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Abstract Variation in the presence or absence of transposable elements (TEs) is a major source

of genetic variation between individuals. Here, we identified 23,095 TE presence/absence variants

between 216 Arabidopsis accessions. Most TE variants were rare, and we find these rare variants

associated with local extremes of gene expression and DNA methylation levels within the

population. Of the common alleles identified, two thirds were not in linkage disequilibrium with

nearby SNPs, implicating these variants as a source of novel genetic diversity. Many common TE

variants were associated with significantly altered expression of nearby genes, and a major fraction

of inter-accession DNA methylation differences were associated with nearby TE insertions. Overall,

this demonstrates that TE variants are a rich source of genetic diversity that likely plays an

important role in facilitating epigenomic and transcriptional differences between individuals, and

indicates a strong genetic basis for epigenetic variation.

DOI: 10.7554/eLife.20777.001

Introduction
Transposable elements (TEs) are mobile genetic elements present in nearly all studied organisms,

and comprise a large fraction of most eukaryotic genomes. The two types of TEs are retrotranspo-

sons, which transpose via an RNA intermediate requiring a reverse transcription reaction, and DNA

transposons, which transpose via either a cut-paste or, in the case of Helitrons, a rolling circle mech-

anism with no RNA intermediate (Wicker et al., 2007). TE activity poses mutagenic potential as a TE

insertion may disrupt functional regions of the genome. Consequently, safeguard mechanisms have

evolved to suppress this activity, including the methylation of cytosine nucleotides (DNA methyla-

tion) to produce 5-methylcytosine (mC), a modification that can induce transcriptional silencing of

the methylated locus. In Arabidopsis thaliana (Arabidopsis), DNA methylation occurs in three DNA

sequence contexts: mCG, mCHG, and mCHH, where H is any base but G. Establishment of DNA

methylation marks can be carried out by two distinct pathways—the RNA-directed DNA methylation

pathway guided by 24 nucleotide (nt) small RNAs (smRNAs), and the DDM1/CMT2 pathway

(Zemach et al., 2013; Matzke and Mosher, 2014). A major function of DNA methylation in Arabi-

dopsis is in the transcriptional silencing of TEs. Mutations in genes essential for DNA methylation

establishment or maintenance can lead to a decrease in DNA methylation levels, expression of previ-

ously silent TEs, and in some cases transposition (Mirouze et al., 2009; Miura et al., 2001;

Saze et al., 2003; Lippman et al., 2004; Jeddeloh et al., 1999; Zemach et al., 2013). In Arabidop-

sis, TEs are often methylated in all cytosine sequence contexts, in a pattern distinct from DNA meth-

ylation in other regions of the genome. Conversely, DNA methylation often occurs in gene bodies

exclusively in the CG context and is correlated with gene expression, although this gene-body
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methylation appears dispensable (Bewick et al., 2016). Many thousands of regions of the Arabidop-

sis genome have been identified as differentially methylated between different wild Arabidopsis

accessions, although the cause and possible function of these differentially methylated regions

remains unclear (Schmitz et al., 2013).

TEs are thought to play an important role in evolution, not only because of the disruptive poten-

tial of their transposition. The release of transcriptional and post-transcriptional silencing of TEs can

lead to bursts of TE activity, rapidly generating new genetic diversity (Vitte et al., 2014). TEs may

carry regulatory information such as promoters and transcription factor binding sites, and their mobi-

lization may lead to the creation or expansion of gene regulatory networks (Hénaff et al., 2014;

Bolger et al., 2014; Ito et al., 2011; Makarevitch et al., 2015). Furthermore, the transposase

enzymes required and encoded by TEs have frequently been domesticated and repurposed as

endogenous proteins, such as the DAYSLEEPER gene in Arabidopsis, derived from a hAT transpo-

sase enzyme (Bundock and Hooykaas, 2005). Clearly, the activity of TEs can have widespread and

unpredictable effects on the host genome. However, the identification of TE presence/absence var-

iants in genomes has remained difficult to date. It is challenging to identify the structural changes in

the genome caused by TE mobilization using current short-read sequencing technologies as these

reads are typically mapped to a reference genome, which has the effect of masking structural

changes that may be present. However, in terms of the number of base pairs affected, a large frac-

tion of genetic differences between Arabidopsis accessions appears to be due to variation in TE con-

tent (Cao et al., 2011; Quadrana et al., 2016). Therefore, identification of TE variants is essential in

order to develop a more comprehensive understanding of the genetic variation that exists between

genomes, and of the consequences of TE movement on genome and cellular function.

In order to accurately map the locations of TE presence/absence variants with respect to a refer-

ence genome, we have developed a novel algorithm, TEPID (Transposable Element Polymorphism

IDentification), which is designed for population studies. We tested our algorithm using both simu-

lated and real Arabidopsis sequencing data, finding that TEPID is able to accurately identify TE pres-

ence/absence variants with respect to the Col-0 reference genome. We applied our TE variant

identification method to existing genome resequencing data for 216 different Arabidopsis acces-

sions (Schmitz et al., 2013), identifying widespread TE variation amongst these accessions and

enabling exploration of TE diversity and links to gene regulation and epigenomic variation.

Results

Computational identification of TE presence/absence variation
We developed TEPID, an analysis pipeline capable of detecting TE presence/absence variants from

paired end DNA sequencing data. TEPID integrates split and discordant read mapping information,

read mapping quality, sequencing breakpoints, as well as local variations in sequencing coverage to

identify novel TE presence/absence variants with respect to a reference TE annotation (Figure 1; see

Materials and methods). This typically takes 5–10 min per accession for Arabidopsis genomic DNA

sequencing data at 20-40x coverage, excluding the read mapping step. After TE variant discovery

has been performed, TEPID then includes a second refinement step designed for population studies.

This examines each region of the genome where there was a TE presence identified in any of the

analyzed samples, and checks for evidence of this insertion in all other samples. In this way, TEPID

leverages TE variant information for a group of related samples to reduce false negative calls within

the group. Testing of TEPID using simulated TE variants in the Arabidopsis genome showed that it

was able to reliably detect simulated TE variants at sequencing coverage levels commonly used in

genomics studies (Figure 1—figure supplement 1).

In order to further assess the sensitivity and specificity of TE variant discovery using TEPID, we

identified TE variants in the Landsberg erecta (Ler) accession, and compared these with the Ler

genome assembly created using long PacBio sequencing reads (Chin et al., 2013). Previously pub-

lished 100 bp paired-end Ler genome resequencing reads (Schneeberger et al., 2011) were first

analyzed using TEPID, enabling identification of 446 TE presence variants (Figure 1—source data 1)

and 758 TE absence variants (Figure 1—source data 2) with respect to the Col-0 reference TE anno-

tation. Reads providing evidence for these variants were then mapped to the Ler reference genome,

generated by de novo assembly using Pacific Biosciences P5-C3 chemistry with a 20 kb insert library
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Figure 1. TE variant discovery pipeline. Principle of TE variant discovery using split and discordant read mapping

positions. Paired end reads are first mapped to the reference genome using Bowtie2 [Langmead and Salzberg,

2012]. Soft-clipped or unmapped reads are then extracted from the alignment and re-mapped using Yaha, a split

read mapper [Faust and Hall, 2012]. All read alignments are then used by TEPID to discover TE variants relative

to the reference genome, in the ’tepid-discover’ step. When analyzing groups of related samples, these variants

can be further refined using the ‘tepid-refine’ step, which examines in more detail the genomic regions where

there was a TE variant identified in another sample, and calls the same variant for the sample in question using

lower read count thresholds as compared to the ‘tepid- discover’ step, in order to reduce false negative variant

calls within a group of related samples.

DOI: 10.7554/eLife.20777.002

The following source data and figure supplement are available for figure 1:

Source data 1. TE presences in Ler.

