficient, but not necessary, for the autocatalytic cycle to be at a

stable steady state point. Moreover, having more than one branch point at which the branch reac-

tion has a steeper response than the autocatalytic reaction increases the robustness of the steady

state flux in the cycle as shown in the Materials and methods section "Multiple unsaturated branch

reactions increase convergence speed and dampen oscillations". An outcome of the relationship

between the steepness’s of responses is a reverse relationship between the saturation levels of the

corresponding reactions (Equation 35). In order to evaluate the saturation level of a reaction under

a given condition, two values must be obtained:

1. The maximal flux capacity of the reaction under the given condition, Vmax.
2. The actual flux through the reaction at the steady state, f .
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To estimate the maximal capacity of a reaction we followed the procedure described in

(Davidi et al., 2016-22) (see Materials and methods section "Evaluating maximal flux capacity of

reactions under a given condition"). We used the data from (Gerosa et al., 2015) to identify the

major branch points in each functioning cycle and the actual flux in them under each of the relevant

conditions. The results are presented in Figure 6 and are provided, with the relevant calculations, in

Supplementary file 1.

Our results show that for any of the four functioning autocatalytic cycle cases, in at least one

branch point the biomass generating branch reaction has a larger maximal flux capacity, and is con-

siderably less saturated than the respective autocatalytic reaction, in accordance with our predic-

tions. Moreover, out of nine branch points analyzed, in six branch points the branching reactions

were significantly less saturated than the autocatalytic reactions, in two branch points the saturation

levels were similar, and only in one branch point the autocatalytic reaction was less saturated than

the branching reaction.

The branch point at which the autocatalytic reaction is less saturated than the branch reaction is

the branch point from fructose-1,6-bisphosphate in growth on fructose as the carbon source. The

high saturation of the branch reaction arises as a large flux is reported for the fbp reaction, whereas

the corresponding enzyme is not highly expressed under this condition. The large reported flux

through fbp arises due to assuming a single transport pathway for fructose, entering the cycle as

Prediction: XX% < YY%

for at least one branch reaction

Galactose input

aca

oaa

pep

cit icit

akg

sca

mal

fum

glx

suc

25%/20%

10%/30%

Acetate input

aca

oaa

pep

cit icit

akg

sca

mal

fum

glxpyr

suc

75%/70%

15%/100%

65%/100%

Glucose input

g6p

f6p
pyr

gluc

fbp

dhap gap

bpg

3pg

2pg

pep oaa

pyr

6pgi

45%/100%

55%/75%
Fructose input

f6p
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pyr
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Figure 6. Major branch points and relative enzyme saturation in operating autocatalytic cycles. Solid arrow width represents carbon flux per unit time.

Shaded arrow width represents the maximal carbon flux capacity per unit time, given the expression level of the catalyzing enzyme. In all cases there is

enough excess capacity in the branching reactions to prevent the cycle from overflowing. A 4% flux from pep to biomass was neglected in growth

under glucose and fructose. Only in one out of the nine branch points observed (the branch point at fbp in growth under fructose), the outgoing

reaction is significantly more saturated than the autocatalytic reaction. (*) A branch point at which the branching reaction is more saturated than the

autocatalytic reaction, which may result from neglecting fructose transport directly as f6p when deriving fluxes (see text).

DOI: 10.7554/eLife.20667.010
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fructose-1,6-bisphosphate. However, an alternative fructose transport pathway is known to occur for

the concentration at which the measurements were made (Kornberg, 1990). The alternative trans-

port pathway produces fructose-6-phosphate from external fructose. Therefore, any flux through the

alternative transport pathway should be directly deducted from the flux through fbp. Assuming 20%

of the consumed fructose uses this pathway suffices in order to balance the saturation levels at the

fructose-1,6-bisphosphate branch point.

We made two negative control analyses to examine whether other reasons do not underlie the

trend we find. First, we compared the saturation levels at the same branch points in growth condi-

tions at which the autocatalytic cycles do not function, but the reactions carry flux. We find that for

these cases, only 4 out of 9 cases satisfy the low branch saturation condition (Supplementary file 1).

Second, we searched for branch points out of non-autocatalytic cycles and tested whether in such

points branch reactions are also consistently less saturated than their corresponding cycle reactions.

We found two flux-carrying cycles: the TCA cycle, carrying flux in glucose, fructose, and glycerol

growth, and a cycle consisting of the pentose-phosphate pathway combined with gluconeogenesis,

carrying flux in acetate, glycerol, and succinate growth. Out of the total six conditions-branch points

cases, in three the branch reaction was less saturated than the cycle reaction, and in three the cycle

reaction was less saturated than the branch reaction (Supplementary file 1). We therefore conclude

that, for cases that do not involve autocatalysis, the saturation of branch versus cycle reactions

seems evenly distributed.

The consistently lower saturation values of biomass generating branch reactions demonstrate that

the expressed enzymes have enough capacity to prevent the autocatalytic cycle from increasing the

concentration of intermediate metabolites infinitely. Moreover, the lower saturation values of the

biomass generating reactions suggest that at the steady state point their derivatives are higher,

ensuring stable operation of the cycle.

Another demonstration of the autocatalytic mechanism being at play is in the CBB cycle, which is

not a part of the metabolic network of wild type E. coli, and for which no flux measurements are

available. This cycle has been recently introduced synthetically into E. coli and was shown to carry

flux in it, given further metabolic engineering of central carbon metabolism (Antonovsky et al.,

2016). The experimentally observed key evolutionary event enabling the functioning of the CBB

cycle, was a mutation affecting the kinetic properties of the main branching reaction out of the CBB

pathway, prs, weakening its affinity to its substrate, ribose-5p. The observed weakening of affinity of

prs is directly in line with our predictions on the relationship between the affinity of branch reactions

and the affinity of the corresponding cycle reactions (see Materials and methods section of

Antonovsky et al., 2016).

The other examples of autocatalytic cycles we found did not carry flux in any of the conditions for

which data were available. The pentose-phosphate cycle variants do not carry flux in any of the mea-

sured conditions, which is expected given that growth on ribose was not measured. The gluconeo-

genic FBA with ED pathway cycle also did not carry flux in any of the measured conditions. Although

glycerol could have been a potential carbon source to use this pathway, the metabolic network

allows for a more energy efficient growth by using the tpi reaction, as was indeed observed.

To conclude, existing data supports predictions made by our model, given the requirement for

stable steady state operation of autocatalytic cycles. This agreement between predictions and meas-

urements is especially encouraging given the highly limited information on kinetic properties, con-

centrations, and fluxes under various growth conditions.

Analysis of allosteric regulation potential for cycle improvement
Allosteric regulation can modulate the kinetic properties of enzymes at branch points, and of the

cycle in general. As such, the relevant condition for the existence of a stable positive steady state

should hold for the updated kinetic properties as defined following the effect of allosteric

regulation.

