
*For correspondence: thomas.

miconi@gmail.com

Competing interests: The author

declares that no competing

interests exist.

Funding: See page 23

Received: 23 August 2016

Accepted: 17 February 2017

Published: 23 February 2017

Reviewing editor: Michael J

Frank, Brown University, United

States

Copyright Miconi. This article

is distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Biologically plausible learning in recurrent
neural networks reproduces neural
dynamics observed during cognitive tasks
Thomas Miconi*

The Neurosciences Institute, California, United States

Abstract Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode

task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics,

have been proposed as a model of cortical computation during cognitive tasks. However, existing

methods for training these networks are either biologically implausible, and/or require a

continuous, real-time error signal to guide learning. Here we show that a biologically plausible

learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the

end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks

requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed

selectivities, and coordination among multiple outputs. The resulting networks replicate complex

dynamics previously observed in animal cortex, such as dynamic encoding of task features and

selective integration of sensory inputs. We conclude that recurrent neural networks offer a

plausible model of cortical dynamics during both learning and performance of flexible behavior.

DOI: 10.7554/eLife.20899.001

Introduction
Recent evidence suggests that neural representations are highly dynamic, encoding multiple aspects

of tasks, stimuli, and commands in the joint fluctuating activity of interconnected populations of neu-

rons, rather than in the stable activation of specific neurons (Meyers et al., 2008; Barak et al.,

2010; Stokes et al., 2013; Churchland et al., 2012; Raposo et al., 2014). Models based on recur-

rent neural networks (RNN), operating in the near-chaotic regime, seem well-suited to capture simi-

lar dynamics (Jaeger, 2001; Maass et al., 2002; Buonomano and Maass, 2009; Sussillo and

Abbott, 2009). For this reason, such models have been used to investigate the mechanisms by

which neural populations solve various computational problems, including working memory

(Barak et al., 2013; Rajan et al., 2016), motor control (Sussillo et al., 2015; Laje and Buonomano,

2013; Hennequin et al., 2014), and perceptual decision-making (Mante et al., 2013).

However, the methods commonly used to train these recurrent models are generally not biologi-

cally plausible. The most common training methods are based on supervised learning, in which a

non-biological algorithm (usually a form of backpropagation or regression) minimizes the difference

between the network’s output and a target output signal (Pearlmutter, 1995; Jaeger, 2001;

Sussillo and Abbott, 2009; Song et al., 2016; Rajan et al., 2016). Besides the non-biological nature

of these algorithms, the requirement for a constant supervisory signal is in stark contrast with most

behavioral tasks, in which the only source of information about performance are temporally sparse

rewards that are usually delayed with regard to the actions that caused them.

A more biologically plausible form of learning is reward-modulated Hebbian learning: during

ongoing activity, each synapse accumulates a potential weight change according to classical Heb-

bian learning, by multiplying pre- and post-synaptic activities at any time and accumulating this

product over time. These potential weight changes are then multiplied by a global reward signal,

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 1 of 24

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.20899.001
http://dx.doi.org/10.7554/eLife.20899
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access

which determines the actual weight changes. This method, inspired by the effect of dopamine on

synaptic plasticity, has been successfully demonstrated and analyzed in feedforward or weakly con-

nected spiking (Izhikevich, 2007; Florian, 2007; Frémaux et al., 2010) and firing-rate

(Soltoggio and Steil, 2013) networks. However, simple reward-modulated Hebbian learning does

not work for strongly-connected recurrent networks that can generate complex trajectories of the

type discussed here (Fiete et al., 2007).

A method that successfully trains arbitrary recurrent networks is the so-called node-perturbation

method (Fiete et al., 2006, 2007). This method consists in applying small perturbations to neural

activity, then calculating potential weight changes by multiplying the ‘normal’ (non-perturbative)

inputs by the perturbations (rather than by post-synaptic output, as in Hebbian learning). These

potential weight changes are then multiplied by a reward signal to provide the final weight changes.

This method was successfully applied to feedforward networks to model birdsong learning

(Fiete et al., 2007) and our own previous results show that it is also successful when applied to cha-

otic recurrent neural networks (Miconi, 2014). Interestingly, this method is largely similar to the well-

known REINFORCE algorithm, which is widely used in reinforcement learning (Williams, 1992;

Mnih et al., 2014; Peters and Schaal, 2008; Kober et al., 2013) (see in particular Eq. 11 in

Williams, 1992).

However, node perturbation is non-Hebbian (since it multiplies two types of inputs, rather than

pre- and post-synaptic activities) and requires information that is not local to the synapse (namely,

the perturbatory inputs, which must somehow be kept separate from the ‘normal’ inputs). Thus, it is

not obvious how node-perturbation could be implemented in biological neural networks. Legenstein

and colleagues (Hoerzer et al., 2014; Legenstein et al., 2010) showed that, under certain condi-

tions, node-perturbation could be made more biologically plausible by leveraging moment-to-

moment fluctuations in post-synaptic activity: by keeping a running average of recent activity and

subtracting it from the current instantaneous response at any time, we obtain a ‘high-pass’ filtered

trace of post-synaptic activity, which can be used as a proxy for the exploratory perturbations of

post-synaptic activity. This can then be multiplied by the pre-synaptic inputs, and the final accumu-

lated product is then modulated by a reward signal to recreate the node-perturbation method in a

more biologically plausible, Hebbian manner (i.e. as a product of pre-synaptic and post-synaptic

activities rather than between two input sources) (Legenstein et al., 2010). This method can suc-

cessfully train chaotic recurrent neural networks (Hoerzer et al., 2014). Unfortunately, this method

critically requires an instantaneous, real-time continuous reward signal to be provided at each point

in time. The continuous, real-time reward signal is necessary to allow the subtraction method to

extract task-relevant information, and to counter the effect of spurious deviations introduced by the

running-average subtraction process (see Analysis). This is in contrast with most tasks (whether in

nature or in the laboratory), which only provide sparse, delayed rewards to guide the learning

process.

In summary, to our knowledge, there is currently no biologically plausible learning algorithm that

can successfully train chaotic recurrent neural networks with realistic reward regimes.

Here we introduce a novel reward-modulated Hebbian learning rule that can be used to train

recurrent networks for flexible behaviors, with reward occurring in a delayed, one-time fashion after

each trial, as in most animal training paradigms. This method is Hebbian and uses only synapse-local

information, without requiring instantaneous reward signals (see Materials and methods and Analy-

sis). We apply our method to several tasks that require flexible (context-dependent) decisions, mem-

ory maintenance, and coordination among multiple outputs. By investigating the network’s

representation of task-relevant aspects over time, we find that trained networks exhibit complex

dynamics previously observed in recordings of animal frontal cortices, such as dynamic encoding of

task features (Meyers et al., 2008; Stokes et al., 2013; Jun et al., 2010), switching from stimulus-

specific to response-specific representations (Stokes et al., 2013), and selective integration of sen-

sory input streams (Mante et al., 2013). We conclude that recurrent networks endowed with

reward-modulated Hebbian learning offer a plausible model of cortical computation and learning,

capable of building networks that dynamically represent and analyze stimuli and produce flexible

responses in a way that is compatible with observed evidence in behaving animals.

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 2 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

Results

Description of the learning rule
Here we provide an overview of the networks and plasticity rule used in this paper. A full description

is provided in Materials and methods. Furthermore, we provide an extensive discussion of the mech-

anisms underlying the rule in the Analysis section. Note that all the software used in this paper is

available at http://github.com/ThomasMiconi/BiologicallyPlausibleLearningRNN.

Our model networks are fully-connected continuous-time recurrent neural networks operating in

the early chaotic regime, which allows them to autonomously generate rich dynamics while still being

amenable to learning (Sompolinsky et al., 1988; Sussillo and Abbott, 2009; Jaeger, 2001;

Maass et al., 2002). In most simulations, we use a canonical model in which responses are signed,

and each neuron can send both excitatory and inhibitory connections (see Materials and methods).

However, in the last section of Results, we build on recent work (Mastrogiuseppe and Ostojic,

2016) to test the rule on a recurrent network with nonnegative activations and separate populations

of strictly excitatory and strictly inhibitory neurons, which still generates ongoing chaotic activity.

In all simulations, one or more neurons in the network are arbitrarily designated as the ‘output’

neurons, and their responses at any given time are used as the network’s response (these neurons

are otherwise identical to all others). For the simulations reported here, networks include 200 neu-

rons (400 for the motor control task).

We now briefly describe the learning rule that trains the network’s connectivity (a more complete

description is provided in Materials and methods). First, in order to produce exploratory variation in

network responses across trials, each neuron i in the network occasionally receives a random pertur-

bation Di(t) to its current excitation (perturbations are applied in all simulations, both in learning and

in testing/decoding). During a trial, at every time step, every synapse from neuron j to neuron i accu-

mulates a potential Hebbian weight change (also called eligibility trace [Izhikevich, 2007]) according

to the following equation:

ei;j tð Þ ¼ ei;j t� 1ð Þþ S rj t� 1ð Þ � xi tð Þ��xið Þ
� �

(1)

where rj represents the output of neuron j, and thus the current input at this synapse. xi represents

the current excitation (or potential) of neuron i (see Materials and methods) and �xi represents a

short-term running average of xi, and thus x(t)��x tracks the fast fluctuations of neuron output. Thus,

this rule is essentially Hebbian, based on the product of inputs and output fluctuations. Importantly,

S is a monotonic, supralinear function; in this paper, we simply used the cubic function S(x)=x3,

though the particular choice of function is not crucial as long as it is supralinear (see

Materials and methods and Analysis). Note that the eligibility trace for any synapse is accumulated

over the course of a trial, with each new timestep adding a small increment to the synapse’s eligibil-

ity trace (potential weight change).

At the end of each trial, a certain reward R is issued to the network, based on the network’s per-

formance for this trial as determined by the specific task. From this reward, the system computes a

reward prediction error signal, as observed in physiological experiments, by subtracting the

expected reward for this trial �R (generally a running average of previously received rewards for the

same type of trial; see Materials and methods) from the actually received reward R. This reward-pre-

diction signal is used to modulate the eligibility trace, producing the actual weight change:

DJi;j ¼ hei;j R� �Rð Þ (2)

where h is a learning rate constant. Together, equations 1 and 2 fully determine the learning rule

described here. See Materials and methods for a complete description.