DOI: 10.7554/eLife.20777.003

Source data 2. TE absences in Ler.

DOI: 10.7554/eLife.20777.004

Figure supplement 1. Testing of the TEPID pipeline using simulated TE variants in the Arabidopsis Col-0 genome

(TAIR10), for a range of sequencing coverage levels.

DOI: 10.7554/eLife.20777.005
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(Chin et al., 2013), using the same alignment parameters as were used to map reads to the Col-0

reference genome. This resulted in 98.7% of reads being aligned concordantly to the Ler reference,

whereas 100% aligned discordantly or as split reads to the Col-0 reference genome (Table 1). To

find whether reads mapped to homologous regions in both the Col-0 and Ler reference genomes,

we conducted a BLAST search (Camacho et al., 2009) using the DNA sequence between read pair

mapping locations in the Ler genome against the Col-0 genome, and found the top BLAST result for

80% of reads providing evidence for TE insertions, and 89% of reads providing evidence for TE

absence variants in Ler, to be located within 200 bp of the TE variant reported by TEPID. Thus, reads

providing evidence for TE variants map discordantly or as split reads when mapped to the Col-0 ref-

erence genome, but map concordantly to homologous regions of the Ler de novo assembled refer-

ence genome, indicating that structural variation is present at the sites identified by TEPID, and that

this is resolved in the de novo assembled genome.

To estimate the rate of false negative TE absence calls made using TEPID, we compared our Ler

TE absence calls to the set of TE absences in Ler genome identified previously by aligning full-length

Col-0 TEs to the Ler reference using BLAT (Quadrana et al., 2016). We found that 89.6% (173/193)

of these TE absences were also identified using TEPID, indicating a false negative rate of ~10% for

TE absence calls. To determine the rate of false negative TE presence calls, we ran TEPID using 90

bp paired-end Col-0 reads (Col-0 control samples from [Jiang et al., 2014]), aligning reads to the

Ler PacBio assembly. As TEPID requires a high-quality TE annotation to discover TE variants, which

is not available for the Ler assembly, we looked for discordant and split read evidence at the known

Col-0-specific TEs (Quadrana et al., 2016), and found evidence reaching the TEPID threshold for a

TE presence call to be made at 89.6% (173/193) of these sites, indicating a false negative rate

of ~10%. However, it should be noted that this estimate does not take into account the TEPID refine-

ment step used on large populations, and so the false negative rate for samples analyzed in the pop-

ulation from Schmitz et al. (2013) is likely to be lower than this estimate, as each accession gained

on average 4% more presence calls following this refinement step (Figure 2—figure supplement 1).

Abundant TE positional variation among natural Arabidopsis
populations
TEPID was used to analyze previously published 100 bp paired-end genome resequencing data for

216 different Arabidopsis accessions (Schmitz et al., 2013), and identified 15,007 TE presence var-

iants (Figure 2—source data 1) and 8088 TE absence variants (Figure 2—source data 2) relative to

the Col-0 reference accession, totalling 23,095 unique TE variants. A recent study focused on identi-

fying recent TE insertions containing target site duplications in this population (Quadrana et al.,

2016). Our goal was to provide a comprehensive assessment of TE presence/absence variation in

Arabidopsis. In most accessions TEPID identified 300–500 TE presence variants (mean = 378) and

1000–1500 TE absence variants (mean = 1279), the majority of which were shared by two or more

accessions (Figure 2—figure supplement 2). Although more TE absences were found on an acces-

sion-by-accession basis, overall TE presence variants were more common in the population as the TE

absences were often shared between multiple accessions. PCR validations were performed for a ran-

dom subset of 10 presence and 10 absence variants in 14 accessions (totalling 280 validations), con-

firming the high accuracy of TE variant discovery using the TEPID package, with a false positive rate

for both TE presence and TE absence identification of ~9%, similar to that observed using simulated

data and the Ler genome analysis (Figure 2—figure supplement 3). The number of TE presence var-

iants identified was positively correlated with sequencing depth of coverage, while the number of TE

Table 1. Mapping of paired-end reads providing evidence for TE presence/absence variants in the

Ler reference genome.

Concordant Discordant Split Unmapped Total

Col-0 mapped 0 993 9513 0 10,206

Ler mapped 10,073 92 34 7 10,206

Note: Discordant and split read categories are not mutually exclusive, as some discordant reads may have one

read in the mate pair split-mapped.

DOI: 10.7554/eLife.20777.006
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absence variants identified had no correlation with sequencing coverage (Figure 2—figure supple-

ment 4A,B), indicating that the sensitivity of TE absence calls is not limited by sequencing depth,

while TE presence identification benefits from high sequencing depth. However, accessions with low

coverage gained more TE presence calls during the TEPID refinement step (Figure 2—figure sup-

plement 4C), indicating that these false negatives were effectively reduced by leveraging TE variant

information for the whole population.

As TE presence and TE absence calls represent an arbitrary comparison to the Col-0 reference

genome, we sought to remove these arbitrary comparisons and classify each variant as a new TE

insertion or true deletion of an ancestral TE in the population. To do this, the minor allele frequency

(MAF) of each variant in the population was examined, under the expectation that the minor allele is

the derived allele. Common TE absences relative to Col-0, absent in �80% of the accessions exam-

ined, were re-classified as TE insertions in Col-0, and common TE presences relative to Col-0, pres-

ent in �80% of accessions, as true TE deletions in Col-0. Cases where the TE variant had a high MAF

(>20%) were unable to be classified, as it could not be determined if these were cases where the var-

iant was most likely to be a true TE deletion or a new TE insertion. While these classifications are not

definitive, as there may be rare cases where a true TE deletion has spread through the population

and becomes the common allele, it should correctly classify most TE variants. Overall, 72.3% of the

TE absence variants identified with respect to the Col-0 reference genome were likely due to a true

TE deletion in these accessions, while 4.8% were due to insertions in Col-0 not shared by most other

accessions in the population (Table 2). High allele frequency TE presence variants relative to Col-0,

representing true deletions in Col-0, were much more rare, with 97.8% of initial TEPID TE presence

calls being subsequently classified as true insertions. The rarity of true deletions identified in Col-0 is

likely due to a reference bias in the TE variant identification method using short read data, as false

negative presence calls in the population will reduce the number of true deletions identified in Col-0

due to a reduction in the allele frequency for that variant, causing the frequency of TE presence var-

iants in non-Col-0 accessions to fall below the required 80% threshold for some variants. This is not

expected to have a large impact on subsequent population-scale analyses, as Col-0 is only one

accession out of the 216 analyzed. Accessions were found to contain on average ~240 true deletions

and ~300 true insertions (Figure 2—figure supplement 5). Overall, we identified 15,077 TE inser-

tions, 5856 true TE deletions, and 2162 TE variants at a high MAF that were unable to be classified

as an insertion or deletion (Figure 2—source data 3).

While TE deletions were strongly biased towards the pericentromeric regions where TEs are

found in high density, TE insertions had a more uniform distribution over the chromosome. This sug-

gests that TE insertion positions are largely random but may be eliminated from chromosome arms

through selection, and accumulate in the pericentromeric regions where low recombination rates

prevent their removal (Figure 2A). TE deletions and common TE variants were found in similar chro-

mosomal regions, as deletion variants represent the rare loss of common variants. Among TE dele-

tions, DNA TEs were slightly less biased towards the centromeres in comparison to the distribution

of RNA TEs (Figure 2—figure supplement 6). The distribution of rare (<3% minor allele frequency

[MAF], <7 accessions; see Materials and methods) TE variants and TE insertions was similar to that

observed for regions of the genome previously identified as being differentially methylated in all

DNA methylation contexts (mCG, mCHG, mCHH) between the wild accessions (population C-DMRs)

(Schmitz et al., 2013). In contrast, population CG-DMRs (differentially methylated in the mCG

Table 2. Summary of TE variant classifications.