We further analyze the ability of specific allosteric interactions to support fast convergence and

stability of autocatalytic cycles in the Materials and methods section "Allosteric regulation can

improve network performance". We compare the expected beneficial allosteric interactions against

the allosteric regulation network of the two functioning autocatalytic cycles we identified, the PTS-

using autocatalytic cycle and the glyoxylate cycle (Supplementary file 1, regulation data were taken

from Keseler et al. (2013) and Schomburg et al. (2004)).
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For the PTS cycle, we find that there are a total of 12 allosteric interactions, 7 inhibitions and five

activations. Out of these 12 interactions, 11 interactions follow our expectations in terms of the type

of the regulating metabolite (assimilated metabolite, cycle intermediate, or branch product), the reg-

ulated reaction (cycle reaction, branch reaction, or the reverse of a branch reaction), and the direc-

tion of the regulation (activation or inhibition). One interaction, the activation of fba by pep, does

not follow our expectation.

For the glyoxylate cycle, we find that there are a total of 13 interactions, 12 inhibitions and one

activation. Out of these 13 interactions, 8 interactions follow our expectations and 5 do not. The lack

of significant agreement between the expected regulation direction and the actual regulation found

for this cycle is consistent with the observation in Gerosa et al. (2015) that TCA cycle fluxes are reg-

ulated mainly by transcription and not by reactants levels.

It is important to note that allosteric regulation serves many roles, and that the metabolic network

faces many more challenges than just the support of stable autocatalysis. Therefore, the agreement

we find between existing allosteric interactions and the expected regulation scheme supporting

autocatalysis does not suggest that the autocatalytic nature of the PTS is the only, or even main

underlying reason for these allosteric interactions.

Discussion
Our study into the dynamics and stability of autocatalytic cycles suggests design principles applica-

ble to both systems biology, that aims to understand the function of natural networks, and in the

context of synthetic biology, in the effort to express novel heterologous cycles.

While autocatalytic cycles are often overlooked in the study of metabolism, we find that such

cycles are at the heart of central carbon metabolism. Our autocatalytic modeling framework gives

concrete predictions on saturation levels of branch reactions for operating autocatalytic cycles. We

find these predictions agree well with empirically measured fluxomics and proteomics data sets.

Given that there are other suggestions (Staples and Suarez, 1997; Weiss et al., 1998;

Suarez et al., 1997) that may underlie the low saturation of branch reactions, we compare the satu-

ration levels of branch reactions versus their corresponding cycle reactions both under conditions

when the autocatalytic cycle does not function, and for branch points out of non-autocatalytic cycles.

Both tests show no bias towards low saturation of branch reactions out of non-autocatalytic cycles,

contrary to the clear trend we find for reactions branching out of autocatalytic cycles. Our findings

thus support the addition of stability of intermediate metabolites of autocatalytic cycles as an expla-

nation for the seemingly wasteful expression of enzymes (Salvador and Savageau, 2003,

2006). The model we present can also highlight metabolic branch points at which the kinetic effi-

ciency of enzymes is constrained due to stability requirements of a corresponding autocatalytic

cycle.

A common concept in synthetic biology is that the successful implementation of novel pathways

requires the expression of functional enzymes in the correct amounts in the target organism. Here

we show that in the context of autocatalytic cycles, such expression modulation may not suffice. Spe-

cifically, changes to the substrate affinity of enzymes at branch points of the cycle may be required

in order for the novel pathway to function.

Another aspect of our findings is that while it is common to assume that strong affinity and high

catalytic rate are desirable traits for enzymes, such seeming improvements may actually lead to insta-

bility and thus to non functional metabolic cycles. Furthermore, for reactions branching out of auto-

catalytic cycles, weaker affinities increase the steady state concentration of intermediate

metabolites, resulting in higher fluxes both through the cycle, and through the branch reaction, sug-

gesting an unconventional strategy for optimizing fluxes through such reactions. We note that

because allosteric regulators modify the affinity of the enzymes they target, such regulators can

potentially be used to restrict the affinity of branch reactions only when the autocatalytic cycle

functions.

An experimental demonstration of these principles in-vivo is the recent implementation of a func-

tional CBB cycle in E. coli by introducing the two genes missing for its function (Antonovsky et al.,

2016). The successful introduction of the genes did not suffice to make the cycle function, and fur-

ther directed evolution was needed in order to achieve successful operation of the cycle. Strikingly,

most evolutionary changes occurred in branch points from the cycle (Antonovsky et al., 2016). The
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change which was biochemically characterized in the evolutionary process was the decrease of the

value of kcat
KM

of phosphoribosylpyrophosphate synthetase (prs), one of the enzymes responsible for

flux out of the CBB cycle, corresponding to the branch reaction in our simple model. This is beau-

tifully in line with the predictions of our analysis that suggest that decreasing Vmax

KM
of branch reactions

can lead to the existence of a stable flux solution.

Our observation regarding the stabilizing effect of input fluxes into an autocatalytic cycle can pro-

vide means to mitigate the stability issue in synthetic biology metabolic engineering setups. In such

setups, conducting directed evolution under gradually decreasing input fluxes, such as those

achieved in a chemostat, allows for a pathway to gradually evolve towards sustainable, substantial

flux.

Finally, while our work focuses on cycles increasing the amount of carbon in the system, we note

that autocatalysis can be defined with respect to other quantities such as energy (e.g. ATP invest-

ment and production in glycolysis [Teusink et al., 1998]), non-carbon atoms, reducing power, or

other moieties (Reich and Selkov, 1981). As autocatalysis is often studied with relation to the origin

of life, our analysis may be useful in studying synthetic autocatalytic systems such as the one recently

described in Semenov et al. (2016). The analysis we present here can thus be of relevance for the

analysis of metabolic networks in existing organisms and for the design of novel synthetic systems.

Materials and methods

Formal definition of an autocatalytic metabolic cycle
Given a metabolic network composed of a set of reactions and metabolites, the following criteria

can be used to define a subset of the network that is an autocatalytic cycle: First we define a meta-

bolic cycle. A set of irreversible reactions (for reversible reactions only one direction can be included

in the set) and metabolites forms a cycle if every metabolite of the set can be converted, by sequen-

tial application of reactions in the set (where two reactions can be chained if a metabolite in the set

is a product of the first reaction and a substrate of the second reaction), to every other metabolite in

the set. A cycle is autocatalytic if the reactions of the cycle can be applied, each reaction at an

appropriate, positive number of times, such that the resulting change in the amount of each of the

metabolites forming the cycle is non-negative, with at least one metabolite of the cycle having a

strictly positive change.

The same definition can be stated in terms of reaction vectors and a stoichiometric matrix. If a

metabolic network has n metabolites, indicated by the numbers 1 to n, then every reaction, r, in the

network can be described as a vector Vr in Z
n, such that the i’th coordinate of Vr specifies how much

of metabolite i the reaction r produces (if r consumes a metabolite, then the value at the coordinate

representing the metabolite is negative).