Task 1: Delayed nonmatch-to-sample task
The first task considered here is a simple delayed nonmatch-to-sample problem (Figure 1). In every

trial, we present two brief successive inputs to the network, with an intervening delay. Each input

can take either of two values, labelled A and B respectively. The task is to determine whether the

two successive inputs are identical (AA or BB), in which case the network should output �1; or

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 3 of 24

Research article Computational and Systems Biology Neuroscience

http://github.com/ThomasMiconi/BiologicallyPlausibleLearningRNN
http://dx.doi.org/10.7554/eLife.20899

different (AB or BA), in which case the network should output 1 (see Materials and methods for a

detailed description).

This simple task exhibits several interesting features. First, it is arguably the simplest possible flex-

ible (that is, context-dependent) decision task: on sensing the second stimulus, the network must

produce a different response depending on the identity of the first stimulus. Second, because the

intervening delay is much longer than the neural time constant (t = 30 ms, see

Materials and methods), the network must maintain some memory of the first stimulus before the

second stimulus arises. Third, to solve this task, some neurons in the network must necessarily

Figure 1. Delayed nonmatch-to-sample task. (A) (top): task description. The network is exposed to two successive stimuli, with an intervening delay.

The task is to produce output �1 if the two stimuli were identical (AA or BB), or 1 if they were different (AB or BA); the output of the network is simply

the activity of one arbitrarily chosen ‘output’ neuron, averaged over the last 200 ms of the trial. (B) (bottom left): time course of trial error (mean

absolute difference between output neuron response and correct response over the last 200 ms of each trial) during learning over 10000 trials (dark

curve: median over 20 runs; gray area: inter-quartile range). The solid vertical line indicates the median number of trials needed to reach the criterion of

95% ‘correct’ trials (trial error <1) over 100 successive trials (843 trials); dotted vertical lines indicate the inter-quartile range (692–1125 trials).

Performance (i.e., magnitude of the response error) continues to improve after reaching criterion and reaches a low, stable residual asymptote. (

(bottom right): Activities of 6 different neurons, including the output neuron (thick black line), for two stimulus combinations, before training (left) and

after training (right). Note that neural traces remain highly dynamical even after training.

DOI: 10.7554/eLife.20899.002

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 4 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899.002
http://dx.doi.org/10.7554/eLife.20899

possess some form of nonlinear mixed selectivity (note that the problem is in essence a delayed

exclusive-or problem), a hallmark of neural activities in prefrontal cortices (Rigotti et al., 2013).

The networks consistently learn to perform the task with high accuracy. Figure 1b shows the time

course of the median error over 20 training runs, each starting with a different randomly initialized

network. The ‘error’ for a trial is the mean absolute difference between the output neuron’s

response and the correct response, i.e. 1 or �1, over the last 200 ms of the trial (see

Materials and methods). Shaded area indicates 1 st and third quartile over the 20 runs. To define a

measure of successful performance, we set a criterion of 95 trials with error lower than 1 (indicating

the mean response is closer to the correct than to the incorrect response, i.e. of the correct sign)

over 100 successive trials (p<10�20 under random choice, binomial test). The median time to crite-

rion across 20 runs is 843 trials (inter-quartile range: 692–1125). Response error reliably converges

towards a very low residual value.

How does the network represent and maintain traces of incoming stimuli? One possibility is that

certain neurons encode stimulus identity by maintaining a stable ‘register’ value over time, such that

the firing rate of certain cells directly specify stimulus identity in a relatively time-independent man-

ner. By contrast, physiological studies suggest that neural coding during a working memory task is

highly dynamic, with stimulus identity being represented by widely fluctuating patterns of neural

responses, in such a way that the tuning of individual neurons significantly changes over the course

of a trial (Meyers et al., 2008; Barak et al., 2010; Stokes et al., 2013). As shown in Figure 1c,

trained networks do exhibit highly dynamic responses over the course of a trial. This suggests that

the networks might make use of dynamic representations.

To analyze the encoding and maintenance of stimulus identity over time in the network, we used

a cross-temporal classification approach (Meyers et al., 2008; Stokes et al., 2013; Dehaene and

King 2016). We trained a maximum-correlation classifier to decode various task-relevant features

(identity of first and second stimulus, and final response), based on whole-population activity at any

given time, and then used these time-specific classifiers to try and extract the same task-relevant fea-

tures at all possible points in time. This method can detect not only whether the network encodes a

certain task-relevant variable, but also whether the representation of this variable changes over time

(see Materials and methods).

The results in Figure 2 suggest a highly dynamic representation of stimuli by the network. For

example, the identity of the first stimulus can be successfully decoded during both first and second

Figure 2. Cross-temporal classification performance reveals dynamic coding. Cross-temporal classification of 1st stimulus identity (left panel), 2nd

stimulus identity (middle panel) and network response (right panel). Row i and column j of each matrix indicates the accuracy of a classifier, trained on

population activity data at time i, in guessing a specific task feature using population activity data at time j (training and decoding data are always

separate). While the network reliably encodes information about stimulus identity right until the onset of the response period (as shown by high

accuracy values along the diagonal in left and middle panel), this information is stored with a highly dynamic encoding (as shown by low cross-

classification accuracy across successive periods, i.e., ‘bottlenecks’ with high accuracy on the diagonal but low accuracy away from the diagonal). Note

that in both left and middle panels, stimulus identity information decreases greatly at the onset of the response period, reflecting a shift to a from

stimulus-specific to response-specific encoding (see also Figure 3).

DOI: 10.7554/eLife.20899.003

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 5 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899.003
http://dx.doi.org/10.7554/eLife.20899

stimulus presentations, as well as during the intervening delay, as shown by high classification accu-

racy values on the diagonal during this entire period (Figure 2, left panel). However, the cross-tem-

poral classification performance between these two periods, as seen on the off-diagonal areas (for

example, in the areas at 0–200 ms on one axis and 400–600 on the other, corresponding to training

the classifier based on data from one stimulus presentation and testing it on data from the other

stimulus presentation) is essentially at chance level (accuracy ~0.5), or even below chance (dark

patches). This suggests that while the network reliably encodes information about 1st-stimulus iden-

tity across the first 800 ms of the trial, the way in which this identity is represented changes widely

between successive periods within the trial. Similarly, the 2nd-stimulus identity is maintained from its

onset until the beginning of the response period, but in a dynamical manner (low off-diagonal,

cross-temporal accuracy between the 400–600 ms period and the 600–800 ms period, in comparison

to the high diagonal accuracy over the entire 400–800 ms period).

Another feature of these plots is that the accuracy of stimulus identity decoding strongly

decreases over the course of the ‘response’ period (low values along the diagonal for the 800–1000

ms in first and second panel of Figure 2). This suggests that the network largely stops maintaining

information about the specific identity of previous stimuli, and instead encodes solely the actual

response, as shown by the very strong classification accuracy in the upper-right portion of the third

panel.

To test this interpretation, following (Stokes et al., 2013), we produce Multi-dimensional scaling

(MDS) plots of population activity at different time points and for different stimulus conditions (Fig-

ure 3). MDS attempts to find a two-dimensional projection such that the distance between any two

data points is as similar as possible to their actual distance in the full-dimensional space: nearby

Figure 3. Multi-dimensional scaling plots of population activity reflect shifting encodings of task-relevant

information. Population response vectors at various points in time (color-coded by stimulus combination) are

projected in two dimensions while preserving distances between data points as much as possible, using multi-

dimensional scaling. At the end of the first stimulus presentation (200 ms), population states are firmly separated

by first stimulus identity, as expected. After the second stimulus presentation (600 ms), all four possible stimulus

combinations lead to clearly separate population activity states. However, population states corresponding to

different responses start to cluster together at the onset of the response period (800 ms). Late in the response

period (1000 ms), population trajectories corresponding to the same response (AA and BB, or BA and AB) have

largely merged together, reflecting a shift from stimulus-specific to response-specific representation and a

successful ‘routing’ of individual stimulus-specific states to the adequate response-specific state.

DOI: 10.7554/eLife.20899.004

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 6 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899.004
http://dx.doi.org/10.7554/eLife.20899

(distant) population states should thus produce nearby (distant) points on the MDS plot. Early in the

trial, all possible stimulus identity combinations generate different, consistent trajectories, indicating

stimulus-dependent encoding. By the late response period, however (1000 ms), the trajectories have

essentially merged into two clusters, corresponding to the network response (‘same’ or ‘different’)

and largely erasing any distinction based on the specific identity of either first or second stimulus.

Thus, during the response period, the network moves from a stimulus-specific representation to a

response-specific representation: the stimulus-specific response is flexibly routed to the appropriate,

context-dependent response state, as previously observed in cortical activity during a flexible associ-

ation task (Stokes et al., 2013).

Task 2: Flexible selective integration of sensory inputs
An important aspect of cognitive control is the ability to attend selectively to specific portions of the

sensory input, while ignoring the rest, in a flexible manner. Recently Mante, Sussillo and colleagues

have studied the neural basis of this ability in macaque monkey prefrontal cortex (Mante et al.,

2013). Monkeys were trained to report either the dominant color or the dominant motion direction

of randomly-moving colored dots. Thus, the same stimulus could entail different appropriate

responses depending on current context (i.e. which modality - color or motion - was relevant for this

trial). Furthermore, due to the noisy stimulus, the task required selective temporal integration of the

relevant sensory input. In addition to neural recordings, Mante and colleagues also trained a recur-

rent neural network to perform the same task, using supervised learning based on Hessian-free opti-

mization. By analyzing the trained network, they identified mechanisms for selective integration of

context-dependent inputs in a single network (Mante et al., 2013). This task was also used as an

example application by Song and colleagues for their recurrent network training framework

(Song et al., 2016).

We trained a network to perform the same task, using our proposed plasticity rule (see Figure 4).

Our settings are deliberately similar to those described by Mante, Sussillo and colleagues. The net-

work has two ‘sensory’ inputs (representing the two stimulus modalities of motion and color), imple-

mented as random (Gaussian) time series, with a randomly chosen mean for each trial; the mean of

each time-series thus represent the ‘value’ of the corresponding modality for this trial. In addition,

two ‘context’ inputs specify which modality is relevant for each trial. The network must produce out-

put 1 if the context-indicated sensory input has a positive mean, or �1 if it has negative mean (see

Materials and methods for a detailed description).