TEPID call TE classification Count

Presence NA 310

Insertion 14,689

Deletion 8

Absence NA 1852

Insertion 388

Deletion 5848

DOI: 10.7554/eLife.20777.007
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Figure 2. Extensive novel genetic diversity uncovered by TE variant analysis. (A) Distribution of identified TE variants on chromosome 1, with

distributions of all Col-0 genes, Col-0 TEs, and population DMRs. (B) Proportion of different genomic features containing one or more TE

variants. (C) Proportion of TE variants within each genomic feature classified as deletions or insertions. (D) Proportion of TE variants within each

genomic feature classified as rare (<3% MAF) or common (�3% MAF). (E) Enrichment and depletion of TE variants categorized by TE superfamily

compared to the expected frequency due to genomic occurrence.

DOI: 10.7554/eLife.20777.008

The following source data and figure supplements are available for figure 2:

Source data 1. TE presence variants in all 216 Arabidopsis accessions.

DOI: 10.7554/eLife.20777.009

Source data 2. TE absence variants in all 216 Arabidopsis accessions.

DOI: 10.7554/eLife.20777.010

Source data 3. All TE variants.

DOI: 10.7554/eLife.20777.011

Source data 4. TE family enrichments for TE insertion and TE deletion variants.

DOI: 10.7554/eLife.20777.012

Figure supplement 1. Percentage of total TE presence calls that were made due to the TEPID refinement step for each accession in the population.

DOI: 10.7554/eLife.20777.013

Figure supplement 2. Number of accessions sharing TE variants identified by TEPID.

DOI: 10.7554/eLife.20777.014

Figure supplement 3. Example PCR validations for two TE variants.

DOI: 10.7554/eLife.20777.015

Figure 2 continued on next page
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context) less frequently overlapped with all types of TE variants identified and instead closely fol-

lowed the chromosomal distribution of genes. This was expected, as CG-DMRs are associated with

gene bodies whereas C-DMRs are associated with TEs (Schmitz et al., 2013). Furthermore, genes

and DNase I hypersensitivity sites (putative regulatory regions) (Sullivan et al., 2014) rarely con-

tained a TE variant, whereas ~20–35%% of gene flanking regions, pseudogenes, intergenic regions,

and other TEs were found to contain a TE variant (Figure 2B). This again suggests that TE insertions

occur randomly across the genome, with deleterious insertions that occur in functional regions of the

genome being subsequently removed through selection. TE deletions and common TE variants were

enriched within the set of TE variants found in gene bodies, indicating that TE deletions within genes

may be better tolerated than new TE insertions within genes (Figure 2C,D). No significant enrich-

ment was found for TE variants within the KNOT ENGAGED ELEMENT (KEE) regions, previously

identified as regions that may act as a ’TE sink’ (Grob et al., 2014) (Figure 2—figure supplement

7). This may indicate that these regions do not act as a ’TE sink’ as has been previously proposed, or

that the ’TE sink’ activity is restricted to very recent insertions, as the insertions we analysed in this

population were likely older than those used in the KEE study (Grob et al., 2014).

Among the identified TE variants, several TE superfamilies were over- or under-represented com-

pared to the number expected by chance given the overall genomic frequency of different TE types

(Figure 2E). In particular, both TE insertions and deletions in the RC/Helitron superfamily were less

numerous than expected, with an 11.5% depletion of RC/Helitron elements in the set of TE variants.

In contrast, TEs belonging to the LTR/Gypsy superfamily were more frequently deleted than

expected, with a 17% enrichment in the set of TE deletions. This was unlikely to be due to a differing

ability of the detection method to identify TE variants of different lengths, as the TE variants identi-

fied had a similar distribution of lengths as all Arabidopsis TEs annotated in the Col-0 reference

genome (Figure 2—figure supplement 8). These enrichments suggest that the RC/Helitron TEs

have been relatively dormant in recent evolutionary history, while the LTR/Gypsy TEs, which are

highly enriched in the pericentromeric regions, are frequently lost from the Arabidopsis genome. At

the family level, we observed similar patterns of TE variant enrichment or depletion (Figure 2—fig-

ure supplement 9;Figure 2—source data 4). As certain TEs present in Col-0 have previously been

genotyped in 47 different accessions, allele frequency data was available for some TEs

(Hollister and Gaut, 2007), and we compared these previous allele frequency estimates with our

estimates based on the short read data. We found a weakly positive linear correlation (r2 = 0.3)

between the previous allele frequency estimates for Basho family TEs and our allele frequency esti-

mates, which may not be unexpected given the differing population sizes and TE variant detection

methods used (Figure 2—figure supplement 10).

We further examined Arabidopsis (Col-0) DNA sequencing data from a transgenerational stress

experiment to investigate the possible minimum number of generations required for TE variants to

arise (Jiang et al., 2014). In one of the three replicates subjected to high salinity stress conditions,

we identified a single potential TE insertion in a sample following 10 generations of single-seed

descent, while no TE variants were identified in any of the three control single-seed descent

Figure 2 continued

Figure supplement 4. Relationship between sequencing depth and number of TE variants discovered in each accession.

DOI: 10.7554/eLife.20777.016

Figure supplement 5. Number of TE insertions and TE deletions found in each accession.

DOI: 10.7554/eLife.20777.017

Figure supplement 6. Distribution of RNA and DNA transposable elements over chromosome 1, for TE insertions and TE deletions.

DOI: 10.7554/eLife.20777.018

Figure supplement 7. Frequency of TE insertion in the KEE regions.

DOI: 10.7554/eLife.20777.019

Figure supplement 8. Length distribution for all Col-0 TEs and all TE variants.

DOI: 10.7554/eLife.20777.020

Figure supplement 9. TE family enrichments and depletions for TE insertions and TE deletions.

DOI: 10.7554/eLife.20777.021

Figure supplement 10. TE occupation frequencies for Basho TEs previously genotyped by (Hollister and Gaut, 2007).

DOI: 10.7554/eLife.20777.022
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replicate sets. However, without experimental validation it remains unclear if this represents a true

variant. Therefore, we conclude that TE variants may arise at a rate less than 1 insertion in 60 genera-

tions under laboratory conditions. Further experimental work will be required to precisely determine

the rate of transposition in Arabidopsis.

Relationship between TE variants and single nucleotide polymorphisms
Although many thousands of TE variants were identified, they may be linked to the previously identi-

fied single nucleotide polymorphisms (SNPs), or unlinked from SNPs across the accessions. This dis-

tinction is important, as studies aiming to link epigenetic diversity to genetic variants using only

SNPs would fail to detect such a link caused by TE variants if the TE variants are not in LD with

SNPs. We tested how frequently common TE variants (>3% MAF; see Materials and methods) were

linked to adjacent SNPs to determine when they would represent a previously unassessed source of

genetic variation between accessions. SNPs that were previously identified between the accessions

(Schmitz et al., 2013) were compared to the presence/absence of individual TE variants. For the

common TE variants in the population, the nearest flanking 300 SNPs upstream and 300 SNPs down-

stream of the TE variant site were analyzed for local linkage disequilibrium (LD, r2; see

Materials and methods). TE variants were classified as being either ‘low’, ‘mid’, or ‘high’ LD variants

by comparing ranked r2 values of TE variant to SNPs against the median ranked r2 value for all

between SNP comparisons (SNP-SNP) to account for regional variation in the extent of SNP-SNP LD

(Figure 3A,B) due to recombination rate variation or selection (Horton et al., 2012). The majority

(61%) of common TE variants had low LD with nearby SNPs, and represent a source of genetic diver-

sity not previously assessed by SNP-based genotype calling methods (Figure 3C). 29% of TE variants

displayed high levels of LD and are tagged by nearby SNPs, while only 10% had intermediate levels

of LD. We observed a positive correlation between TE variant MAF and LD state, with variants of a

high MAF more often classified as high-LD (Figure 3D). While the proportion of TE variants classified

as high, mid, or low-LD was mostly the same for both TE insertions and TE deletions, TE variants

with a high MAF (>20%) that were unable to be classified as either true deletions or as new inser-

tions had a much higher proportion of high-LD variants (Figure 3E). This was consistent with the

observation that the more common alleles were more often in a high-LD state. TE variants displayed

a similar distribution over chromosome 1 regardless of linkage classification (Figure 3—figure sup-

plement 1). Overall, this analysis revealed an abundance of previously uncharacterized genetic varia-

tion that exists amongst Arabidopsis accessions caused by the presence or absence of TEs, and

illustrates the importance of identifying TE variants alongside other genetic diversity such as SNPs.