With this notation, a set of metabolites: M ¼ m1 � � �mj and a set of reactions, R ¼ r1 � � � rk form an

autocatalytic cycle if:

1. Every row and every column of the stoichiometric matrix have at least one positive and one
negative number.

2. There is a set of positive integers, i1 � � � ik such that the total reaction vector r� ¼
Pk

l¼1
ilrl is non

negative at all the coordinates m1 � � �mj and is strictly positive for at least one coordinate in this
range.

3. The condition that the total reaction vector r� ¼
Pk

l¼1
ilrl is non negative at all the coordinates

m1 � � �mj and is strictly positive for at least one coordinate in this range cannot be satisfied by a
set of non-negative integers, i1 � � � ik, if this set includes values that are 0 (this condition elimi-
nates the addition of disjoint cycles to an autocatalytic cycle).

Systematic identification of autocatalytic cycles in metabolic networks
We implemented an algorithm to systematically search for autocatalytic cycles in metabolic net-

works. The algorithm is not comprehensive, in the sense that there may be autocatalytic cycles that

will not be identified by it. Further work will enable a more advanced algorithm to identify additional

autocatalytic cycles in full metabolic networks. We used the algorithm on the core carbon metabo-

lism network of E. coli (Orth et al., 2010).
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In our framework, a metabolic network is defined by a set of reactions, ð�RÞ. Each reaction is

defined by a set of substrates and a set of products, with corresponding stoichiometries

Ri ¼ ðS;P;NS;NPÞ, such that Ri describes the reaction
P

j N
S
j Sj !

P

k N
P
k Pk. The algorithm works as

follows:

1. All co-factors are removed from the description of the metabolic network.
2. The metabolic network is converted to a directed graph, G: The nodes of G are all the metab-

olites and all the reactions of the network. For each metabolite, M, and each reaction, R, if M
is a substrate of R then the edge ðM;RÞ is added to the graph, and if M is a product of R, then
the edge ðR;MÞ is added to the graph.

3. The Tarjan cycle identification algorithm is used to enumerate all the cycles in the graph
(Tarjan, 1973).

4. For every cycle identified by the Tarjan algorithm, C, the algorithm checks if the cycle can be
the backbone of an autocatalytic cycle as follows:

a. For every reaction in the cycle, R, the algorithm checks if it consumes more than one inter-
mediate metabolite of the cycle. If so, C is assumed not to be autocatalytic and the algo-
rithm continues to evaluate the next cycle.

b. Otherwise, for every reaction in the cycle, R, the algorithm checks if it has more than one
product that is an intermediate metabolite of the cycle. If so, then the algorithm lists C as
an autocatalytic cycle.

c. Finally, the algorithm checks, for every reaction in the cycle, if it has a product that is not
an intermediate metabolite of the cycle. If so, denote by ME such a metabolite. The algo-
rithm proceeds to check if, for every intermediate metabolite of the cycle, Mi a reaction
exists from ME to Mi that does not use any of the reactions of the cycle, and does not con-
sume any of the intermediate metabolites of the cycle. If so then the algorithm lists C as
an autocatalytic cycle.

The algorithm assumes reactions consume exactly one molecule of any of their substrates and

produce exactly one molecule of any of their products, an assumption that holds for the core model

of E.coli, but not in metabolic networks in general.

Steady state concentration dependence on kinetic parameters of
autocatalytic and branch reactions
The simple cycle steady state concentration, X�, is given in Equation 2. Taking the derivative of this

expression with respect to KM;a, KM;b, Vmax;a, and Vmax;b, under the assumption that the kinetic param-

eters satisfy the stability conditions in Equation 5 gives:

qX�

qKM;a
¼

Vmax;b

Vmax;a �Vmax;b
< 0

qX�

qKM;b
¼

�Vmax;a

Vmax;a �Vmax;b
> 0

qX�

qVmax;a
¼
Vmax;bðKM;b �KM;aÞ

ðVmax;a �Vmax;bÞ
2

> 0

qX�

qVmax;b
¼
Vmax;aðKM;a �KM;bÞ

ðVmax;a �Vmax;bÞ
2

< 0

(7)

So that X� increases when KM;a decreases or Vmax;a increases (or both) corresponding to activation

of fa. On the other hand, X� decreases when KM;b decreases or Vmax;b increases (or both) correspond-

ing to activation of fb.

Connecting bisubstrate reaction kinetic constants with simple Michaelis-
Menten constants
Three standard equations are commonly used to describe the flux through irreversible bisubstrate

reactions (Leskovac, 2003). We show that, under the assumption that the assimilated metabolite

maintains constant concentration, these equations reduce to simple Michaelis-Menten equations.

We derive the expressions for the apparent Michaelis-Menten constants, KM and Vmax, as functions

of the kinetic constants of the bisubstrate reaction and the concentration of the assimilated
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metabolite. While the substrates in these equations are generally denoted as A and B, here, to keep

the notation consistent, we will denote by A the assimilated metabolite and by X the internal metab-

olite of the cycle.

The simplest equation describing a bisubstrate reaction assumes substituted enzyme (Ping Pong)

mechanism (Imperial and Centelles, 2014). As this equation is symmetric with respect to the two

substrates, we can arbitrarily decide which of the two substrates is the assimilated metabolite, and

which is the internal metabolite. We get that the flux through the reaction is:

f ¼
VmaxAX

KXAþKAXþAX

Rearranging to get the dependence of the flux on X in a Michaelis-Menten like form we get that:

f ¼

VmaxA
KAþA

X

KXA
KAþA

þX
(8)

which gives apparent Michaelis-Menten kinetic constants of:

~Vmax ¼
VmaxA

KAþA

~KM ¼
KXA

KAþA

(9)

The second bisubstrate reaction mechanism we consider is the ternary enzyme complex with ran-

dom binding order of the two substrates. As this equation is also symmetric with respect to the two

substrates, we can again arbitrarily decide which of the two substrates is the assimilated metabolite,

and which is the internal metabolite. We get that the flux through the reaction is:

f ¼
VmaxAX

Ki;AKX þKXAþKAXþAX

Rearranging to get the dependence of the flux on X in a Michaelis-Menten like form we get that:

f ¼

VmaxA
KAþA

X

Ki;AþA

KAþA
KX þX

(10)

which gives apparent Michaelis-Menten kinetic constants of:

~Vmax ¼
VmaxA

KAþA

~KM ¼
Ki;AþA

KAþA
KX

(11)

The other equation describing a ternary enzyme complex bisubstrate reaction assumes ordered

binding of the substrates. Because in ordered binding the equation is asymmetric with respect to

the two substrates, analyzing this reaction is further split according to which of the two substrates is

assumed to be the assimilated metabolite with constant concentration.