Figure 4b shows the psychometric curves of a fully-trained network, that is, the mean response

as a function of stimulus value. For either modality, we show separate psychometric curves for when

this modality was the relevant one and when it was irrelevant. When trials are sorted according to

the value of the relevant modality, responses form a steep sigmoid curve with a relatively sharp tran-

sition between �1 and +1 centered roughly at 0. By contrast, when trials are sorted according to the

value of the irrelevant modality, responses are evenly distributed across the entire range. Thus, the

network accurately responds to the relevant signal, while largely ignoring the irrelevant one in each

context (Compare to Figure Extended Data 2 in Mante et al., 2013). This indicates that the network

has learned not only to perform temporal integration of an ambiguous, stochastic input, but also to

flexibly ‘attend’ to different input streams depending on context.

How is information represented in the network over time? We use Mante and Sussillo’s orthogo-

nal decoding procedure, which seeks to extract independent measures of how various task features

(stimulus values, context, decision) are encoded in the network (see Materials and methods). Briefly,

this method consists in using multiple linear regression to measure how much certain task-relevant

features are being independently represented by the network at any time (see

Materials and methods for a detailed description). The results are shown in Figure 5 (compare to

Figures 2 and 5 in Mante et al., 2013). These trajectories plot the evolution of network information

over time, for various combinations of context (relevant modality) and task features. Each trajectory

represents the average population activity, at successive points in time, of all correct trials that have

the same bias value for the averaging modality and resulted in the same final choice. Trajectories are

colored according to the bias value of the averaging modality, ranging from �0.25 (bright red) to

0.25 (bright green). We project these averaged population trajectories along the orthogonal feature

dimensions extracted by orthogonal decoding, which tells us how strongly the network encodes this

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 7 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

particular feature at a given time. We then plot the resulting trajectories in feature dimension sub-

spaces (‘final choice’ dimension is always used as the horizontal axis, while the vertical axis may be

either of the two sensory modality dimensions).

As observed in cortical recordings (Mante et al., 2013), these trajectories reveal that both the rel-

evant and the irrelevant modality are actually represented in the network: the trajectories for varying

value of either modality form an ordered progression in the corresponding ‘modality’ dimension (y-

axis), even when that modality is irrelevant (bottom-left and top-right panels in Figure 5); however,

only the relevant modality correlates with representation of final choice (compare panels where tra-

jectories are separated by value of the relevant vs. irrelevant modality), in accordance with physio-

logical observations (Mante et al., 2013). This confirms that the network has learnt to selectively

integrate the context-indicated variable while discarding the irrelevant one for each trial.

Figure 4. Selective integration task. (A) (top left): task description. The network receives two noisy inputs, simulating sensory information coming from

two different modalities, as well as two ‘context’ inputs to indicate which of the two sensory inputs must be attended. The task is to produce output 1 if

the cued input has a positive mean, and �1 if the cued input has negative mean; this task requires both selective attention and temporal integration of

the attended input. (B) (top right): Psychometric curves of network responses. Responses are segregated according to the value of the relevant modality

bias, and shown as box-plots: blue boxes indicate the inter-quartile range, with data points outside the box showing as blue crosses; red bars indicate

medians, and dark stars indicate means; green curves are sigmoid fits to the means. Top-left panel: Responses when context requires attending to

modality 1, sorted by the bias of modality 1 inputs. The network response correctly tracks the overall bias of modality 1 inputs. Bottom-left panel: same

data, but sorted by modality 2 bias. Network response is mostly unaffected by modality 2 bias, as expected since the network is required to attend to

modality 1 only. Right panels: network responses when the context requires attending to modality 2. Again, the network correctly identifies the

direction of the relevant modality while mostly ignoring the irrelevant modality. (C) (Bottom): Median and inter-quartile range of trial error (mean

absolute difference between output and correct response over the last 200 ms of the trial) over 20 runs of 20000 trials each.

DOI: 10.7554/eLife.20899.005

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 8 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899.005
http://dx.doi.org/10.7554/eLife.20899

Task 3: Controlling a musculoskeletal model of the human arm
In both of the previous tasks, the network output was a single response channel. However, flexible

behavior often requires coordinating multiple outputs, especially during movement. To test whether

our plasticity rule can produce coordinated multiplexed responses, we trained a network to control

a biomechanical model of the human arm. The model is a custom modification of the one described

in Saul et al. (2015) (itself an extension of Holzbaur et al., 2005) and uses the Thelen muscle model

(Thelen, 2003). The model implements the human upper skeleton, with 4 degrees of freedom (three

at the shoulder, one at the elbow), actuated by 16 muscles attached to the shoulder, chest, and

upper and lower arm bones. Each of the 16 muscles is controlled by a specific network output cell.

The task is to reach towards one of two spherical targets, located in front of the body on either side

Figure 5. Orthogonal decoding of population activities. Population response patterns are averaged at each point in time, separately by context (i.e.

relevant modality), final choice of the trial, and the bias of modality 1 (top) or 2 (bottom). For each combination of relevant modality and averaging

modality, these averaged patterns over time result in different trajectories (one per value of the averaging modality, ranging from �0.25 (bright red) to

0.25 (bright green)). We project these trajectories over dimensions indicating how reliably the network encodes modality 1 value, modality 2 value, and

final choice. In all graphs, the x axis is the dimension that reflects current encoding of final choice; the y axis is the dimension that reflects current

encoding of the grouping modality (i.e. the one used for averaging). Only correct trials are used (thus top-left and bottom-right panels only have 10

trajectories, since correct trials with positive bias in the relevant modality cannot lead to a negative choice, and vice versa). The trajectories reveal that

the network encodes both the relevant and the irrelevant modality, though only the relevant one is linked to the final choice. See text for details.

DOI: 10.7554/eLife.20899.006

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 9 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899.006
http://dx.doi.org/10.7554/eLife.20899

of the sagittal plane. The appropriate target ball for each trial is indicated by two input channels, set

either to 1 and 0 (left-side target) or to 0 and 1 (right-side target) respectively for the entire duration

of the trial (700 ms). No other inputs are provided to the system. The error at the end of each trial is

measured by the absolute distance between the tip of the hand and the center of the target ball,

plus a small penalty for total muscle activation over the entire trial. Note that while the target balls

are symmetrically arranged with regard to the body, they are not symmetrical with regard to the

right arm (which is the one we model): the right-side ball is closer than the left-side one, and thus

reaching either target requires qualitatively different movements.

Results are shown in Figure 6. Initially, as expected, the untrained network performs random,

aimless movements, resulting in high initial error (Figure 6b). Performance improves almost from the

start of the training process, reaching a low residual error after about 3000 trials. To visualize the

impact of training on the dynamics of population activity, we project the population activity over its

Figure 6. Controlling a biophysical model of the human arm. (A) (top left): A model of the human upper skeleton with 4 degrees of freedom (shoulder

and elbow joints), actuated by 16 muscles at the shoulder, chest and arm (colored strings represent muscles; blue indicates low activation, red indicates

high activation). The task is to reach either of two target balls (blue or red), depending on a context input. (B) (top right): During training, the error

(measured by the distance between tip of hand and target ball at the end of each trial) improves immediately and reaches a low residual plateau after

about 3000 trials. (C) (bottom): frame-by-frame illustrations of a right-target trial (top row) and a left-target trial (bottom row), after training.

DOI: 10.7554/eLife.20899.007

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 10 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899.007
http://dx.doi.org/10.7554/eLife.20899

first three principal components at successive points in time over the course of each trial, using 16

trials for either target context, both before and after training (i.e., 64 trials in total). The fully trained

network correctly reaches the adequate target according to context (Figure 6c).

Additional experiments: long delays, variable timing, and excitatory-
inhibitory networks
Here we return to the delayed nonmatch-to-sample task, in order to test the learning rule under vari-

ous changes in experimental conditions. All results in this section are obtained with the delayed non-

match-to-sample task as described above, with modifications specified below.

First, we test the ability of the rule to deal with much longer delays. We extend the stimulus-

absent delay period, from 200 ms to one full second. In addition, stimulus presentations are

extended from 200 ms to 400 ms. With the 200 ms response period, this sums up to a total time of

2000 ms for each trial. We found it useful to reduce the learning rate from 0.1 to 0.03. As shown in

Figure 7a, the rule still learns the task reliably, although reaching criterion (95% of trials with a mean

absolute error over the response period lower than 1) requires more trials (median over 20 runs:

2230 trials, inter-quartile range:1366–4573 trials).

We then test the ability of the rule to deal with variable trial structure, and in particular, with vari-

able stimulus timing. For each trial, we randomly pick the inter-stimulus delay period between 300

and 800 ms (as opposed to the previous fixed 200 ms duration), while stimulus presentation is

extended to 300 ms. The total duration of the trial is always 1600 ms, with the last 200 ms being the

response period. As shown in Figure 7b, the rule still manages to learn the task; however, the num-

ber of trials required to learn the task is now much larger. Indeed, the increased variance introduced

by variable stimulus timing had a strong destabilizing effect: we found it necessary to reduce the

learning rate to 0.003 to obtain reliable learning. Thus, variable stimulus timing makes learning much

more difficult, though still feasible.

Finally, we modify the network model to make it more realistic, by enforcing nonnegative neural

responses and separate populations of strictly excitatory and strictly inhibitory neurons (Dale’s law).

In accordance with most related work (Sussillo and Abbott, 2009; Hoerzer et al., 2014;

Sussillo et al., 2015), previous experiments used a canonical, widely studied recurrent network

model (Sompolinsky et al., 1988), where neural responses can be negative and neurons send both

positive and negative connections (see Materials and methods). However, recently, Mastrogiuseppe

and Ostojic (Mastrogiuseppe and Ostojic, 2016) showed that strong theoretical results could be

extended to networks with nonnegative responses and separate populations of strictly excitatory

and inhibitory neurons; in particular, they proved the existence of a connectivity regime that guaran-

tees ongoing, chaotic activity in the network, without reaching saturation.

Figure 7. Additional experiments. Panels show learning curves for the delayed nonmatch-to-sample task, modified in three ways. (A) (left): long 1000

ms delays. (B) (middle): variable inter-stimulus interval, randomly chosen from 300 to 800 ms. (C) (right): Networks with nonnegative neural responses

and separate excitatory and inhibitory neurons (in accordance with Dale’s law). Conventions are as in Figure 1: dark lines indicate median over 20 runs,

while gray shaded area indicates the inter-quartile range. See text for details.