TE variants affect gene expression
To determine whether the newly discovered TE variants may affect nearby gene expression, the

steady state transcript abundance within mature leaf tissue was compared between accessions with

and without TE insertions or deletions, for genes with TE variants located in the 2 kb gene upstream

region, 5’ UTR, exons, introns, 3’ UTR or 2 kb downstream region (Figure 4A). While the steady

state transcript abundance of most genes appeared to be unaffected by the presence of a TE, 168

genes displayed significant differences in transcript abundance linked with the presence of a TE vari-

ant, indicating a role for these variants in the local regulation of gene expression (1% false discovery

rate; >2-fold change in transcript abundance; Figure 4A, Figure 4—source data 1). No functional

category enrichments in this set of differentially expressed genes were identified. As rare TE variants

may also be associated with a difference in transcript abundance, but were unable to be statistically

tested due to their rarity, a burden test for enrichment of rare variants in the extremes of expression

was performed (Zhao et al., 2016). Briefly, this method counts the frequency of rare variants within

each gene expression rank in the population, and aggregates this information over the entire popu-

lation to determine whether an enrichment of rare variants exists within the gene expression

extremes for the population. A strong enrichment for gene expression extremes was observed for

TE variants in all gene features tested (Figure 4B). While TE variants in gene upstream regions

showed a strong enrichment of both high and low gene expression ranks, TE variants in exons or

gene downstream regions were more skewed towards low expression ranks than high ranks. Ran-

domization of the accession names removed these enrichments completely (Figure 4—figure sup-

plement 1), and there was little difference between TE insertions and TE deletions in the gene
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expression rank enrichments found (Figure 4—figure supplement 2). This rare variant analysis fur-

ther indicates that TE variants may alter the transcript abundance of nearby genes, with TE variants

in exons or gene downstream regions being mostly associated with gene downregulation, whereas

TE variants in gene upstream regions appear to be associated with gene activation and gene repres-

sion equally often.

Figure 3 continued

comparisons. (C) Histogram of the number of TE r2 ranks (0-600) that are above the SNP-based median r2 value for

common TE variants. (D) Boxplots showing distribution of minor allele frequencies for each LD category. Boxes

represent the interquartile range (IQR) from quartile 1 to quartile 3. Boxplot upper whiskers represent the

maximum value, or the upper value of the quartile 3 plus 1.5 times the IQR (whichever is smaller). Boxplot lower

whisker represents the minimum value, or the lower value of the quartile 1 minus 1.5 times the IQR (whichever is

larger). (E) Proportion of TE insertions, TE deletions, and unclassified TE variants in each LD category.

DOI: 10.7554/eLife.20777.023

The following figure supplement is available for figure 3:

Figure supplement 1. Distribution of TE variants across chromosome 1 for each LD category (high, mid, low).

DOI: 10.7554/eLife.20777.024
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The following source data and figure supplements are available for figure 4:

Source data 1. Differentially expressed genes associated with TE presence/absence.

DOI: 10.7554/eLife.20777.026

Figure supplement 1. Relationship between rare TE variants and gene expression rank as for Figure 4B for permuted TE variants.

DOI: 10.7554/eLife.20777.027

Figure supplement 2. Relationship between rare TE variants and gene expression rank as for Figure 4B for TE insertions and TE deletions separately.

DOI: 10.7554/eLife.20777.028
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As both increases and decreases in transcript abundance of nearby genes were observed for TE

variants within each gene feature, it appears to be difficult to predict the impact that a TE variant

may have on nearby gene expression based on TE insertion position alone. Furthermore, gene-level

transcript abundance measurements may fail to identify potential positional effects of TE variants

upon transcription. To more closely examine changes in transcript abundance associated with TE var-

iants among the accessions, we inspected a subset of TE variant sites and identified TE variants that

appear to have an impact on transcriptional patterns beyond simply a change in total transcript

abundance of a nearby gene. For example, the presence of a TE insertion within an exon of AtRLP18

(AT2G15040) was associated with truncation of the transcripts at the TE insertion site in accessions

possessing the TE variant, as well as silencing of a downstream gene encoding a leucine-rich repeat

protein (AT2G15042) (Figure 5A,B). Both genes had significantly lower transcript abundance in

accessions containing the TE insertion (p < 5.8 � 10-10, Mann-Whitney U test). As four accessions

that were predicted to contain the TE insertion within AtRLP18 appeared to have the non-insertion

RNA expression pattern (Figure 5A), we performed additional PCR validations on two of these four

accessions, as well as two accessions with truncated RNA expression. These validations showed that

the accessions predicted to contain the TE insertion but also expressing AtRLP18 were false positive

calls (Figure 5—figure supplement 1). However, the false positive rate for this site (~3%) was still

lower than our global estimate for TEPID. AtRLP18 has been reported to be involved in bacterial

resistance, with the disruption of this gene by T-DNA insertion mediated mutagenesis resulting in

increased susceptibility to the bacterial plant pathogen Pseudomonas syringae (Wang et al., 2008).

Examination of pathogen resistance phenotype data (Aranzana et al., 2005) revealed that acces-

sions containing the TE insertion in the AtRLP18 exon were more often sensitive to infection by

Pseudomonas syringae transformed with avrPpH3 genes (Figure 5C). This suggests that the acces-

sions containing this TE insertion within AtRLP18 may have an increased susceptibility to certain bac-

terial pathogens.

Some TE variants were also associated with increased expression of nearby genes. For example,

the presence of a TE within the upstream region of a gene encoding a pentatricopeptide repeat

(PPR) protein (AT2G01360) was associated with higher transcript abundance of this gene

(Figure 5D,E). Transcription appeared to begin at the TE insertion point, rather than the transcrip-

tional start site of the gene (Figure 5D). Accessions containing the TE insertion had significantly

higher AT2G01360 transcript abundance than the accessions without the TE insertion (p <

1.8 � 10�7, Mann-Whitney U test). The apparent transcriptional activation, linked with the presence

of a TE belonging to the HELITRON1 family, indicates that this element may carry regulatory infor-

mation that alters the expression of genes downstream of the TE insertion site. Importantly, this vari-

ant was classified as a low-LD TE insertion, as it is not in LD with surrounding SNPs, and therefore

the associated changes in gene transcript abundance would not be linked to genetic differences

between the accessions using only SNP data. This TE variant was also upstream of QPT

(AT2G01350), involved in NAD biosynthesis (Katoh et al., 2006), which did not show alterations in

transcript abundance associated with the presence of the TE insertion, indicating a potential direc-

tionality of regulatory elements carried by the TE (Figure 5D,E). This TE insertion occurred at the

border of a non-syntenic block of genes thought to be a result of a transposition event in

Arabidopsis (Freeling et al., 2008). This transposition event likely predates the TE insertion discov-

ered here, and it is interesting that multiple transposition events appear to have occurred in close

proximity in the genome. Overall, these examples demonstrate that TE variants can have unpredict-

able, yet important, effects on the expression of nearby genes, and these effects may be missed by

studies focused on genetic variation at the level of SNPs.