If the first binding metabolite is assumed to be the assimilated metabolite we get that:

f ¼
VmaxAX

Ki;AKX þKXAþAX
¼

VmaxX
Ki;AþA

A
KX þX

(12)

which gives apparent Michaelis-Menten kinetic constants of:

~Vmax ¼ Vmax

~KM ¼
Ki;AþA

A
KX

(13)

If the first binding metabolite is assumed to be the internal metabolite we get that:
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f ¼
VmaxAX

Ki;XKA þKAXþAX
¼

VmaxA
KAþA

X

Ki;XKA

KAþA
þX

(14)

which gives apparent Michaelis-Menten kinetic constants of:

~Vmax ¼
VmaxA

KAþA

~KM ¼
Ki;XKA

KAþA

(15)

To summarize, the most common equations describing bisubstrate reactions reduce to equations

of the same form as Michaelis-Menten equations, under the assumption that one of the metabolites

maintains a constant concentration. The apparent kinetic constants of the Michaelis-Menten equiva-

lent equations depend on the kinetic constants of the bisubstrate reactions, as well as on the con-

centration of the assimilated metabolite.

Constraints on concentration of assimilated metabolite and kinetic
constants of bisubstrate reactions
In Equation 5 we obtain constraints on the kinetic parameters of Michaelis-Menten reactions that

ensure the existence and stability of a positive steady state. We observe that these constraints imply

that even if the maximal rates of the two reactions can be easily modified, if KM;b<KM;a then such

changes cannot suffice in order to satisfy the existence and stability constraints.

Here, we map the same constraints from Equation 5 onto bisubstrate autocatalytic reactions.

This mapping results in constraints on the assimilated metabolite concentration, as well as on the

kinetic parameters of the bisubstrate autocatalytic reactions. We show that in all ternary enzyme

complex bisubstrate reaction schemes, there is a lower bound on the concentration of the assimi-

lated metabolite, below which the system cannot attain a stable positive steady state. We further

show that the nature of the bisubstrate reaction qualitatively affects the ability to satisfy the stability

constraints by changing expression levels alone. In the cases of substituted enzyme mechanism, ran-

dom binding order ternary complex, and ordered binding ternary complex, with the assimilated

metabolite binding first, unless the kinetic parameters of the participating enzymes satisfy specific

inequalities, changes to the maximal reaction rates alone cannot suffice in order to satisfy the exis-

tence and stability constraints. However, in the case of ordered binding ternary complex with the

internal metabolite binding first, changes to the maximal reaction rates alone suffice in order to

allow for stable steady state to occur, given high enough concentration of the assimilated metabo-

lite. We analyze each of the four possible bisubstrate reaction schemes separately below.

Substituted enzyme (Ping Pong) mechanism
The case of substituted enzyme mechanism is the simplest case to analyze. We can substitute Equa-

tion 9 into the conditions from Equation 5 to get:

Vmax;b>
VmaxA
KAþA

¼ Vmax
A

KAþA

Vmax;b

KM;b
<Vmax

KX

(

(16)

As A
KAþA

< 1, the first inequality can always be satisfied if Vmax;b > Vmax, which is equivalent to the

first condition in Equation 5. The second condition is identical to the second condition from Equa-

tion 5. Therefore, this case imposes equivalent conditions to those derived for the simple, single

substrate case.

Random binding order
In the case of a random binding order, we can substitute Equation 11 into the conditions from

Equation 5 to get:
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Vmax;b >
VmaxA
KAþA

¼ Vmax
A

KAþA

Vmax;b

KM;b
< VmaxA

ðKi;AþAÞKX
¼

Vmax
A

Ki;AþA

KX

8

<

:

(17)

We first note that from the second inequality we get that:

Vmax;bKX

KM;bVmax

<
A

Ki;AþA
)

Ki;A
KM;bVmax

Vmax;bKX
� 1

< A (18)

Giving a lower bound on the concentration of the assimilated metabolite for which a stable

steady state is attainable.

We now wish to obtain a lower bound on KM;b. In order to obtain such a lower bound, we need

an upper bound on Vmax
A

Ki;AþA
. However, we only have an upper bound on Vmax

A
KAþA

. We use the first

inequality in Equation 17 to get that:

Vmax;b >Vmax

A

KAþA
)

Vmax;b
A

Ki;A þA
>Vmax

A

KAþA

A

Ki;AþA
)

Vmax;b
KA þA

Ki;A þA
>Vmax

A

Ki;AþA

We note that for positive A, KAþA
Ki;AþA

< maxð1;KA=Ki;AÞ and therefore:

Vmax;bmaxð1;KA=Ki;AÞ > Vmax

A

Ki;AþA

Substituting this inequality in the second inequality of Equation 17 therefore gives us that:

Vmax;b

KM;b
<
Vmax

A
Ki;AþA

KX

<
Vmax;bmaxð1;KA=Ki;AÞ

KX

)

KX

maxð1;KA=Ki;AÞ
< KM;b

(19)

We have therefore obtained a lower bound on the affinity of the branch reaction, KM;b, in this

case.

For the random binding order we can thus conclude that, like in the single-substrate case, a lower

bound exists on the affinity of the branch reaction, below which a positive steady state is not attain-

able, even if the expression levels of the enzymes, and the concentration of the assimilated metabo-

lite are modified. Furthermore, for any set of kinetic parameters, there is a lower bound on the

concentration of A for which a positive steady state is attainable.

Ordered binding with the assimilated metabolite binding first
In the case of ordered binding, with the assimilated metabolite binding first, we can substitute Equa-

tion 13 into the conditions from Equation 5 to get:

Vmax;b > Vmax

Vmax;b

KM;b
< VmaxA

ðKi;AþAÞKX
¼

Vmax
A

Ki;AþA

KX

8

<

:

(20)

As the second inequality is identical to the one in the random binding order case, we can immedi-

ately conclude that the same lower bound on the concentration of A from Equation 18 holds in this

case as well.

Regarding a lower bound on KM;b, following a similar reasoning as in the previous case, we first

note that for any value of A:

A

Ki;AþA
< 1
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Therefore, we can deduce, by using the first inequality from Equation 20 in the second inequality

from that equation, that:

Vmax;b

KM;b
<

Vmax
A

Ki;AþA

KX

<
Vmax

KX

<
Vmax;b

KX

which immediately yields:

KX < KM;b (21)

setting an absolute lower bound on KM;b.

We thus arrive at the same conclusions in this case, as we have arrived to in the previous case,

namely that a lower bound exists on the affinity of the branch reaction, and that, for any set of

kinetic parameters, there is a lower bound on the concentration of the assimilated metabolite, below

which a positive stable steady state cannot be obtained.

Ordered binding with the internal metabolite binding first
In the case of ordered binding, with the internal metabolite binding first, we can substitute Equa-

tion 15 into the conditions from Equation 5 to get:

Vmax;b > VmaxA
KAþA

Vmax;b

KM;b
< VmaxA

Ki;XKA

(

(22)

As in the previous two cases, the second inequality can be used to obtain a lower bound on the

concentration of A:

Vmax;bKi;XKA

KM;bVmax

< A (23)

However, unlike in the previous two cases, in this case if Vmax < Vmax;b, then the first inequality in

Equation 22 holds for any concentration of A, and, for any concentration of A that is larger than its

lower bound, the second inequality is also satisfied, resulting in a stable steady state. This case is

therefore more robust than the other cases as it allows for the conditions to be satisfied, at least for

high concentrations of A, given any set of kinetic parameters.