DOI: 10.7554/eLife.20899.008

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 11 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899.008
http://dx.doi.org/10.7554/eLife.20899

We sought to test whether the rule proposed here can be used to learn cognitive tasks in a net-

work of this type. We implemented a network with separate excitatory and inhibitory neurons, initial-

ized with semi-sparse connections, with nonnegative, piecewise-linear activation functions (see

Materials and methods). Importantly, the responses are now constrained between 0 and 20

(although in practice they never exceed ~10, thus remaining far from saturation). The target

response for identical stimuli is 0 (instead of �1), and the target response for different stimuli is 5

(instead of 1). The criterion is now to reach 95% of (absolute) errors below 2.5, which ensures that

responses are closer to the correct than the incorrect response.

As shown in Figure 7c, the rule can still reliably learn the task with this more realistic network.

While learning takes longer, a direct comparison is difficult due to the differences in network activity

and the wider range of possible responses. Nevertheless, these results confirm that the proposed

rule is applicable to more realistic networks with nonnegative, non-saturating responses and sepa-

rate excitatory and inhibitory neurons.

Analysis of the proposed rule
Here we attempt to reach a better understanding on how and why the learning rule actually works.

We also put the rule in the context of related learning algorithms, including the node-perturbation

method (Fiete et al., 2006) and the Exploratory Hebbian method (Hoerzer et al., 2014;

Legenstein et al., 2010). We support our discussion with simple quantitative experiments that allow

us to isolate the impact of various factors on the performance of the learning rule.

Overview
The rule proposed here is a more biologically plausible implementation of the so-called node-pertur-

bation rule (Fiete et al., 2006, 2007), which is itself a variant of the classical REINFORCE algorithm

(Williams, 1992). Node-perturbation (like REINFORCE) consists in applying random perturbations to

neural responses, then modifying the weights so as to make future responses more similar (resp. less

similar) to the perturbation-induced responses, if the perturbed outputs led to a better-than-

expected (resp. worse-than-expected) reward. Like the Exploratory-Hebbian (E-H) method of Legen-

stein, Hoerzer and Maass (Legenstein et al., 2010; Hoerzer et al., 2014), our rule extracts explor-

atory perturbations from outputs by subtracting a running average from ongoing neural responses.

Unlike the E-H method, however, it can actually learn from sparse, delayed rewards at the end of

each trial, without requiring a continuous, real-time reward signal. As we explain below, this is due

to the supralinear amplification of plasticity increments.

Node-perturbation and REINFORCE
The node-perturbation rule (Fiete et al., 2006, 2007) is a reinforcement learning rule that can train

neural networks using only sparse, delayed reward signals to guide the learning. The intuitive mecha-

nism of the rule is to apply random exploratory perturbations to neural output, then modify the

weights so that future, unperturbed outputs will be more similar to this perturbed output if this per-

turbed output turned out to elicit a ‘good’ reward - or conversely, less similar if it produced a ‘poor’

reward (note that this is the central idea of the REINFORCE algorithm [Williams, 1992]).

The node-perturbation method can be summarized as follows (Fiete et al., 2006):

1- During each episode, apply random exploratory perturbations x(t) to the neuron’s output yi(t).

2- At each synapse, compute the so-called eligibility trace ei,j by accumulating the products of

output perturbations by current input at this synapse at the time of perturbation: ei,j = Stx i(t) xj(t)

3- At the end of each episode, compute the reward R for this episode.

4- Add to each synaptic weight the accumulated eligibility trace, multiplied by the net (baseline-

subtracted) reward for this episode: Dwi,j = h * ei,j * (R - R0).

In step 4, h is a learning rate parameter, and R0 is the predicted reward for this episode in the

absence of perturbations; thus, R-R0 reflects whether the trajectory of outputs produced during this

episode was ‘better’ or ‘worse’ than usual.

The effect of step 4 is to make future trajectories more similar to the just-experienced perturbed

trajectory (in response to the same inputs), if this perturbed trajectory produced a ‘good’ reward; or

less similar, if the trajectory produced a ‘bad’ reward. This is because adding x(t)xj(t) to wi,j will move

future responses to the same input xj(t) in the direction of x(t), and thus tend to reproduce the

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 12 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

stochastically perturbed response. This can be easily shown analytically (notice that qy tð Þ
qw

¼ x tð Þ, at

least in the limit of a linear neuron). It also makes intuitive sense: if the perturbation was positive

(resp. negative), this rule would add a positive (resp. negative) multiple of x(t) to the synaptic weight,

which would make the weights more (resp. less) correlated with input x(t) and thus produce a higher

(resp. lower) response to future presentations of the same input x(t).

While node perturbation was introduced by Fiete and Seung (Fiete et al., 2006), the original

REINFORCE paper describes several rules that implement node-perturbation, i.e. modifying weights

by the accumulated product of inputs by perturbations, multiplied by net rewards (see e.g. Eq. 11 in

Williams, 1992).

The E-H method: Hebbian implementation of node-perturbation by
subtracting running averages
A difficulty with the node-perturbation rule is that it is hard to reconcile with existing models of syn-

aptic plasticity. It requires that each synapse maintains a distinction between the ‘actual’ inputs and

the ‘perturbation’ input, and then perform learning by multiplying these two different types of

inputs. The biological mechanism for such learning is not obvious. This is also in contrast with stan-

dard models of plasticity based on Hebbian learning, that is, a product between inputs and outputs

rather than between two forms of input.

Legenstein, Hoerzer and Maass have proposed a method, which they call the Exploratory Heb-

bian (E-H) method, to implement node-perturbation in a biologically plausible, Hebbian manner,

using information local to the synapse (Legenstein et al., 2010). The central idea is that if perturba-

tions are fast and strong enough, they can be extracted from ongoing neuron output by subtracting

a fast running average, which should isolate fast fluctuations in neural responses. The eligibility trace

is then computed as the product of inputs by these fast fluctuations in output (which are deemed to

represent mostly the exploratory perturbations), producing a Hebbian, synapse-local rule which

implements the node-perturbation rule.

The E-H rule is expressed formally as follows (Legenstein et al., 2010):

Dðwi;jðtÞ ¼ xjðtÞðyiðtÞ� �yiðtÞÞðRðtÞ� �RðtÞÞ

Where xj is the input at the synapse, yi is the neuron’s output, and the overbar denotes a short-

term running average (i.e. �Y(t + 1) = a

�Y (t) + (1-a) y(t) where a is a constant). Thus, yi(t) - �Y i(t) extracts

fast fluctuations in neural output, while R(t) -�R(t) extracts fast fluctuations in the reward signal.

Hoerzer and colleagues (Hoerzer et al., 2014) showed that this rule still works if the R(t)-�R(t) term

is replaced by a less informative quantity M(t) which is 1 if R(t)>�R(t) and 0 otherwise. They also

showed that this rule can be used to successfully train chaotic recurrent networks for complex tasks.

Removing the need for continuous reward signals with supralinear
amplification
A difficulty with the E-H rule is that it requires a continuous, real-time reward signal R(t): at every

point in time, the system must know whether it is doing better or worse than before. This negates a

central advantage of reinforcement learning: the ability to learn from sparse, delayed rewards.

One reason why real-time reward signals are needed in the E-H rule is that simply subtracting a

running average from ongoing activity does not reliably isolate external perturbations, due to spuri-

ous relaxation effects. To take a maximally simplified example, consider the example trace in Fig-

ure 8. This represents the output of a single neuron receiving constant inputs, with a single positive

perturbation at time T = 100 (top panel). To extract fluctuations, we subtract a running average from

the output (bottom panel).

When the perturbation is applied, initially the output is larger than the running average, and thus

the difference reflects the perturbation (‘Perturbation effect’ gray area). However, the running aver-

age then increases to include the recent perturbed outputs, and now the difference between decay-

ing ongoing activity and running average switches to negative (‘Relaxation effect’ gray area). These

negative relaxation terms will be accumulated into the Hebbian product and counteract the positive,

perturbation-related initial terms. In fact, for the simple case shown in Figure 8 (constant input and

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 13 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

a single perturbation) the total sum of all y tð Þ � �y tð Þ terms over a full episode will converge to zero,

and so will the eligibility trace (being a product of constant inputs by fluctuations summing to zero).

In more complex cases such as recurrent networks considered here, with time-varying inputs, the

cancellation will only be partial, depending on the amount of autocorrelation in the inputs. The eligi-

bility trace will include both the product of the ‘perturbation effect’ by the inputs at the time of the

perturbation (which is what we want), and also the product of immediately subsequent, unpredict-

able inputs by the ‘relaxation effect’ (which is undesirable). The latter part adds uncontrollable (‘gar-

bage’) components to the eligibility trace. Furthermore, if there is any temporal correlation in

successive inputs, then these ‘garbage’ components will tend to partially cancel out the perturba-

tion-related terms. This, we suggest, causes the inability of the E-H rule to learn without continuous,

real-time reward signal (we show experiments in support of our interpretation below, in Figure 9).

The Exploratory Hebbian method negates this undesirable effect by using a real-time reward sig-

nal R(t) which is also high-passed by subtracting its own running average �R(t). Now the same relaxa-

tion effects will occur both in the y and the R traces, and thus the product of relaxation terms in

both traces results in a positive value, which will actually reinforce the perturbation-related terms

rather than cancel them (assuming that inputs have any significant temporal autocorrelation).

This analysis immediately suggests an alternative solution to the problem. Notice that the pertur-

bation-related fluctuation is large, while the subsequent countering relaxation terms are small (‘Per-

turbation effect’ vs. ‘Relaxation effect’ in Figure 8). Thus, if we impose a supralinear function on

plasticity increments, the large perturbation-related terms will be amplified, while the small relaxa-

tion-related terms will be suppressed. This leads to the plasticity rule proposed in the present

paper.

Note that this is conceptually related to recently-proposed thresholded Hebbian rules, whereby

plasticity is only triggered by events in which the Hebbian product reaches a certain threshold

(Soltoggio and Steil, 2013). A supralinear amplification offers a smoother amplification of larger

Hebbian events, by comparison to the all-or-nothing effect of a threshold; however, the overall

effect is similar: ignore small, possibly incidental correlations of input and output, but retain the

larger ones, which are more likely to be informative.

Figure 8. Relaxation effects. When a perturbation is applied to signal, subtracting a running average initially

extracts the perturbation, but then introduces opposite-sign terms as the running average relaxes to the signal.