TE variants explain many DNA methylation differences between
accessions
As TEs are frequently highly methylated in Arabidopsis (Zhang et al., 2006; Zilberman et al., 2007;

Cokus et al., 2008; Lister et al., 2008), the DNA methylation state surrounding TE variant sites was

assessed to determine whether TE variants might be responsible for differences in DNA methylation

patterns previously observed between the wild accessions (Schmitz et al., 2013). TE variants were

often physically close to DMRs (Figure 6A). Furthermore, C-DMRs were more often close to a TE

variant than expected, whereas CG-DMRs were rarely close to TE insertions or TE deletions (Table 3).

Again, this was expected as DNA methylation solely in the CG context is associated with gene
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Figure 5 continued on next page
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bodies, whereas DNA methylation in all contexts is associated with TEs. Overall, 54% of the 13,482

previously reported population C-DMRs were located within 1 kb of a TE variant (predominantly TE

insertions), while only 15% of CG-DMRs were within 1 kb of a TE variant (Table 3). For C-DMRs, this

was significantly more than expected by chance, while it was significantly less than expected for CG-

DMRs (p < 1 � 10�4, determined by resampling 10,000 times). Of the C-DMRs that were not close

to a TE variant, 3701 (27% of all C-DMRs) were within 1 kb of a non-variable TE. Thus, 81% of

C-DMRs are within 1 kb of a TE when considering both fixed and variable TEs in the population. Of

the remaining 19% of C-DMRs, most were found in genes or intergenic regions.

To determine whether DMR methylation levels were associated with the presence/absence of

nearby TE variants, Pearson correlation coefficients were calculated between the DNA methylation

level at each C- or CG-DMR and the presence/absence of the nearest TE variant, to produce a

numerical estimate of the association between TE presence/absence and DNA methylation level at

the nearest DMR. Further analysis showed that for C-DMRs the strength of this association was

dependent on the distance from the C-DMR to the TE insertion, whereas this was not true for CG-

DMRs or TE deletions (Figure 6B, Figure 6—figure supplement 1). This suggested a distance-

dependent effect of TE insertion on C-DMR methylation. DNA methylation levels at C-DMRs located

within 1 kb of a TE insertion (TE-DMRs) were more often positively correlated with the presence of a

TE insertion than the DNA methylation levels at C-DMRs further than 1 kb from a TE insertion (non-

TE-DMRs). This was evident from the distribution of correlation coefficients for non-TE-DMRs being

centred around zero, whereas for TE-DMRs this distribution was skewed to the right (Figure 6C,

D = 0.24). For TE deletions, such a difference was not observed in the distributions of correlation

coefficients between TE-DMRs and non-TE-DMRs, nor for CG-DMRs and their nearby TE insertions

or deletions (Figure 6C, D = 0.07–0.10). These results strongly suggest a relationship between the

presence of a TE insertion and formation of a nearby C-DMR.

As the above correlations between TE presence/absence and DMR methylation level rely on the

TE variants having a sufficiently high MAF, this precludes analysis of the effect of rare variants on

DMR methylation levels. To determine the effect that these rare TE variants may have on DMR meth-

ylation levels, a burden test for enrichment of DMR methylation extremes at TE-DMRs was per-

formed, similar to the analysis undertaken to test the effect of rare variants on gene expression. A

strong enrichment was observed for high C-DMR and CG-DMR methylation level ranks for TE inser-

tions, while TE deletions were associated with both high and low extremes of DNA methylation lev-

els at C-DMRs, and less so at CG-DMRs (Figure 6D). This further indicates that the presence of a TE

insertion is associated with higher C-DMR methylation levels, while TE deletions appear to have

more variable effects on DMR methylation levels. This enrichment was completely absent after

repeating the analysis with randomized accession names (Figure 6—figure supplement 2). A slight

enrichment was also observed for low DMR methylation ranks for TE insertions near CG-DMRs, indi-

cating that the insertion of a TE was sometimes associated with reduced CG methylation in nearby

regions (<1 kb from the TE). Closer examination of these TE insertions revealed that some TE inser-

tions were associated with decreased transcript abundance of nearby genes, with a corresponding

loss of gene body methylation, offering a potential explanation for the decreased CG methylation

observed near some TE insertions (Figure 6—figure supplement 3).

To further assess the effects of TE variants upon local DNA methylation patterns, the levels of

methylation were examined in regions flanking all TE variants regardless of the presence or absence

of a population DMR call. While DNA methylation levels around pericentromeric TE insertions and

deletions (<3 Mb from a centromere) seemed to be unaffected by the presence of a TE insertion

Figure 5 continued

browser representation of RNA-seq data for a PPR protein-encoding gene (AT2G01360) and QPT (AT2G01350), showing transcript abundance for these

genes in accessions containing a TE insertion variant in the upstream region of these genes, as well as in Col-0. (E) RNA-seq FPKM values for QPT and

a gene encoding a PPR protein (AT2G01360), for all accessions. Note that scales are different for the two heatmaps shown in E, due to the higher

transcript abundance of QPT compared to AT2G01360. Scale maximum for AT2G01350 is 3.1 � 105, and for AT2G01360 is 5.9 � 104.

DOI: 10.7554/eLife.20777.029

The following figure supplement is available for figure 5:

Figure supplement 1. PCR validations for a TE insertion within the AtRLP18 gene.

DOI: 10.7554/eLife.20777.030
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DOI: 10.7554/eLife.20777.031

The following figure supplements are available for figure 6:

Figure supplement 1. DNA methylation levels at DMRs near or far from TE variants.

DOI: 10.7554/eLife.20777.032

Figure supplement 2. Cumulative number DMR methylation level ranks for DMRs near rare TE variants with accessions selected at random.

DOI: 10.7554/eLife.20777.033

Figure supplement 3. Selected examples of TE insertions apparently associated with transcriptional downregulation of nearby genes and loss of gene

body CG methylation leading to the formation of a CG-DMR.

DOI: 10.7554/eLife.20777.034
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(Figure 7A), TE insertions in the chromosome arms were associated with an increase in DNA methyl-

ation levels in all sequence contexts (Figure 7A,B). In contrast, TE deletions in the chromosome

arms did not affect patterns of DNA methylation, as the flanking methylation level in all contexts

appeared to remain high following deletion of the TE (Figure 7A,C). As the change in DNA methyla-

tion levels around most TE variant sites appeared to be restricted to regions <200 bp from the inser-

tion site, DNA methylation levels in 200 bp regions flanking TE variants were correlated with the

presence/absence of TE variants. DNA methylation levels were often positively correlated with the

presence of a TE insertion when the insertion was distant from a centromere (Figure 7D). TE dele-

tions were more variably correlated with local DNA methylation levels, but also showed a bias

towards positive correlations for TE deletions distant from the centromeres. However, for TE variants

in the chromosome arms the mean correlation between TE insertions and flanking DNA methylation

was significantly higher than the mean correlation between TE deletions and flanking DNA methyla-

tion (Mann-Whitney U test, p<0.002). As methylome data were available for both leaf and bud tissue

for 12 accessions, this analysis was repeated comparing between tissue types, but no differences

were observed in the patterns of methylation surrounding TE variant sites between the two tissues

(Figure 7—figure supplement 1). This suggests that the effect of TE variants upon patterns of DNA

methylation may be tissue-independent.