Dependence of steady state concentration on assimilated metabolite
Equation 2 shows the dependency between the steady state concentration of the internal metabo-

lite X, X�, and the kinetic parameters of the reactions in the system. Substituting the dependencies

of the apparent kinetic parameters from Equations 11, 13, and 15 into Equation 2 gives the depen-

dency of X� on the kinetic parameters of the bisubstrate reactions and the concentration of the

assimilated metabolite, A. We get for these three cases respectively that:

X� ¼

VmaxA
KAþA

KM;b�Vmax;b
Ki;AþA

KAþA
KX

Vmax;b �
VmaxA
KAþA

(24)

X� ¼
VmaxKM;b �Vmax;b

Ki;AþA

A
KX

Vmax;b �Vmax

(25)

X� ¼

VmaxA
KAþA

KM;b�Vmax;b
Ki;XKA

KAþA

Vmax;b �
VmaxA
KAþA

(26)

Assuming the kinetic parameters satisfy the stable steady state conditions derived in Equa-

tions 17, 20, and 22, we note that when A is equal to its lower bound, the numerator in all three

cases is 0, resulting in X� ¼ 0. Furthermore, as A decreases towards its lower bound, X� decreases

resulting in a decrease in both fb and fa (for the two latter cases this is trivial to show, as the terms

involving A increase and decrease monotonically in accordance with their effect on X�. In the first

case, taking the derivative of the numerator w.r.t. A shows the derivative is always positive, resulting

in the same conclusion). Interestingly, in the first and last cases, if Vmax > Vmax;b, then an upper bound
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on the concentration of A also exists. As the concentration of A approaches this upper bound, the

denominator approaches 0 resulting in an increase in the concentration of X� towards infinity.

Reversible branch reaction analysis
The simple model assumed both the autocatalytic and the branch reactions are irreversible. Here we

assume the branch reaction is reversible, and let Y denote its product. For simplicity, we further

assume that Keq ¼ 1, noting that this assumption can always be satisfied by measuring the concentra-

tion of Y in units of KeqX. We recall that the reversible Michaelis-Menten equation states that:

fb ¼
Vmax;bðX�YÞ

KX þXþ KX

KY
Y

We assume that a third reaction, fc, irreversibly consumes Y . While assuming fc follows irreversible

Michaelis-Menten kinetics is analytically tractable, the analysis is simpler, and as informative, under

the assumption that fc ¼DY for some constant D. This simplification is equivalent to assuming fc fol-

lows Michaelis-Menten kinetics with
Vmax;c

KM;c
»D, and Vmax;c >> maxðVmax;a;Vmax;bÞ.

We start by deriving the necessary conditions for steady state existence. Because at steady state

fa ¼ fc, it follows that:

Vmax;aX
�

KM;a þX�
¼DY� ) Y� ¼

Vmax;a

D
X�

KM;a þX�
(27)

Furthermore, as at the steady state fa ¼ fb, we get that:

Vmax;aX
�

KM;a þX�
¼
Vmax;bðX

��Y�Þ

KX þX� þ KX

KY
Y�

Substituting Y� from Equation 27 gives:

Vmax;aX
�

KM;aþX�
¼
Vmax;bðX

� �
Vmax;a

D
X�

KM;aþX�Þ

KX þX� þ KX

KY

Vmax;a
D

X�

KM;aþX�

Which is satisfied when X� ¼ 0 (implying that X� ¼ Y� ¼ 0 is a steady state), or when X� satisfied

the quadratic equation:

0¼ ðX�Þ2 þ
2KM;aVmax;b �ðKM;aþKXÞVmax;a �

KXV
2

max;a

KYD
�

Vmax;aVmax;b

D

Vmax;b �Vmax;a
X�þ

KM;aðVmax;bKM;a �Vmax;aKX �
Vmax;aVmax;b

D
Þ

Vmax;b�Vmax;a

Albeit intimidating, this quadratic equation can be used to derive the conditions for the existence

of a positive steady state. Only if both of the roots of this equation are negative, no positive steady

state exists. We recall that the two roots of a quadratic equation of the form 0¼ aX2 þ bXþ c are

negative iff:

b ¼
2KM;aVmax;b�ðKM;a þKXÞVmax;a �

KXV
2

max;a

KYD
�

Vmax;aVmax;b

D

Vmax;b�Vmax;a
> 0

c ¼
KM;aðVmax;bKM;a�Vmax;aKX �

Vmax;aVmax;b

D
Þ

Vmax;b�Vmax;a
> 0

8

>

>

>

>

<

>

>

>

>

:

As in the irreversible case, the sign of Vmax;b�Vmax;a determines the required condition on the

numerators. We assume that Vmax;b > Vmax;a, noting that if Vmax;b < Vmax;a, a positive steady state can-

not be globally stable because for X such that faðXÞ > Vmax;b, the system will diverge regardless of

the value of Y.
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Under the assumption that Vmax;b > Vmax;a, the denominator of both b and c is positive, meaning a

positive steady state exists only if the nominators of b or c (or both) are negative. Thus, two options

may arise.

. If KM;a > Vmax;a=D (implying D > Vmax;a=KM;a, qualitatively suggesting rapid removal of Y) then
an upper bound on Vmax;b exists, above which the two solutions are negative, implying no posi-

tive steady state exists. A sufficient condition for existence in this case is that
Vmax;b

KX
<

Vmax;a

KM;a
,

ensuring that c < 0. This condition is equivalent to the condition in the irreversible case. We
further show below that for large enough D, the resulting steady state is stable.

. If D < Vmax;a=KM;a, then for any Vmax;b > Vmax;a, c < 0 implying a positive steady state exists. As
we show below, in this case both when Vmax;b ! Vmax;a, and when Vmax;b ! ¥, the steady state
is stable.

We now turn to analyze the stability of the steady state. For a steady state to be stable, the

eigenvalues of the Jacobian matrix must have negative real values. In our system it holds that

_X ¼ fa � fb

_Y ¼ fb � fc

We use the following notation:

a¼
dfa

dX
¼

Vmax;aKM;a

ðKM;a þXÞ2

bx ¼
qfb

qX
¼
Vmax;bðKX þYð1þ KX

KY
ÞÞ

ðKX þXþ KXY
KY

Þ2

by ¼
qfb

qY
¼
�Vmax;bðKX þXð1þ KX

KY
ÞÞ

ðKX þXþ KXY
KY

Þ2

dfc

dY
¼D

We can use this notation to write the Jacobian matrix as:

J ¼
a�bx �by

bx by �D

� �

which gives a characteristic polynomial of:

ða�bx�lÞðby �D�lÞþbybx ¼ 0

In order for the real values of the roots of the characteristic polynomial to be negative it must

hold that b>0 and c>0, where b and c are now the coefficients of the quadratic equation

al2 þ blþ c¼ 0. We therefore get that:

b ¼ bx �a�by þD > 0

c ¼ ða�bxÞðby �DÞþbybx ¼ bxDþaby �aD > 0

�

We denote by f � the steady state flux in the system, such that f � ¼ fa ¼ fb ¼ fc We note that for

MM kinetics and positive concentrations it holds that:

a > 0

bx > 0

�by > bx

bxþby ¼�f �
1þ KX

KY

KX þXþ KXY
KY

First, we note that if a� bx then the steady state cannot be stable as, looking at the value of c,

we see that in such a case ðbx �aÞD < 0 and since aby < 0, c<0 violating the stability conditions.