DOI: 10.7554/eLife.20899.009

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 14 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899.009
http://dx.doi.org/10.7554/eLife.20899

Figure 9. Comparison of error gradients. A recurrent network is repeatedly exposed to randomly-chosen, time-constant inputs, and must learn to

determine whether the inputs have positive sum. We compute the learning gradients over the weights according to various methods, for many trials,

based on a single perturbation at a fixed time in each trial. In all four panels, the x-axis indicates the gradient computed by node-perturbation, used as

a ground truth. Panel a: the weight modifications produced by node-perturbation align remarkably with the rule described in this paper. Panel b:

Figure 9 continued on next page

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 15 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

Why not just use reward-modulated hebbian learning?
Node-perturbation increases weights by a product of (net) rewards, inputs and perturbations of out-

puts. Why use the perturbations, rather than the raw outputs, in the product? Why not just use the

standard Hebbian product of inputs by outputs (rather than perturbations), and multiply this by the

reward? This is because the full Hebbian products (inputs-outputs) are dominated by reward-unre-

lated terms. The Hebbian products tend to simply reinforce all existing co-occurrences of inputs and

outputs, regardless of how this increase would affect performance. By contrast, the perturbation-

based products ensure that the weights are modified specifically to reproduce the perturbation-

caused change in trajectory. The two have no reason to correlate, and the former is usually larger

than the latter if perturbations are sparse.

In theory, it is possible to average out the non-reward-related component of reward-modulated

Hebbian learning, by making sure that the reward signal is absolutely zero-centered separately for

each trial type (that is, for each possible combination of input range and target outputs)

(Frémaux et al., 2010; Sprekeler et al., 2009). This corresponds to the role of a critic (a complex

reward predictor) in reinforcement learning, and is implemented in the present paper by maintaining

separate values of �R for each trial type. However, this procedure leaves us with the problem of con-

siderable variance, which suffices to make learning all but impossible in complex tasks (see the spe-

cific discussion of this point in Legenstein et al. (2010): as connection weights increases, the purely-

Hebbian component will tend to take over and drown the reward-related component).

This problem is compounded in recurrent networks such as the one described here, because now

a single perturbation can have significant, unpredictable effects on future neural responses over the

rest of the trial. For example, a single positive perturbation can have an arbitrary indirect effect on

the response of the perturbed neuron, even making it eventually lower than it would have been over

an extended period of time. As a result, the accumulated product of inputs and outputs would not

be dominated by the (single-point) response increase caused by the perturbation, but by the

(extended) subsequent decrease in response, which would actually have unpredictable effects on

weight modification and future trajectories. Note that this effect (Hebbian learning futilely learning

the co-activations during the perturbed trajectories, rather than the perturbations that cause the

changes in trajectories) cannot be averaged out by centering the rewards, since the trajectories are

what determines the rewards.

By contrast, node-perturbation only modifies weights to incorporate products of perturbations

and inputs at the time of the perturbation. As a result, it will tend to specifically reproduce the per-

turbation itself, that is, the event that caused the complex changes in trajectory, and thus in reward.

Gradient visualization
To better illustrate the effects of the rule, we run a simple experiment to compare the weight

changes computed by our rule with those prescribed by several variants and other rules under the

same conditions, isolating the effects of specific elements in the rules.

The experiment involves a recurrent network similar to those described in the previous sections.

The task of the network is simply to determine whether a set of inputs have a positive or negative

mean. In each episode, a vector of 10 randomly chosen inputs is presented for 100 ms, then (after a

delay of 100 ms) the output neuron of the network must return 1 if the inputs have positive mean, or

�1 if the inputs had negative mean, over the last 100 ms of the trial (thus each trial lasts 300 ms in

total). The reward for each trial is computed as the mean negative absolute difference between neu-

ron output and target response (�1 or 1) over the last 100 ms. At each episode, we apply a single

perturbation (of random sign), at a fixed point in time within the response period. We then use

Figure 9 continued

gradients computed by using raw fluctuations of output about a running average, without supralinear amplification, are essentially random. Panel c: if

we restrict the plasticity computations to the first 10 ms after perturbation, the correct gradients are recovered (using only 1 ms would be identical to

panel a), confirming that post-perturbation effects are responsible. Panel d: The full E-H rule, with real-time reward signal, also recovers the node-

perturbation gradients. Panel e: Using a different supralinear function (signed square rather than cubic) produces largely similar results to Panel a. Panel

f: By contrast, a sublinear function (square root) results in largely random gradients.

DOI: 10.7554/eLife.20899.010

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 16 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899.010
http://dx.doi.org/10.7554/eLife.20899

various plasticity rules, including the one proposed in this paper, to compute the appropriate

change in weights (hereafter called the ‘gradient’), and compare the gradients obtained from differ-

ent rules. Note that no learning actually occurs: weights are randomly initialized at each trial, since

we are only interested in comparing the gradients obtained under various rules.

Figure 9a plots the gradient obtained by the rule presented here, against the gradient obtained

by the node-perturbation method, for many episodes (each with randomly generated weights). This

reveals that the two rules produce largely similar gradients, with some warping introduced by the

nonlinearity. Next we apply the rule described in this paper, but without supralinear amplification:

the eligibility trace is now simply the accumulated produce of inputs by fluctuations, and this is then

multiplied by the net reward. Note that this is equivalent to using the Exploratory-Hebbian method,

but with a single reward value for each episode, rather than a continuous real-time reward signal.

The computed gradients (Figure 9b) are now uncorrelated with the node-perturbation gradients, as

expected from the reasoning presented above. This illustrates the crucial role of the supralinearity.

To emphasize that this difference is caused by post-perturbation effects, Figure 9c uses the same

method as Figure 9b (E-H with delayed rewards, no supralinear amplification), but now only accumu-

lates the eligibility trace product over the 10 ms that follow the perturbation time. Since neurons

have a time constant of 30 ms, this results in only partial relaxation. The gradients are now largely

aligned with the node-perturbation gradients. If only 1 ms was used, the gradients would be identi-

cal to node-perturbation gradients and the points would fall exactly on the median line. As the time

window is increased, relaxation effects eventually overwhelm the gradient and leave a residue domi-

nated by noise, as in Figure 9b.

As a safety check, Figure 9d confirms that the full E-H method (with a real-time, continuous

reward signal) correctly recovers the node-perturbation gradients in our experimental settings.

Finally, we emphasize that the choice of supralinear function is not crucial, as long as it is indeed

supralinear. In Figure 9e, using a different supralinear function (the signed square function f(x) = x.|

x|) produces largely similar result to Figure 9a. By contrast, in Figure 9f, using a sub-linear function

(namely the square root) largely randomizes the obtained gradients, since the (large) perturbation

effects are now suppressed with regard to (smaller) non-perturbation related effects.

Discussion
This paper makes three contributions:

1- We introduce a biologically plausible learning algorithm that can train a recurrent neural net-

work to learn flexible (context-dependent) tasks, using only time-sparse, delayed rewards and syn-

apse-local information to guide learning.

2- We show that this rule can train networks for relatively complex tasks, requiring memory main-

tenance, selective attention, and coordination of multiple outputs.

3- We show that the trained networks exhibit features of neural activity observed in the primate

higher cortex during similar tasks. In particular, we demonstrate highly dynamic population-wide

encoding of task-relevant information, as observed in neural recordings (Meyers et al., 2008;

Stokes et al., 2013; Barak et al., 2010); and we show that selective integration of sensory inputs

occurs as described in both observational and modelling studies of primate prefrontal cortex during

a similar selective attention task (Mante et al., 2013). In our view, the fact that these features of cor-

tical activity arise spontaneously in networks trained with a biologically plausible rule (as opposed to

training the network to directly reproduce observed neural activity traces) increases the plausibility

of recurrent neural networks as a model of cortical computation, during both performance and learn-

ing of cognitive tasks.

Our proposed plasticity rule implements reward-modulated Hebbian learning between inputs,

outputs, and rewards, with the crucial introduction of a supralinear amplification applied to the Heb-

bian plasticity increments (see Materials and methods). In other words, we posit that plasticity is

dominated by large co-occurrences of inputs and outputs, while smaller ones are relatively ignored.

This hypothesis of non-linear effects in Hebbian plasticity allows our rule to support robust learning

in highly dynamic networks, without requiring non-Hebbian plasticity between segregated driving

and perturbatory inputs (Fiete et al., 2007), or a continuous, real-time reward signal

(Legenstein et al., 2010; Hoerzer et al., 2014) (see Materials and methods and Analysis). We note

that this suggestion is similar to the independent proposal of so-called thresholded Hebbian rules

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 17 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

(Soltoggio and Steil, 2013), in which plasticity is only triggered if the Hebbian product reaches a

certain threshold.

The flexible, dynamic coding observed in prefrontal activity has led to suggestions that cortex

implements ‘silent’ memory traces by using short-term synaptic plasticity (Barak et al., 2010;

Stokes, 2015). Short-term synaptic plasticity clearly plays an important role in neural responses, and

may well play an important role in maintaining a ‘hidden internal state’ of the network

(Buonomano and Maass, 2009). However, our network does not implement short-term synaptic

plasticity; no weight modification occurs during the course of a trial (all learning occurs between tri-

als), and all the decoding results reported above were obtained with frozen synaptic weights. Our

results suggest that the highly dynamic activities spontaneously produced by near-chaotic recurrent

networks can be harnessed to produce the dynamic encodings observed in experiments, using only

sparse, delayed rewards and biologically plausible plasticity rules. Thus, while short-term synaptic

plasticity clearly affects neural responses, it may not be required to explain the highly dynamic

nature of working-memory encodings.

It is unlikely that cortical connectivity should be drastically and finely remodeled through a long

training process for any new task. For example, while monkeys require extensive training to perform

decision tasks, human subjects can quickly perform new tasks simply by verbal instruction. Rather, it

is more likely that the process of slow, reward-modulated synaptic modification in cortical circuitry

depicted here reflects the learning of functional networks capable of implementing a certain type of

task (or cognitive ability), which must then be activated and parameterized for each instance of the

task. The latter process of flexible task specification is likely to involve not just other cortical areas,

but also the basal ganglia and dopamine system. Elucidating the interactions between cortical, lim-

bic, and dopaminergic structures is an important future task for the study of flexible behavior and its

neural implementation.