These results indicate that local DNA methylation patterns are influenced by the differential TE

content between genomes, and that the DNA methylation-dependent silencing of TEs may fre-

quently lead to the formation of DMRs between wild Arabidopsis accessions. TE insertions appear

to be important in defining local patterns of DNA methylation, while DNA methylation levels often

remain elevated following a TE deletion, and so are independent from the presence or absence of

TEs in these cases. Importantly, the distance from a TE insertion to the centromere appears to have

a strong impact on whether an alteration of local DNA methylation patterns will occur. This is likely

due to flanking sequences being highly methylated in the pericentromeric regions, and so the inser-

tion of a TE cannot further increase levels of DNA methylation. Overall, a large fraction of the popu-

lation C-DMRs previously identified between wild accessions are correlated with the presence of

local TE variants. CG-DMR methylation levels appear to be mostly independent from the presence/

absence of common TE variants, while rare TE variants have an impact on DNA methylation levels at

both C-DMRs and CG-DMRs, perhaps due to their more frequent occurrence within the chromo-

some arms, closer to genes and where CG-DMRs are more abundant (Figure 2A).

Genome-wide association scan highlights distant and local control of
DNA methylation
To further investigate the effects of TE variants upon local and distant DNA methylation levels in the

genome, an association scan was conducted for all common TE variants (>3% MAF) and all popula-

tion C-DMRs for the 124 accessions with both DNA methylation and TE variant data available. To

test the significance of each pairwise correlation, bootstrap p-value estimates were collected based

on 500 permutations of accession labels. TE-DMR associations were deemed significant if they had

an association more extreme than all 500 permutations (p<1/500). A band of significant associations

was observed for TE insertions and their nearby C-DMRs, signifying a local association between TE

insertion presence/absence and C-DMR methylation (Figure 8A). This local association was not as

strong for TE deletions (Figure 8B), consistent with our above findings. While TE variants and DNA

methylation showed a local association, it is also possible that TE variation may influence DNA

Table 3. Percentage of DMRs within 1 kb of a TE variant.

C-DMRs CG-DMRs

Observed Expected 95% CI Observed Expected 95% CI

TE deletions 17 16 0.0079 4.1 16 0.0041

TE insertions 28 26 0.0089 9.1 26 0.0047

NA calls 8.7 6.2 0.0053 1.6 6.2 0.0027

Total 54 48 0.01 15 48 0.0054

DOI: 10.7554/eLife.20777.035
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methylation states more broadly in the genome, perhaps through the production of trans-acting

smRNAs or inactivation of genes involved in DNA methylation establishment or maintenance. To

identify any potential enrichment of C-DMRs regulated in trans, the total number of significant asso-

ciations was summed for each TE variant across the whole genome (Figure 8A and B, top panels).

At many sites, far more significant associations were found than expected due to the false positive

Figure 7. Local patterns of DNA methylation surrounding TE variant sites. (A) DNA methylation levels in 200 bp bins flanking TE variant sites, ±2 kb

from the TE insertion point. TE variants were grouped into pericentromeric variants (<3 Mb from a centromere) or variants in the chromosome arms (>3

Mb from a centromere). (B) DNA methylation level in each sequence context for TE insertion sites, ±2 kb from the TE insertion point. (C) As for B, for TE

deletions. (D) Distribution of Pearson correlation coefficients between TE presence/absence and DNA methylation levels in the 200 bp regions flanking

TE variant, ordered by distance to the centromere.

DOI: 10.7554/eLife.20777.036

The following figure supplement is available for figure 7:

Figure supplement 1. DNA methylation levels in 200 bp bins flanking TE variant sites in the 12 accessions with DNA methylation data for both leaf and

bud tissue, ±2 kb from the TE insertion point.

DOI: 10.7554/eLife.20777.037
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Figure 8. Association scan between TE variants and C-DMR methylation variation. (A) Significant correlations

between TE insertions and C-DMR DNA methylation level. Points show correlations between individual TE-DMR

pairs that were more extreme than all 500 permutations of the DMR data. Top plots show the total number of

significant correlations for each TE insertion across the whole genome. (B) As for (A), for TE deletions.

DOI: 10.7554/eLife.20777.038
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rate alone. This suggested the existence of many putative trans associations between TE variants

and genome-wide C-DMR methylation levels. These C-DMRs that appeared to be associated with a

TE insertion in trans were further examined, checking for TE insertions near these C-DMRs that were

present in the same accessions as the trans associated TE, as these could lead to a false trans associ-

ation. These were extremely rare, with only four such cases for TE insertions, and 38 cases for TE

deletions, and so were unable to explain the high degree of trans associations found. Overall, this

suggests that certain TE variants may affect DNA methylation levels more broadly in the genome, as

their effects upon DNA methylation are not necessarily limited to nearby DNA sequences.

Discussion
Here we have discovered widespread differential TE content between wild Arabidopsis accessions,

and explored the impact of these variants upon transcription and DNA methylation at the level of

individual accessions. Most TE variants were due to the de novo insertion of TEs, while a smaller sub-

set was likely due to the deletion of ancestral TE copies, mostly around the pericentromeric regions.

A subset (32%) of TE variants with a minor allele frequency above 3% were able to be tested for link-

age with nearby SNPs. The majority of these TE variants exhibited only low levels of LD with nearby

SNPs, indicating that they represent genetic variants currently overlooked in genomic studies. A

marked depletion of TE variants within gene bodies and DNase I hypersensitivity sites (putative reg-

ulatory regions) is consistent with the more deleterious TE insertions being removed from the popu-

lation through selection. Of those TE variants found in gene bodies, TE deletions were

overrepresented, indicating that the loss of ancestral TEs inserted within genes may be more fre-

quent, or perhaps less deleterious, than the de novo insertion of TEs into genes.

A previous study focused on recent TE insertions in the Arabidopsis population (Quadrana et al.,

2016), thus the extensive variation between accessions due to older TE insertions or TE deletions

has not been explored. We identified clear cases where TE variants appear to have an effect upon

gene expression, both in the disruption of transcription and in the spreading or disruption of regula-

tory information leading to the transcriptional activation of genes, indicating that these TE variants

can have important consequences upon the expression of protein coding genes (Figure 5). In one

case, these changes in gene expression could be linked with phenotypic changes, with accessions

containing a TE insertion more frequently sensitive to bacterial infection. Further experiments will be

needed to establish a causal link between this TE insertion and the associated phenotype. An analy-

sis of rare TE variants, present at a low MAF, further strengthened this relationship between TE pres-

ence/absence and altered transcript abundance, as a strong enrichment of rare TE variants in

accessions with extreme gene expression ranks in the population was identified. Therefore, the

effects of TE insertions appear to be long-lasting, as there was little difference between common

(old) and rare (young) variants in the impact upon gene expression (Figure 4).

Perhaps most importantly, we provide evidence that differential TE content between genomes of

Arabidopsis accessions underlies a large fraction of the previously reported population C-DMRs.

Thus, the frequency of pure epialleles, independent of underlying genetic variation, may be even

more rare than previously anticipated (Richards, 2006). Overall, 81% of all C-DMRs were within 1 kb

of a TE, when considering both fixed and variable TEs in the population. We did not find evidence

of CG-DMR methylation, associated with gene bodies, being altered by the presence of common TE

variants. However, rare TE variants may be more important in shaping patterns of DNA methylation

at some CG-DMRs, perhaps due to their higher frequency in regions close to genes. The level of

local DNA methylation changes associated with TE variants was also related to the distance from a

TE variant to the centromere, with variants in the chromosome arms being more strongly correlated

with DNA methylation levels. This seems to be due to a higher baseline level of DNA methylation at

the pericentromeric regions, which prevent any further increase in DNA methylation level following

insertion of a TE. Furthermore, we found an important distinction between TE insertions and TE

deletions in the effect that these variants have on nearby DNA methylation levels. While flanking

DNA methylation levels increase following a TE insertion, the deletion of an ancestral TE was often

not associated with a corresponding decrease in flanking DNA methylation levels (Figure 7). This

indicates that high levels of DNA methylation, once established, may be maintained in the absence

of the TE insertion that presumably triggered the original change in DNA methylation level. It is then

possible that TE variants explain more of the inter-accession variation in DNA methylation patterns
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than we find direct evidence for, if some C-DMRs were formed by the insertion of an ancestral TE

that is now absent in all the accessions analysed here. These DMRs would then represent the epige-

netic ’scars’ of past TE insertions.