However, because we assume that Vmax;b>Vmax;a, then for Y ¼ Y�, at X ¼ 0, fb< fa, but for X!¥, fb !

Vmax;b and fa ! Vmax;a, so that fb> fa. It then follows that, because the two fluxes can only intersect
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once for positive X and fixed Y , at the steady state point, where fa ¼ fb, a<bx, so this condition is sat-

isfied. We note that this condition is sufficient to ensure that b>0. We also note that as a<bx, a

large enough value of D exists at which the steady state is stable, concluding that if D is large

enough, then a stable steady state exists if:

Vmax;b >Vmax;a

Vmax;b

KX

<
Vmax;a

KM;a

8

<

:

If D is small, such that D<Vmax;a=KM;a, and Vmax;b>Vmax;a (implying that a<bx), we need to check

what other conditions are necessary in order to ensure that bxDþaby �aD>0. We look at the limit

Vmax;b !¥. At this limit, the quadratic equation for X� converges to:

0¼ ðX�Þ2þ 2KM;a �
Vmax;a

D

� �

X� þK2

M;a �
Vmax;aKM;a

D

For this equation, c<0, implying that one of the roots is negative and one is positive. The positive

root is:

X� ¼
Vmax;a

D
�KM;a

As this X� is finite, we get that when Vmax;b !¥, Y� also converges to
Vmax;a

D
�KM;a. At this limit, bx

increases infinitely and by decreases infinitely, but bxþby converges to:

�f �
ð1þ KX

KY
Þ

KX þð
Vmax;a

D
�KM;aÞð1þ

KX

KY
Þ

that is constant. Therefore, rearranging c such that:

c¼ ðbx þbyÞD�byðD�aÞ�aD>0

we note that as Vmax;b increases, the dominant term becomes �byðD�aÞ>0 ensuring that c>0 and

therefore stability.

On the other hand, when Vmax;b ! Vmax;a, we note that because fc <Vmax;a, Y� is bounded by

Y� <
Vmax;a

D
, but X� ! ¥. Thus, both a and bx diminish like 1

X�

2
, and by diminishes like 1

X
. The dominant

term in c ¼ bxDþ bya� aD therefore becomes ðbx � aÞD> 0 so again stability is maintained.

Therefore, for small values of D, as long as Vmax;b >Vmax;a, a positive stable steady state exists

both in the lower limit of Vmax;b ! Vmax;a, and in the upper limit of Vmax;b ! ¥.

Our conclusions are therefore as follows: As in the irreversible case, Vmax;b >Vmax;a is a necessary

condition for the existence of a globally stable steady state. For large values of D, the reversible

reaction is far from equilibrium, resulting in an additional condition, equivalent to the condition we

obtained for the irreversible case, namely that Vmax;b=KX is upper bounded by a term that is larger

than Vmax;a=KM;a, but approaches it as D increases. This condition is sufficient for the existence and

stability of the steady state. For small values of D, a steady state always exists (given that

Vmax;b >Vmax;a). We can show that this steady state is stable both when Vmax;b ! ¥, and when

Vmax;b ! Vmax;a. We therefore conclude that in this case, no further restrictions apply on KX , KY , or

KM;a but rather that a steady state can always be achieved at most by changing Vmax;b.

Qualitatively, the cases we analyze show that, on top of the required Vmax;b >Vmax;a condition, the

second condition is that either the slope of fc ¼ D is smaller than Vmax;a=KM;a, or that the maximal

slope of fb, Vmax;b=KX , is smaller than Vmax;a=KM;a.

Extending the stability analysis from single to multiple reaction cycles
We analyze the stability criteria for the autocatalytic cycles depicted in Figure 5A and B. We start by

writing the relevant equations for the autocatalytic cycle depicted in Figure 5A. In this system, there

are two intermediate metabolites, X1 and X2, two reactions that form the cycle, fa1 and fa2 , and two

branch reactions, fb1 and fb2 . We assume, without loss of generality, that the autocatalytic reaction
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(the reaction that increases the amount of carbon in the cycle) is fa2 and that the autocatalysis is in a

1:2 ratio. The equations describing the dynamics of the system are thus:

_X1 ¼ 2fa2 � fa1 � fb1
_X2 ¼ fa1 � fa2 � fb2

We note that in steady state, where X
:
1¼ X

:
2¼ 0, because the autocatalysis is in a 1:2 ratio, it

must hold that fb1 þ fb2 ¼ fa2 , meaning the total outgoing flux balances the total increase of intermedi-

ate metabolites due to autocatalysis. Given that a steady state of the system exists for some value

ðX�
1
;X�

2
Þ, we can evaluate the condition for stability. In multi-variable systems, stability dictates that

the real part of the eigenvalues of the Jacobian matrix must all be negative. We define ai ¼
qfai
qXi

and

bi ¼
qfbi
qXi

for i¼ 1;2. We note that as we assume Michaelis Menten kinetics, ai>0 and bi � 0, where

bi ¼ 0 is the case where there is no flux branching out at i. We then get that the Jacobian matrix is:

J ¼
�ða1 þb1Þ 2a2

a1 �ða2 þb2Þ

� �

Solving for the characteristic polynomial gives:

0 ¼ lþa1þb1ð Þ lþa2þb2ð Þ� 2a1a2

¼ l2 þ a1þb1 þa2 þb2ð Þlþ a1 þb1ð Þ a2 þb2ð Þ� 2a1a2

that has two negative roots when:

ða1þb1Þða2 þb2Þ� 2a1a2>0)ð1þ
b1

a1

Þð1þ
b2

a2

Þ>2

which is satisfied if b1>a1 or b2>a2. Therefore, if either b1>a1 or b2>a2 at the steady state, then

the steady state is stable.

The two-metabolites cycle case can be easily extended to a larger number of intermediate

metabolites and reactions, as is depicted in Figure 5B. For this extension, we again assume, without

loss of generality, that the autocatalytic reaction is the last reaction, fan , and that the autocatalysis is

in a 1:2 ratio.