Materials and methods

Model description
Here we provide a full description of our model and proposed plasticity rule, with an emphasis on

implementation details. In the Analysis section, we provide an extended discussion at a more intui-

tive level. Note that the source code for all simulations reported here is available online at http://

github.com/ThomasMiconi/BiologicallyPlausibleLearningRNN.

Network models
For most of our experiments, the model is a fully-connected continuous-time recurrent neural net-

work of N neurons, governed by the classical RNN equations (Sompolinsky et al., 1988;

Sussillo and Abbott, 2009; Jaeger, 2001; Maass et al., 2002):

t

dxi

dt
¼�xi tð Þþ

X

N

j¼1

Ji;jrj tð Þþ
X

M

k¼1

Bi;kuk tð Þ (3)

ri tð Þ ¼ tanh xi tð Þð Þ

where xi is the excitation (or ‘potential’) of neuron i, ri is its response (or ‘firing rate’ / activity), Ji,j is

the connection weight from neuron j to neuron i, uk(t) is the current value of each of the M external

inputs to the network, and Bi,k is the connection weight from external input k to neuron i (t is the

relaxation time constant of neuron activation). J is initialized with weights taken from a normal distri-

bution with mean 0 and variance g2/N, while the input weights Bk,i are fixed and taken from a uni-

form distribution over the [�1,1] interval. Activations xi are initialized at the start of every trial with

uniform noise in the [�0.1, 0.1] range. For the simulations reported here, N = 200 (400 for the motor

control task), t = 30 ms, and g = 1.5. Note that the latter value places the networks in the early cha-

otic regime, where the long-term behavior generally remains non-periodic (Sompolinsky et al.,

1988).

These canonical networks have signed responses and mix positive and negative weights, which is

unrealistic. However, recently, Mastrogiuseppe and Ostojic have studied the conditions under which

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 18 of 24

Research article Computational and Systems Biology Neuroscience

http://github.com/ThomasMiconi/BiologicallyPlausibleLearningRNN
http://github.com/ThomasMiconi/BiologicallyPlausibleLearningRNN
http://dx.doi.org/10.7554/eLife.20899

chaotic ongoing activity can emerge in excitatory-inhibitory networks with nonnegative responses

(Mastrogiuseppe and Ostojic, 2016). Using their results, we also implemented a network that pro-

duces ongoing chaotic activity with nonnegative responses, and separate populations of strictly

excitatory and strictly inhibitory neurons (in accordance with Dale’s law). As we demonstrate in the

last section of Results, the rule can still learn cognitive tasks in this more realistic network. In these

simulations, there are 100 excitatory and 100 inhibitory neurons. The neuron response function is a

nonnegative piecewise-linear function:

riðtÞ ¼ 0 if xiðtÞ<�m

riðtÞ ¼ xiðtÞþm if xiðtÞ>�mandxiðtÞ�m

riðtÞ ¼M if xiðtÞ�m

We set �m=�2 and M = 20. Note that the network is largely non-saturating: neural responses

usually do not reach responses close to the maximum M, which is another similarity with cortical net-

works. The connection matrix is initialized as semi-sparse: each neuron receives connections from 50

randomly chosen excitatory neurons and 50 randomly chosen inhibitory neurons. All excitatory con-

nections have initial weight 1. All inhibitory connections have initial weight �ginhib = �1.2. As learn-

ing occurs, connection weights change from their initial values; however, connections from

excitatory neurons are always clipped to 0 from below, while connections from inhibitory neurons

are always clipped to 0 from above. The network otherwise operates as described above (in particu-

lar, the differential equation governing xi(t) is unchanged).

In all simulations, four arbitrarily chosen neurons have a constant activation x = 1 and thus provide

a bias input to other neurons. There is no separate feedback or output network. Instead, one or

more neurons in the network are arbitrarily designated as the ‘output’ neurons, and their responses

at any given time are used as the network’s response (these neurons are otherwise identical to all

others).

Learning rule
Synapses between neurons are modified according to a novel form of reward-modulated Hebbian

learning, which we now describe.

First, in order to produce exploratory variation in network responses across trials, each neuron in

the network occasionally receives a random perturbation Di(t) to its activation; these perturbations

are not segregated from ‘normal’ inputs (in contrast to Fiete et al., 2006, 2007). Note that Di(t)

might also represent random noise, or a ‘teaching’ signal from a different area. Also, perturbations

are applied in all simulations reported here, both at learning and testing/decoding time (perturba-

tions correspond to the sharp spikes in the curves in Figure 1c, which would otherwise show only

smooth curves; they also cause the spread of dots around their central values in Figure 3). In this

paper, Di(t) is taken from a uniform distribution within the [�0.5, 0.5] range, occurring randomly and

independently for each neuron with a mean rate of 3 Hz (rates of 1 Hz or 10 Hz also give satisfactory

results).

During a trial, at every time step, every synapse from neuron j to neuron i accumulates a potential

Hebbian weight change (also called eligibility trace [Izhikevich, 2007]) according to the following

equation:

ei;j tð Þ ¼ ei;j t� 1ð Þþ S rj t� 1ð Þ � xi tð Þ��xið Þ
� �

Remember that rj represents the output of neuron j, and thus the current input at this synapse. xi
represents the activation of neuron i and �xi represents a short-term running average of xi, and thus

x tð Þ��x tracks the fast fluctuations of the neuron’s output. Thus this rule is essentially Hebbian, based

on the product of inputs and output (fluctuations). Crucially, S is a monotonic, supralinear function of

its inputs; in other words, we posit that the plasticity mechanism is dominated by large increments,

and tends to suppress smaller ones. The particular choice of S is not critical, as long as it is supralin-

ear. In this paper we simply used the cubic function S(x)=x3. Sign-preserving squaring S(x) = x|x| also

gives satisfactory results; however, simply using the identity function fails to produce learning. The

supralinear amplification of co-occurrences allows our learning rule to successfully learn from instan-

taneous deviations of activity, using only sparse, delayed rewards, without requiring a continuous,

real-time reward signal (Legenstein et al., 2010; Hoerzer et al., 2014); see Discussion and Analysis.

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 19 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

Note that the eligibility trace for any synapse is accumulated over the course of a trial, with each

new timestep adding a small increment to the synapse’s eligibility trace / potential weight change.

At the end of each trial, a certain reward R is issued to the network, based on the network’s per-

formance for this trial as determined by the specific task. From this reward, the system computes a

reward prediction error signal, as observed in physiological experiments, by subtracting the

expected reward for this trial �R (see below for computation of�R �R) from the actually received reward

R. This reward-prediction signal is used to modulate the eligibility trace into an actual weight

change:

DJi;j ¼ hei;j R� �Rð Þ

where h is a learning rate constant, set to 0.5 for all simulations described here.

To compute the reward prediction error signal (R-�R), we need to estimate the expected reward in

the absence of perturbation, �R. Following (Frémaux et al., 2010), we simply maintain a running aver-

age of recent rewards for trials of the same type (where trial type is determined by the combination

of inputs). As (Frémaux et al., 2010) pointed out, it is important that separate traces should be

maintained for each trial type, so as to provide an accurate estimation of the expected reward �R for

each trial. Thus, after the n-th trial of a given type, �R is updated as follows:

�R nð Þ ¼ atrace
�R n� 1ð Þþ 1�atraceð ÞR nð Þ

Where R(n) is the reward for this trial, and �R(n-1) was the expected reward after the previous trial

of the same type. In all simulations, atrace = 0.33.

To stabilize learning, we clip the weight modifications for each trial to have a maximum absolute

value of 10�4 (across experiments, roughly 10% of all potential weight modifications exceed this

value and are clipped).

Description of tasks
Delayed nonmatch-to-sample task
The first task considered here is a simple delayed nonmatch-to-sample problem (Figure 1). In every

trial, we present two brief successive inputs to the network, with an intervening delay. Each input

can take either of two values, labelled A and B respectively. The task is to determine whether the

two successive inputs are identical (AA or BB), in which case the network should output �1; or differ-

ent (AB or BA), in which case the network should output 1. We specify the input stimuli by using two

different input channels u1 and u2; the identity of the input stimulus is determined by which channel

is activated (i.e., for stimulus A, u1 = 1 and u2 = 0; for stimulus B, u1 = 0 and u2 = 1; remember that

each input channel uk is transmitted to the network by its own independent set of weights - see

Model Description above). In every trial, the first stimulus is presented for 200 ms, then after a 200

ms delay the second stimulus is presented for 200 ms. Outside of input presentation periods, both

input channels are set to 0. The trial goes on for an additional 400 ms, thus each trial is 1000 ms

long. The network’s overall response is determined by the activity of the arbitrarily chosen output

neuron over the last 200 ms of the trial (the so-called ‘response’ period). The overall error for this

trial is the average absolute difference between the network’s output (that is, the activity of the out-

put neuron) and the target response (1 or �1 depending on presented stimuli), over these last 200

ms.

For details on how the network activity was analyzed for Figures 2 and 3, see below.

Selective integration of context-cued sensory inputs
This task was introduced by Mante and colleagues (Mante et al., 2013). In this study, monkeys

looked at randomly-moving colored dots, in which both the value and coherence of motion direction

and dot color varied from trial to trial. Monkeys had to report the dominant motion direction, or the

dominant color, according to current task conditions; thus, the same stimulus could entail different

appropriate responses depending on current context. Furthermore, due to the noisy stimulus, the

task required temporal integration of sensory input. Importantly, the authors showed that prefrontal

neurons registered inputs from both the relevant and the irrelevant modality; however, inputs from

the irrelevant modality had no long-term impact on neural activities, while inputs from the relevant

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 20 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

modality were selectively integrated over time. Thus, only information from the relevant modality

contributed to the final decision.

Our settings are deliberately similar to those described by Mante, Sussillo and colleagues in their

neural network implementation of the task, and Song and colleagues in their own implementation

(Song et al., 2016). The network has two ‘sensory’ inputs (representing the two stimulus modalities

of motion and color) and two ‘context’ inputs (which specify which of the two modalities must be

attended to). The sensory inputs are noisy time-series, centered on a specific mean which indicates

the ‘value’ of this input for this trial. More precisely, each of the two sensory inputs is sampled at

each time step from a Gaussian variable with variance 1 and a mean, or bias, randomly set at either

�0.5 or 0.5 for each trial (this is for the learning phase; for the testing phase used to generate the

psychometric curves in Figure 4, the bias is varied in increments of 0.1 from �0.5 to 0.5, inclusive).