Finally, a genome-wide scan of common TE variant association with C-DMR methylation levels

provides further evidence of a strong local association between TE insertion presence/absence and

C-DMR methylation level (Figure 8). The identification of some TE variants that appeared to be

associated with changes in DNA methylation levels at multiple loci throughout the genome indicates

a possible trans regulation of DNA methylation state linked to specific TE variants. Further experi-

ments will be required to confirm and examine the role of these TE variants in determining genome-

wide patterns of DNA methylation. Overall, our results show that TE presence/absence variants

between wild Arabidopsis accessions not only have important effects on nearby gene expression,

but can also have a role in determining local patterns of DNA methylation, and explain many regions

of differential DNA methylation previously observed in the population.

Materials and methods

TEPID development
Mapping
FASTQ files are mapped to the reference genome using the ‘tepid-map’ algorithm (Figure 1). This

first calls bowtie2 (Langmead and Salzberg, 2012) with the following options: ‘–local’, ‘–dovetail’, ‘–

fr’, ‘-R5’, ‘-N1’. Soft-clipped and unmapped reads are extracted using Samblaster (Faust and Hall,

2014), and remapped using the split read mapper Yaha (Faust and Hall, 2012), with the following

options: ‘-L 11’, ‘-H 2000’, ‘-M 15’, ‘-osh’. Split reads are extracted from the Yaha alignment using

Samblaster (Faust and Hall, 2014). Alignments are then converted to bam format, sorted, and

indexed using samtools (Li et al., 2009).

TE variant discovery
The ‘tepid-discover’ algorithm examines mapped bam files generated by the ‘tepid-map’ step to

identify TE presence/absence variants with respect to the reference genome. Firstly, mean sequenc-

ing coverage, mean library insert size, and standard deviation of the library insert size is estimated.

Discordant read pairs are then extracted, defined as mate pairs that map more than four standard

deviations from the mean insert size from one another, or on separate chromosomes.

To identify TE insertions with respect to the reference genome, split read alignments are first fil-

tered to remove reads where the distance between split mapping loci is less than 5 kb, to remove

split reads due to small indels, or split reads with a mapping quality (MAPQ) less than 5. Split and

discordant read mapping coordinates are then intersected using pybedtools (Dale et al., 2011;

Quinlan and Hall, 2010) with the Col-0 reference TE annotation, requiring 80% overlap between TE

and read mapping coordinates. To determine putative TE insertion sites, regions are then identified

that contain independent discordant read pairs aligned in an orientation facing one another at the

insertion site, with their mate pairs intersecting with the same TE (Figure 1). The total number of

split and discordant reads intersecting the insertion site and the TE is then calculated, and a TE

insertion predicted where the combined number of reads is greater than a threshold determined by

the average sequencing depth over the whole genome (1/10 coverage if coverage is greater than

10, otherwise a minimum of 2 reads). Alternatively, in the absence of discordant reads mapped in

orientations facing one another, the required total number of split and discordant reads at the inser-

tion site linked to the inserted TE is set higher, requiring twice as many reads.

To identify TE absence variants with respect to the reference genome, split and discordant reads

separated >20 kb from one another are first removed, as 99.9% of Arabidopsis TEs are shorter than

20 kb, and this removes split reads due to larger structural variants not related to TE diversity (Fig-

ure 2—figure supplement 8). Col-0 reference annotation TEs that are located within the genomic

region spanned by the split and discordant reads are then identified. TE absence variants are pre-

dicted where at least 80% of the TE sequence is spanned by a split or discordant read, and the

sequencing depth within the spanned region is <10% the sequencing depth of the 2 kb flanking

sequence, and there are a minimum number of split and discordant reads present, determined by

the sequencing depth (1/10 coverage; Figure 1). A threshold of 80% TE sequence spanned by split
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or discordant reads is used, as opposed to 100%, to account for misannotation of TE sequence

boundaries in the Col-0 reference TE annotation, as well as TE fragments left behind by DNA TEs

during cut-paste transposition (TE footprints) that may affect the mapping of reads around anno-

tated TE borders (Plasterk, 1991). Furthermore, the coverage within the spanned region may be

more than 10% that of the flanking sequence, but in such cases twice as many split and discordant

reads are required. If multiple TEs are spanned by the split and discordant reads, and the above

requirements are met, multiple TEs in the same region can be identified as absent with respect to

the reference genome. Absence variants in non-Col-0 accessions are subsequently recategorized as

TE insertions present in the Col-0 genome but absent from a given wild accession.

TE variant refinement
Once TE insertions are identified using the ‘tepid-map’ and ‘tepid-discover’ algorithms, these var-

iants can be refined if multiple related samples are analysed. The ‘tepid-refine’ algorithm is designed

to interrogate regions of the genome in which a TE insertion was discovered in other samples but

not the sample in question, and check for evidence of that TE insertion in the sample using lower

read count thresholds compared to the ‘tepid-discover’ step. In this way, the refine step leverages

TE variant information for a group of related samples to reduce false negative calls within the group.

This distinguishes TEPID from other similar methods for TE variant discovery utilizing short sequenc-

ing reads. A file containing the coordinates of each insertion, and a list of sample names containing

the TE insertion must be provided to the ‘tepid-refine’ algorithm, which can be generated using the

‘merge_insertions.py’ script included in the TEPID package. Each sample is examined in regions

where there was a TE insertion identified in another sample in the group. If there is a sequencing

breakpoint within this region (no continuous read coverage spanning the region), split reads mapped

to this region will be extracted from the alignment file and their coordinates intersected with the TE

reference annotation. If there are split reads present at the variant site that are linked to the same

TE as was identified as an insertion at that location, this TE insertion is recorded in a new file as

being present in the sample in question. If there is no sequencing coverage in the queried region for

a sample, an ’NA’ call is made indicating that it is unknown whether the particular sample contains

the TE insertion or not.

While the above description relates specifically to use of TEPID for identification of TE variants in

Arabidopsis in this study, this method can be also applied to other species, with the only prerequi-

site being the annotation of TEs in a reference genome and the availability of paired-end DNA

sequencing data.

TE variant simulation
To test the sensitivity and specificity of TEPID, 100 TE insertions (50 copy-paste transpositions, 50

cut-paste transpositions) and 100 TE absence variants were simulated in the Arabidopsis genome

using the RSVSim R package, version 1.7.2 (Bartenhagen and Dugas, 2013), and synthetic reads

generated from the modified genome at various levels of sequencing coverage using wgsim

(Li et al., 2009) (https://github.com/lh3/wgsim). These reads were then used to calculate the true

positive, false positive, and false negative TE variant discovery rates for TEPID at various sequencing

depths, by running ‘tepid-map’ and ‘tepid-discover’ using the simulated reads with the default

parameters (Figure 1—figure supplement 1).

Estimation of sensitivity
Previously published 100 bp paired end sequencing data for Ler (http://1001genomes.org/data/

MPI/MPISchneeberger2011/releases/current/Ler-1/Reads/; [Schneeberger et al., 2011]) was down-

loaded and analyzed with the TEPID package to identify TE variants. Reads providing evidence for

TE variants were then mapped to the de novo assembled Ler genome (Chin et al., 2013). To deter-

mine whether reads mapped to homologous regions of the Ler and Col-0 reference genome, the de

novo assembled Ler genome sequence between mate pair mapping locations in Ler were extracted,

with repeats masked using RepeatMasker with RepBase-derived libraries and the default parameters

(version 4.0.5, http://www.repeatmasker.org). A blastn search was then conducted against the Col-0

genome using the following parameters: ‘-max-target-seqs 1’, ‘-evalue 1e-6’ (Camacho et al., 2009).