In this case, steady state implies that the concentration of each intermediate metabolite is con-

served, meaning that for all i> 1:

_Xi ¼ 0) fai�1
� fai � fbi ¼ 0) fai�1

� fai (28)

(for i¼ 1, as fan is the autocatalytic reaction, we get that 2 � fan � fa1 ). Also, because at steady state

the total outgoing flux from the cycle must balance the total incoming flux into the system, which is

the amount of autocatalysis carried out by fan , we get that:

X

n

i¼1

fbi ¼ fan

(due to our assumption of a 1:2 autocatalytic ratio) implying that for all i:

fbi � fan (29)

We stress that Equation 29 is only valid if the autocatalysis is in up to a 1:2 ratio. Deriving a sta-

bility criterion for the multiple-reaction case, we get that in this case a steady state is stable if there

exists i such that bi>ai (see section 9 below).

To conclude, for the straightforward extension of the simple model to multiple reactions with a

single autocatalytic reaction, steady state implies that for all i:

fbi � fan � fai (30)

Where the left inequality is due to Equation 29 and the right inequality is due to Equation 28.
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A sufficient condition for such a steady state point to be stable is that at the steady state point

there exists at least one branching point i at which the derivative of the branch reaction is larger

than the derivative of the equivalent autocatalytic reaction:

bi>ai (31)

Limits on derivatives of branch reactions for complex autocatalytic
cycles
Stability analysis of a model complex autocatalytic cycle with n reactions in the cycle results in the

following Jacobian matrix:

J ¼

�ða1 þb1Þ 0 � � � 0 2an

a1 �ða2 þb2Þ � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � �ðan�1 þbn�1Þ 0

0 0 � � � an�1 �ðan þbnÞ

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

(32)

The characteristic polynomial of this matrix is given by:

0¼
Y

n

i¼1

ðlþaiþbiÞ� 2

Y

n

i¼1

ai (33)

To extract the conditions under which all the roots of the characteristic polynomial have negative

real parts we use Rouche’s theorem. Our strategy will be as follows: We will define a contour that

contains only numbers with negative real parts. We will show that all the roots of the polynomial 0¼
Qn

i¼1
ðlþaiþbiÞ lie within the area this contour encloses. We will find the conditions for which

j
Qn

i¼1
ðlþai þbiÞj>2

Qn
i¼1

ai on the contour, satisfying the premise of Rouche’s theorem. We will

then claim that under these conditions all the roots of the polynomial in Equation 33 must also lie

inside the contour, and therefore must have negative real parts. Given that all the roots of this poly-

nomial have negative real parts, we will conclude that the eigenvalues of the Jacobian matrix at the

steady state point all have negative real parts, making the steady state point stable.

Proof
We pick a large parameter R, such that R> 3 maxjðaj þ bjÞ. We look at the closed half circle contour,

K, composed of the segment ½ð0;�iRÞ; ð0; iRÞ� and the half circle arc ðx; iyÞ such that x � 0 and

x2 þ y2 ¼ R2. We define

gðlÞ ¼ 2

Y

n

j¼1

aj

noting that it is constant over all of C and specifically over K. We define

f ðlÞ ¼
Y

n

j¼1

ðlþajþbjÞ

noting that all of f ’s roots lie inside K as the roots are 0> �ðajþbjÞ> �R for all j. We check the con-

ditions under which jf ðlÞj>jgðlÞj over the contour K.

For the arc segment we note that, as for complex numbers it holds that jxyj ¼ jxjjyj, then

jf ðlÞj ¼
Y

n

j¼1

jlþajþbjj

From the triangle inequality we know that jxþ yj � jxj� jyj and therefore for all j it holds that

jlþajþbjj � R�ðajþbjÞ

As we picked R such that R>3maxjðaj þbjÞ we get that
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R�ðaj þbjÞ>2ðajþbjÞ

and therefore

Y

n

j¼1

jlþaj þbjj>
Y

n

j¼1

2jajþbjj>
Y

n

j¼1

2jajj ¼ jgðlÞj

concluding that over the arc, jf ðlÞj> jgðlÞj.

For the part of K on the imaginary axis, we note that l ¼ iy where y 2 ½�R;R�. For this segment

we therefore get that

jf ðlÞj ¼
Y

n

j¼1

jajþbjþ iyj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

n

j¼1

ððajþbjÞ
2 þ y2Þ

v

u

u

t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

n

j¼1

ðaj þbjÞ
2

v

u

u

t

and, as before, that

jgðlÞj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi

Y

n

j¼1

a2

j

v

u

u

t

To meet the condition that jf ðlÞj> jgðlÞj, which is equivalent to: jf ðlÞj
jgðlÞj >1, it is sufficient to find the

conditions under which:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qn
j¼1

ðajþbjÞ
2

q

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qn
j¼1

a2

j

q >1

Simplifying this inequality gives:

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

n

j¼1

ðajþbjÞ
2

a2

j

v

u

u

t ¼
1

2

Y

n

j¼1

ajþbj

aj

¼
1

2

Y

n

j¼1

ð1þ
bj

aj

Þ>1)
Y

n

j¼1

ð1þ
bj

aj

Þ>2

A sufficient condition to satisfy this inequality, given that all the aj are positive and all the bj’s are

non negative, is that there exists j such that bj>aj.

We therefore get that if there exists j such that bj >aj, then jf ðlÞj> jgðlÞj over the contour K. In

this case, by Rouche’s theorem, we deduce that, as all of f ’s roots lie inside K, then it follows that all

of f � g’s roots lie inside K, concluding that the real part of all of the eigenvalues of the characteristic

polynomial of the Jacobian matrix of the complex autocatalytic cycle are negative, making any

steady state that meets this criterion stable.

Multiple unsaturated branch reactions increase convergence speed and
dampen oscillations
Using the Jacobian matrix from Equation 32 we can analyze the effect of multiple low saturation

branch points on convergence to steady state. The analysis shows that the more i’s exist for which

bi > 0, and the larger bi is (resulting in lower saturation of fbi ), the faster the convergence of the cycle

to steady state will be.

We denote by ~X� the steady state vector of the concentrations of the intermediate metabolites.

We denote by ~X ¼ ~X� þ DXj a state where for all the intermediate metabolites that are not Xj, their

concentration is the same as the steady state concentration, and Xj differs by a small amount, DXj,

from its steady state concentration. We let F denote the fluxes function of the system such that

FðXÞ ¼ _Xj~X . Evaluating the dynamics of the system at ~X by noting that Fð~XÞ »Fð~X�Þ þ J � DXj ¼ J � DXj

(where Fð~X�Þ ¼ 0 as ~X� is a steady state) results in Fð~XÞk ¼ 0 for all k 6¼ j; jþ 1. For Xj such that j 6¼ n

we get Fð~XÞj » � ðaj þ bjÞDXj and for Xjþ1 we get Fð~XÞjþ1
»ajDXj. Therefore, the difference from the

steady state decreases proportionally to bj (and cycles to the next intermediate metabolite, Xjþ1).