The mean/bias of the Gaussian (positive or negative) represents the ‘direction’ or ‘value’ of the cor-

responding sensory input (left vs. right, or red vs. green). The context inputs are set to 1 and 0, or 0

and 1, to indicate the relevant modality for this trial. The goal of the network is to determine

whether the sensory input in the relevant modality has positive or negative mean.

Sensory inputs are presented for the first 500 ms of the trial, followed by a 200 ms response

period during which all sensory inputs are set to 0. The expected response of the network is 1 if the

relevant sensory input has a positive mean, and �1 otherwise; thus the same sensory input can entail

different appropriate responses depending on the context. As for the previous task, the network’s

response for a trial is the firing rate of the arbitrarily chosen output cell, and the error for a trial is

the average absolute difference between the firing rate of this output cell and the appropriate

response for this trial (either �1 or 1) over the 200 ms response period.

For details of network analysis (Figure 5), see below.

Analysis of network activity
1- Decoding of network information in a delayed nonmatch-to-sample task
In the delayed nonmatch-to-sample task, we used a cross-temporal classification analysis

(Meyers et al., 2008; Stokes et al., 2013) to investigate how fully trained networks encode informa-

tion over time (Figure 2). The interpretation of these cross-temporal decoding accuracy matrices is

that they tell us not only whether the network encodes a certain task-relevant variable, but also

whether it uses similar representations to encode this variable at different points in time. If we train

one such classifier using data at time t in some trials, and then use it to decode population activity

from data at the same time t in other trials, then decoding accuracy measures how strongly the net-

work encodes the feature at that time point t. However, when the decoder is trained on data at time

tlearn and then applied to population activity data at time tdecode, the resulting accuracy measures

the stability in the network’s ‘neural code’ for this feature across both time points, i.e., how similarly

the decoded feature is represented by the network across these time points. If representations are

similar across both time points (that is, if the network use similar patterns to represent each possible

value of the feature across both time points), then classifiers successfully trained with population

activities at time tlearn should also produce accurate decoding of population activities at time tdecode.

By contrast, if the network uses different representations/encoding of task features at these two

time points, cross-temporal accuracy should be poor; this should be represented as ‘bottlenecks’ of

high accuracy on the cross-temporal decoding plots, whereby information is high along the diagonal

(i.e. the feature is indeed encoded by the network at that given time), but away-from-diagonal

(cross-temporal) decoding accuracy is low. This is precisely what we observe in Figure 2.

We follow the maximal-correlation classifier approach described in Meyers et al. (2008) as

closely as possible. Briefly, we want to measure how well a certain task-relevant feature (identity of

first presented stimulus, or identity of second presented stimulus, or final response) can be predicted

by observing network activity at time t1, using a classifier trained on network activity at time t2. First,

we sample the activation of each neuron, every 10 ms, for each trial. This data is stored in a matrix

of 100 rows and 200 columns, indicating the activities (firing rates) of all 200 neurons at each of the

100 sampling times. We first generate 80 trials (20 per possible condition, where ‘condition’ is

defined as one of the four possible stimulus combination: AA, AB, BA or BB) with a trained network.

The time course of neural activity will differ somewhat between successive trials, even for identical

conditions, due to noise. Then we iterate the following procedure. For each of all four possible

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 21 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

conditions, we randomly choose half the trials as ‘training’ trials, and the other half as ‘testing’ or

‘decoding’ trials. The training trials corresponding to the same category that we are trying to

decode (for example, all stimuli having the same first presented stimulus) are averaged together,

pointwise, for each neuron and each time point, giving a ‘prototype’ matrix of activation for each

neuron at each timepoint under this category. This training data allows us to decode the category of

each testing trial, at each point in time, using maximum-correlation classification, in the following

way. We compute the Pearson correlation between each row of each ‘testing’ trial and each row of

each ‘prototype’ trial. Each such correlation between row i of a testing trial and row j of a training

category-average tells us how much the population activity at time i in the testing trial resembles the

average population activity at time j for this particular category. We can then select the category for

which this correlation is maximal, at each training/testing timepoint pair, as the ‘decoded’ category

for each testing trial. For each testing trial, this provides a 100 � 100 matrix of decoded categories

(one for each pair of training and testing timepoints). Of course, each testing trial belongs to only

one category, so only one possible answer is correct, and thus we can compute another 100 � 100

matrix of binary values, indicating whether the decoded category at a given point in the decoding

matrix (i.e., for any given pair of training and testing timepoints) is correct. The average of these

‘correctness matrices’, over all testing trials, provides the accuracy in cross-temporal decoding of

this category for every training/testing pair of timepoints. We iterate this whole procedure 100 times

and average together the resulting ‘correctness’ matrices. The resulting 100 � 100 matrix indicates

at each row i and column j the proportion of times that the decoded category for population activity

at timepoint j was correct, using training data from timepoint i. This is the matrix shown in each of

the panels in Figure 2 (one for each of the three categories to be decoded).

2- Orthogonal decoding of network information during a selective
integration task
For the selective integration task, we used the analysis method introduced by Mante, Sussillo and

colleagues (Mante et al., 2013), and also used by Song and colleagues (Song et al., 2016) (see Fig-

ure 5). Intuitively, the purpose of this method is to estimate how much information the network enc-

odes about different task feature (input value, context, final choice, etc.) independently from each

other.

After generating multiple trials under various conditions (context – that is, relevant modality –

and bias for each modality) with a fully trained network, we regress the activity of each neuron over

the values of features of interest (context, value of each modality, and final choice) for each trial. This

gives us a set of weights for each neuron, one for each feature, representing how much each feature

influences the neuron’s firing rate. We then ‘switch views’ by grouping together all such weights for

any given feature (200 weights - one per neuron). This in turn produces vectors in neuron population

space, along which the feature is in a sense maximally represented (notice that this is quite different

from, and not equivalent to, the simpler idea of simply regressing each feature over the firing rates

of the neurons across trials). We then orthogonalize these vectors using QR decomposition, to

ensure that these representations are as independent from each other as possible. Projecting popu-

lation activity at a given time over the resulting vectors approximates the network’s current estimate

of the corresponding feature at that time. For successive time slices, we average network activity

vectors corresponding to the same value of bias in a certain modality, a certain attended modality,

and a certain final choice. We refer the reader to Mante et al. (2013) for a complete description of

the method.

We project population activity, averaged within various groups of trials, at each point in time,

over these decoding axes. The trials are grouped according to final choice, value of one modality

(either modality 1 or modality 2), and current context (i.e., relevant modality), and the population

activity at each point in time is averaged across all trials within each group. When the resulting aver-

ages are projected over the orthogonal feature vectors, they produce trajectories, indicating the net-

work’s encoded value for each feature, at each point in time, for trials of this group. Only correct

trials are used, and thus certain combinations are impossible (for example, positive value of modality

1 bias, while attending modality 1, with a final choice of �1); this is reflected in the top-left and bot-

tom-right panels of Figure 6, which contain half as many trajectories as the top-right and bottom-

left panels.

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 22 of 24

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20899

Acknowledgements
We thank W Einar Gall for useful comments and suggestions. We thank Vishwa Goudar for helpful

discussions. We thank H Francis Song for important insight regarding the computation of state-

space trajectories in Figure 5. This work was supported by the Neurosciences Research Foundation

through funding from The G Harold and Leila YMathers Charitable Foundation and the William and

Jane Walsh Charitable Remainder Unitrust, for which we are grateful.

Additional information

Funding

Funder Author

G Harold and Leila Y. Mathers
Foundation

Thomas Miconi

The William and Jane Walsh
Charitable Remainder Unitrust

Thomas Miconi

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions

TM, Conceptualization, Software, Formal analysis, Investigation, Methodology, Writing—original

draft, Writing—review and editing

Author ORCIDs

Thomas Miconi, http://orcid.org/0000-0002-7897-4492

References
Barak O, Sussillo D, Romo R, Tsodyks M, Abbott LF. 2013. From fixed points to Chaos: three models of delayed
discrimination. Progress in Neurobiology 103:214–222. doi: 10.1016/j.pneurobio.2013.02.002, PMID: 23438479

Barak O, Tsodyks M, Romo R. 2010. Neuronal population coding of parametric working memory. Journal of
Neuroscience 30:9424–9430. doi: 10.1523/JNEUROSCI.1875-10.2010, PMID: 20631171

Buonomano DV, Maass W. 2009. State-dependent computations: spatiotemporal processing in cortical
networks. Nature Reviews Neuroscience 10:113–125. doi: 10.1038/nrn2558, PMID: 19145235

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, Shenoy KV. 2012. Neural
population dynamics during reaching. Nature 487:51–56. doi: 10.1038/nature11129, PMID: 22722855

Dehaene S, King JR. 2016. Decoding the Dynamics of Conscious Perception: The Temporal Generalization
Method - Springer. In: Buzsaki G, Christen YMicro-, Meso- and Macro-Dynamics of the Brain. Springer.