Coordinates of the top BLAST hit for each read location were then compared with the TE variant
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sites identified using those reads. To estimate false negative rates for TEPID TE absence calls, Ler TE

absence calls were compared with a known set of Col-0-specific TE insertions, absent in Ler

(Quadrana et al., 2016). For TEPID TE presence calls, we mapped Col-0 DNA sequencing reads

(Jiang et al., 2014) to the Ler PacBio assembly, and identified sites with read evidence reaching the

TEPID threshold for a TE insertion call to be made.

Arabidopsis TE variant discovery
We ran TEPID, including the insertion refinement step, on previously published sequencing data for

216 different Arabidopsis populations (NCBI SRA SRA012474; [Schmitz et al., 2013-03]), mapping

to the TAIR10 reference genome and using the TAIR9 TE annotation. The ‘–mask’ option was set to

mask the mitochondrial and plastid genomes. We also ran TEPID using previously published transge-

nerational data for salt stress and control conditions (NCBI SRA SRP045804; [Jiang et al., 2014]),

again using the ‘–mask’ option to mask mitochondrial and plastid genomes, and the ‘–strict’ option

for highly related samples.

TE variant / SNP comparison
SNP information for 216 Arabidopsis accessions was obtained from the 1001 genomes data center

(http://1001genomes.org/data/Salk/releases/2013_24_01/; [Schmitz et al., 2013-03]). This was for-

matted into reference (Col-0 state), alternate, or NA calls for each SNP. Accessions with both TE var-

iant information and SNP data were selected for analysis. Hierarchical clustering of accessions by

SNPs as well as TE variants were used to identify essentially clonal accessions, as these would skew

the SNP linkage analysis. A single representative from each cluster of similar accessions was kept,

leading to a total of 187 accessions for comparison. For all other analyses, the full set of accessions

were used in order to maximize sample sizes. For each TE variant with a minor allele frequency

greater than 3% (>5 accessions for the SNP linkage analysis), the nearest 300 upstream and 300

downstream SNPs with a minor allele frequency greater than 3% were selected. Pairwise genotype

correlations (r2 values) for all complete cases were obtained for SNP-SNP and SNP-TE variant states.

r2 values were then ordered by decreasing rank and a median SNP-SNP rank value was calculated.

For each of the 600 ranked surrounding positions, the number of times the TE rank was greater than

the SNP-SNP median rank was calculated as a relative LD metric of TE to SNP. TE variants with less

than 200 ranks over the SNP-SNP median were classified as low-LD insertions. TE variants with ranks

between 200 and 400 were classified as mid-LD, while TE variants with greater than 400 ranks above

their respective SNP-SNP median value were classified as variants in high LD with flanking SNPs.

PCR validations
Selection of accessions to be genotyped
To assess the accuracy of TE variant calls in accessions with a range of sequencing depths of cover-

age, we grouped accessions into quartiles based on sequencing depth of coverage and randomly

selected a total of 14 accessions for PCR validations from these quartiles. DNA was extracted for

these accessions using Edward’s extraction protocol (Edwards et al., 1991), and purified prior to

PCR using AMPure beads.

Selection of TE variants for validation and primer design
Ten TE insertion sites and 10 TE absence sites were randomly selected for validation by PCR amplifi-

cation. Only insertions and absence variants that were variable in at least two of the fourteen acces-

sions selected to be genotyped were considered. For insertion sites, primers were designed to span

the predicted TE insertion site. For TE absence sites, two primer sets were designed; one primer set

to span the TE, and another primer set with one primer annealing within the TE sequence predicted

to be absent, and the other primer annealing in the flanking sequence (Figure 2—figure supple-

ment 3). Primer sequences were designed that did not anneal to regions of the genome containing

previously identified SNPs in any of the 216 accessions (Schmitz et al., 2013-03) or small insertions

and deletions, identified using lumpy-sv with the default settings (Layer et al., 2014) (https://github.

com/arq5x/lumpy-sv), had an annealing temperature close to 52˚C calculated based on nearest

neighbor thermodynamics (MeltingTemp submodule in the SeqUtils python module; [Cock et al.,

2009]), GC content between 40% and 60%, and contained the same base repeated not more than
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four times in a row. Primers were aligned to the TAIR10 reference genome using bowtie2

(Langmead and Salzberg, 2012) with the ‘-a’ flag set to report all alignments, and those with more

than five mapping locations in the genome were then removed.

PCR
PCR was performed with 10 ng of purified Arabidopsis DNA using Taq polymerase. PCR products

were analysed by agarose gel electrophoresis. Col-0 was used as a positive control, water was

added to reactions as a negative control.

mRNA analysis
Processed mRNA data for 144 wild Arabidopsis accessions were downloaded from NCBI GEO

GSE43858 (Schmitz et al., 2013). To find differential gene expression dependent on TE presence/

absence variation, we first removed transposable element genes from the set of TAIR10 gene mod-

els, then filtered TE variants to include only those where the TE variant was shared by at least seven

accessions with RNA data available. We then grouped accessions based on TE presence/absence

variants, and performed a Mann-Whitney U test to determine differences in RNA transcript abun-

dance levels between the groups. We used q-value estimation to correct for multiple testing, using

the R qvalue package v2.2.2 with the following parameters: lambda = seq(0, 0.6, 0.05), smooth.df=4

(Storey and Tibshirani, 2003). Genes were defined as differentially expressed where there was a

greater than two fold difference in expression between the groups, with a q-value less than 0.01.

Gene ontology enrichment analysis was performed using PANTHER (http://pantherdb.org).

DNA methylation data analysis
Processed base-resolution DNA methylation data for wild Arabidopsis accessions were downloaded

from NCBI GEO GSE43857 (Schmitz et al., 2013), and used to construct MySQL tables in a

database.

Rare variant analysis
To assess the effect of rare TE variants on gene expression or DMR DNA methylation levels, we

tested for a burden of rare variants (<3% MAF, <7 accessions) in the population extremes, essentially

as described previously (Zhao et al., 2016). For each rare TE variant near a gene or DMR, we ranked

the gene expression level or DMR DNA methylation level for all accessions in the population, and

tallied the ranks of accessions containing a rare variant. These rank counts were then binned to pro-

duce a histogram of the distribution of ranks. We then fit a quadratic model to the counts data, and

calculated the R2 and p-value for the fit of the model.

TE variant and DMR genome-wide association analysis
Accessions were subset to those with both leaf DNA methylation data and TEPID calls. Pairwise cor-

relations were performed for observed data pairs for each TE variant and a filtered set of population

C-DMRs, with those C-DMRs removed where more than 15% of the accessions had no coverage.

This amounted to a final set of 9777 C-DMRs. Accession names were then permuted to produce a

randomized dataset, and pairwise correlations again calculated. This was repeated 500 times to pro-

duce a distribution of expected Pearson correlation coefficients for each pairwise comparison. Corre-

lation values more extreme than all 500 permutations were deemed significant.

Data access
TEPID source code can be accessed at http://doi.org/10.5281/zenodo.167274. Code and data

needed to reproduce this analysis can be found at https://doi.org/10.5281/zenodo.168094. Ler TE

variants are available in Figure 1—source data 1 and 2. TE variants identified among the 216 wild

Arabidopsis accessions resequenced by Schmitz et al. (2013) are available in Figure 2—source datas

1, 2 and 3. Source data are available on Dryad (10.5061/dryad.187b3). A genome browser display-

ing all TE variants can be found at http://plantenergy.uwa.edu.au/~lister/annoj/browser_te_variants.

html.
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Vilhjálmsson BJ, Nordborg M, Borevitz JO, Bergelson J. 2012. Genome-wide patterns of genetic variation in
worldwide Arabidopsis thaliana accessions from the RegMap panel. Nature Genetics 44:212–216. doi: 10.1038/
ng.1042
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