For j ¼ n, we get that Fð~XÞj » � ðaj þ bjÞDXj, as for j 6¼ n, but Fð~XÞ
1
» 2ajDXj where the factor of 2 is
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due to the effect of the assimilating reaction, that causes an amplification of the deviation from

steady state (an amplification that is dampened by subsequent reactions along the cycle if the condi-

tions for stable steady state are satisfied).

It therefore follows that any increase in bj, for any j, increases the speed of convergence to steady

state and reduces the propagation of deviations from steady state for Xj. Because of the linearity of

matrix multiplication, an arbitrary deviation from ~X� can always be decomposed to individual devia-

tions with respect to every intermediate metabolite, making the analysis above valid for such devia-

tions as well. Thus, to keep deviations from steady state at check, it is beneficial to increase bj, for

all j, which implies decreasing the saturation of fbj .

Inverse relationship between derivatives, affinities, and saturation
levels
It turns out that for the Michaelis-Menten kinetics equations, the following useful lemma can be used

to connect theoretical observations on the relationships of derivatives to physiological observations

on affinities and saturation levels.

We define the saturation level of a reaction as the ratio between the flux it carries, and the maxi-

mal flux it can carry, given the expression level of the relevant enzyme, that is:

SðXÞ ¼
f ðXÞ

Vmax

¼
X

KM þX

Given this definition we can show that if two Michaelis-Menten reactions consume the same

metabolite, X, and at a given concentration, X�, it holds that faðX
�Þ � fbðX

�Þ, then if:

dfb

dX

�

�

�

X¼X�
>
dfa

dX

�

�

�

X¼X�
(34)

then it follows that:

KM;b>KM;a

SbðX
�Þ<SaðX

�Þ

�

(35)

Proof: expanding the condition that faðX
�Þ � fbðX

�Þ, we get that:

Vmax;bX
�

KM;b þX�
�

Vmax;aX
�

KM;aþX�
)

Vmax;b

KM;b þX�
�

Vmax;a

KM;a þX�
(36)

Expanding the premise of the lemma in Equation 34 gives us that:

dfb

dX

�

�

�

X¼X�
>
dfa

dX

�

�

�

X¼X�
)

Vmax;bKM;b

ðKM;b þX�Þ2
>

Vmax;aKM;a

ðKM;a þX�Þ2

Because Equation 36 holds, it follows that:

KM;b

KM;bþX�
>

KM;a

KM;a þX�
)

1

1þ X�

KM;b

>
1

1þ X�

KM;a

)KM;b>KM;a

setting the affinity of the autocatalytic enzyme as a lower bound for the affinity of the branch

enzyme. Finally, given this relation of affinities it follows that:

KM;b>KM;a ) X�þKM;b>X� þKM;a )
X�

X� þKM;b
<

X�

X� þKM;a
) SbðX

�Þ<SaðX
�Þ

concluding the proof.

We note that a multiple reaction autocatalytic cycle at a stable steady state point satisfies Equa-

tions 30 and 31, so the lemma applies.

Evaluating maximal flux capacity of reactions under a given condition
To evaluate the maximal flux capacity of a reaction under a prescribed growth condition, given

expression level and flux data for a set of conditions, we follow the procedure described in
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Davidi et al. (2016). For each reaction, under every condition, we divide the flux the reaction carries

(obtained from Gerosa et al., 2015) by the amount of the corresponding enzyme expressed under

that condition (obtained from Schmidt et al., 2016). We thus get a flux per enzyme estimate for the

given reaction under each of the conditions. We define the enzyme maximal in-vivo catalytic rate as

the maximum flux per unit enzyme it carries across all conditions analyzed (noting that this is actually

only a lower bound on this rate). Multiplying the enzyme maximal catalytic rate by the enzyme

amount at each condition results in an estimate of the maximal possible flux through the given reac-

tion under the relevant condition.

Allosteric regulation can improve network performance
In this section we touch upon the potential (in somewhat simplified and naively non-rigorous terms)

of allosteric regulation to improve the properties of autocatalytic cycles. The constraint on the affin-

ity of the branch reaction imposed by the stability requirement (Equation 35) may be suboptimal

under other flux modes. Furthermore, allosteric regulation can be used to accelerate the rate at

which an autocatalytic cycle converges to its stable steady state mode. While many allosteric regula-

tion schemes exist (Leskovac, 2003), all of these schemes affect the affinity of the regulated enzyme,

and some of these schemes also affect the maximal rate. We qualitatively analyze the expected reg-

ulation benefits for autocatalytic cycles.

From the perspective of the simple model, we recall that _X ¼ fa � fb. If the cycle is such that some

steady state concentration, X�, is the desired value for biological function, then for levels of X below

X� convergence will be faster if fa is increased and fb is decreased, compared with their values at X�.

Conversely, for levels of X above X�, convergence will be faster if fa is decreased and fb is increased,

compared with their values at X�. Convergence to X� can therefore be accelerated if, for example, X

activates the branch reactions and inhibits the cycle reactions.

The assimilated metabolite can also allosterically regulate the reactions of the cycle. We assume

that the desired steady state, denoted X̂, does not depend on the concentration of the assimilated

metabolite, A. Under this assumption, we further assume that X̂ is attained for some constant con-

centration of the assimilated metabolite, Â. It then follows that because the autocatalytic activity is

higher when A> Â, then in order to maintain X� close to its desired level, when A> Â, fa should be

inhibited, and fb should be activated, but when A< Â, fa should be activated, and fb should be inhib-

ited. Therefore, to increase the robustness of the steady state concentration to changes in the con-

centration of the assimilated metabolite, the assimilated metabolite should inhibit the cycle

reactions and activate the branch reactions.

Another possible class of regulators are the products of the branch reactions. Taking a somewhat

simplistic view, if the level of Y , the product of a branch reaction is low, this can indicate that the

cycle does not carry sufficient flux to supply the demand for Y . Regulation can then be used to

increase X�. From Equation 7, we get that the steady state concentration, X�, increases as KM;b

increases and Vmax;b decreases, corresponding to inhibition of fb, and that X� decreases as KM;a

increases and Vmax;a decreases, corresponding to inhibition of fa. So, to tune autocatalytic fluxes to

match the demands of Y, regulation should increase X� when Y is low, by activating the recycling

and autocatalytic reactions and inhibiting the branch reactions. On the other hand, regulation should

decrease X� when Y is high, by inhibiting the autocatalytic reactions and activating the branch reac-

tions. Therefore, to synchronize the demand of the cycle product with the cycle flux, the cycle branch

products should inhibit the cycle reactions and activate the branch reactions.

Finally, we note that in the autocatalytic cycles we identify in central carbon metabolism, there

are also reactions that operate in the reverse direction to the branch reactions, such that they con-

sume products of the cycle and produce intermediate metabolites of the cycle. As such reactions are

mirror images of branch reactions, we expect them to be oppositely regulated to branch reactions.

We find that these predictions hold for the cycle using the PTS, that is known to be allosterically

controlled, but not for the glyoxylate cycle, which is known to be transcriptionally controlled

(Gerosa et al., 2015).
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