Fiete IR, Fee MS, Seung HS, Sebastian Seung H. 2007. Model of birdsong learning based on gradient estimation
by dynamic perturbation of neural conductances. Journal of Neurophysiology 98:2038–2057. doi: 10.1152/jn.
01311.2006, PMID: 17652414

Fiete IR, Seung HS, Sebastian Seung H. 2006. Gradient learning in spiking neural networks by dynamic
perturbation of conductances. Physical Review Letters 97:048104. doi: 10.1103/PhysRevLett.97.048104,
PMID: 16907616

Florian RV. 2007. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
Neural Computation 19:1468–1502. doi: 10.1162/neco.2007.19.6.1468, PMID: 17444757

Frémaux N, Sprekeler H, Gerstner W. 2010. Functional requirements for reward-modulated spike-timing-
dependent plasticity. Journal of Neuroscience 30:13326–13337. doi: 10.1523/JNEUROSCI.6249-09.2010,
PMID: 20926659

Hennequin G, Vogels TP, Gerstner W. 2014. Optimal control of transient dynamics in balanced networks
supports generation of complex movements. Neuron 82:1394–1406. doi: 10.1016/j.neuron.2014.04.045,
PMID: 24945778

Hoerzer GM, Legenstein R, Maass W. 2014. Emergence of complex computational structures from chaotic neural
networks through reward-modulated hebbian learning. Cerebral Cortex 24:677–690. doi: 10.1093/cercor/
bhs348, PMID: 23146969

Holzbaur KR, Murray WM, Delp SL. 2005. A model of the upper extremity for simulating musculoskeletal surgery
and analyzing neuromuscular control. Annals of Biomedical Engineering 33:829–840. doi: 10.1007/s10439-005-
3320-7, PMID: 16078622

Izhikevich EM. 2007. Solving the distal reward problem through linkage of STDP and dopamine signaling.
Cerebral Cortex 17:2443–2452. doi: 10.1093/cercor/bhl152, PMID: 17220510

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 23 of 24

Research article Computational and Systems Biology Neuroscience

http://orcid.org/0000-0002-7897-4492
http://dx.doi.org/10.1016/j.pneurobio.2013.02.002
http://www.ncbi.nlm.nih.gov/pubmed/23438479
http://dx.doi.org/10.1523/JNEUROSCI.1875-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20631171
http://dx.doi.org/10.1038/nrn2558
http://www.ncbi.nlm.nih.gov/pubmed/19145235
http://dx.doi.org/10.1038/nature11129
http://www.ncbi.nlm.nih.gov/pubmed/22722855
http://dx.doi.org/10.1152/jn.01311.2006
http://dx.doi.org/10.1152/jn.01311.2006
http://www.ncbi.nlm.nih.gov/pubmed/17652414
http://dx.doi.org/10.1103/PhysRevLett.97.048104
http://www.ncbi.nlm.nih.gov/pubmed/16907616
http://dx.doi.org/10.1162/neco.2007.19.6.1468
http://www.ncbi.nlm.nih.gov/pubmed/17444757
http://dx.doi.org/10.1523/JNEUROSCI.6249-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20926659
http://dx.doi.org/10.1016/j.neuron.2014.04.045
http://www.ncbi.nlm.nih.gov/pubmed/24945778
http://dx.doi.org/10.1093/cercor/bhs348
http://dx.doi.org/10.1093/cercor/bhs348
http://www.ncbi.nlm.nih.gov/pubmed/23146969
http://dx.doi.org/10.1007/s10439-005-3320-7
http://dx.doi.org/10.1007/s10439-005-3320-7
http://www.ncbi.nlm.nih.gov/pubmed/16078622
http://dx.doi.org/10.1093/cercor/bhl152
http://www.ncbi.nlm.nih.gov/pubmed/17220510
http://dx.doi.org/10.7554/eLife.20899

Jaeger H. 2001. The ‘echo State’ Approach to Analysing and Training Recurrent Neural Networks – with an
Erratum note1 GMD 148: German National Research Center for Information Technology. http://web.info.uvt.
ro/~dzaharie/cne2013/proiecte/tehnici/ReservoirComputing/EchoStatesTechRep.pdf.

Jun JK, Miller P, Hernández A, Zainos A, Lemus L, Brody CD, Romo R. 2010. Heterogenous population coding of
a short-term memory and decision task. Journal of Neuroscience 30:916–929. doi: 10.1523/JNEUROSCI.2062-
09.2010, PMID: 20089900

Kober J, Bagnell JA, Peters J. 2013. Reinforcement learning in robotics: a survey. The International Journal of
Robotics Research 32:1238–1274. doi: 10.1177/0278364913495721

Laje R, Buonomano DV. 2013. Robust timing and motor patterns by taming Chaos in recurrent neural networks.
Nature Neuroscience 16:925–933. doi: 10.1038/nn.3405, PMID: 23708144

Legenstein R, Chase SM, Schwartz AB, Maass W. 2010. A reward-modulated hebbian learning rule can explain
experimentally observed network reorganization in a brain control task. Journal of Neuroscience 30:8400–8410.
doi: 10.1523/JNEUROSCI.4284-09.2010, PMID: 20573887

Maass W, Natschläger T, Markram H. 2002. Real-time computing without stable states: a new framework for
neural computation based on perturbations. Neural Computation 14:2531–2560. doi: 10.1162/
089976602760407955, PMID: 12433288

Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013. Context-dependent computation by recurrent dynamics in
prefrontal cortex. Nature 503:78–84. doi: 10.1038/nature12742, PMID: 24201281

Mastrogiuseppe F, Ostojic S. 2016. Intrinsically-Generated fluctuating activity in Excitatory-Inhibitory networks.
arXiv. http://arxiv.org/abs/1605.04221.

Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T. 2008. Dynamic population coding of category
information in inferior temporal and prefrontal cortex. Journal of Neurophysiology 100:1407–1419. doi: 10.
1152/jn.90248.2008, PMID: 18562555

Miconi T. 2014. Training recurrent neural networks with sparse, delayed rewards for flexible decision tasks. arXiv.
https://arxiv.org/abs/1507.08973.

Mnih V, Heess N, Graves A, Kavukcuoglu K. 2014. Recurrent models of visual attention. In: Ghahramani Z,
Welling M, Cortes C, Lawrence N. D, Weinberger K. Q (Eds). Advances in Neural Information Processing
Systems 27 (NIPS 2014). Curran Associates, Inc. p. 2204–2212.

Pearlmutter BA. 1995. Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Transactions
on Neural Networks 6:1212–1228. doi: 10.1109/72.410363, PMID: 18263409

Peters J, Schaal S. 2008. Reinforcement learning of motor skills with policy gradients. Neural Networks 21:682–
697. doi: 10.1016/j.neunet.2008.02.003, PMID: 18482830

Rajan K, Harvey CD, Tank DW. 2016. Recurrent network models of sequence generation and memory. Neuron
90:128–142. doi: 10.1016/j.neuron.2016.02.009, PMID: 26971945

Raposo D, Kaufman MT, Churchland AK. 2014. A category-free neural population supports evolving demands
during decision-making. Nature Neuroscience 17:1784–1792. doi: 10.1038/nn.3865, PMID: 25383902

Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK, Fusi S. 2013. The importance of mixed selectivity
in complex cognitive tasks. Nature 497:585–590. doi: 10.1038/nature12160, PMID: 23685452

Saul KR, Hu X, Goehler CM, Vidt ME, Daly M, Velisar A, Murray WM. 2015. Benchmarking of dynamic simulation
predictions in two software platforms using an upper limb musculoskeletal model. Computer Methods in
Biomechanics and Biomedical Engineering 18:1445–1458. doi: 10.1080/10255842.2014.916698, PMID: 24
995410

Soltoggio A, Steil JJ. 2013. Solving the distal reward problem with rare correlations. Neural Computation 25:
940–978. doi: 10.1162/NECO_a_00419, PMID: 23339615

Sompolinsky H, Crisanti A, Sommers HJ. 1988. Chaos in random neural networks. Physical Review Letters 61:
259–262. doi: 10.1103/PhysRevLett.61.259, PMID: 10039285

Song HF, Yang GR, Wang XJ. 2016. Training Excitatory-Inhibitory recurrent neural networks for cognitive tasks: a
simple and flexible framework. PLoS Computational Biology 12:e1004792. doi: 10.1371/journal.pcbi.1004792,
PMID: 26928718

Sprekeler H, Hennequin G, Gerstner W. 2009. Code-specific policy gradient rules for spiking neurons. Advances
in Neural Information Processing Systems(NIPS 2009).

Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. 2013. Dynamic coding for cognitive control in
prefrontal cortex. Neuron 78:364–375. doi: 10.1016/j.neuron.2013.01.039, PMID: 23562541

Stokes MG. 2015. ’Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends in
Cognitive Sciences 19:394–405. doi: 10.1016/j.tics.2015.05.004, PMID: 26051384

Sussillo D, Abbott LF. 2009. Generating coherent patterns of activity from chaotic neural networks. Neuron 63:
544–557. doi: 10.1016/j.neuron.2009.07.018, PMID: 19709635

Sussillo D, Churchland MM, Kaufman MT, Shenoy KV. 2015. A neural network that finds a naturalistic solution for
the production of muscle activity. Nature Neuroscience 18:1025–1033. doi: 10.1038/nn.4042, PMID: 26075643

Thelen DG. 2003. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older
adults. Journal of Biomechanical Engineering 125:70–77. doi: 10.1115/1.1531112, PMID: 12661198

Williams RJ. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning 8:229–256. doi: 10.1007/BF00992696

Miconi. eLife 2017;6:e20899. DOI: 10.7554/eLife.20899 24 of 24

Research article Computational and Systems Biology Neuroscience

http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/tehnici/ReservoirComputing/EchoStatesTechRep.pdf
http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/tehnici/ReservoirComputing/EchoStatesTechRep.pdf
http://web.info.uvt.ro/~dzaharie/cne2013/proiecte/tehnici/ReservoirComputing/EchoStatesTechRep.pdf
http://dx.doi.org/10.1523/JNEUROSCI.2062-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.2062-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20089900
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1038/nn.3405
http://www.ncbi.nlm.nih.gov/pubmed/23708144
http://dx.doi.org/10.1523/JNEUROSCI.4284-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20573887
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1162/089976602760407955
http://www.ncbi.nlm.nih.gov/pubmed/12433288
http://dx.doi.org/10.1038/nature12742
http://www.ncbi.nlm.nih.gov/pubmed/24201281
http://arxiv.org/abs/1605.04221
http://dx.doi.org/10.1152/jn.90248.2008
http://dx.doi.org/10.1152/jn.90248.2008
http://www.ncbi.nlm.nih.gov/pubmed/18562555
https://arxiv.org/abs/1507.08973
http://dx.doi.org/10.1109/72.410363
http://www.ncbi.nlm.nih.gov/pubmed/18263409
http://dx.doi.org/10.1016/j.neunet.2008.02.003
http://www.ncbi.nlm.nih.gov/pubmed/18482830
http://dx.doi.org/10.1016/j.neuron.2016.02.009
http://www.ncbi.nlm.nih.gov/pubmed/26971945
http://dx.doi.org/10.1038/nn.3865
http://www.ncbi.nlm.nih.gov/pubmed/25383902
http://dx.doi.org/10.1038/nature12160
http://www.ncbi.nlm.nih.gov/pubmed/23685452
http://dx.doi.org/10.1080/10255842.2014.916698
http://www.ncbi.nlm.nih.gov/pubmed/24995410
http://www.ncbi.nlm.nih.gov/pubmed/24995410
http://dx.doi.org/10.1162/NECO_a_00419
http://www.ncbi.nlm.nih.gov/pubmed/23339615
http://dx.doi.org/10.1103/PhysRevLett.61.259
http://www.ncbi.nlm.nih.gov/pubmed/10039285
http://dx.doi.org/10.1371/journal.pcbi.1004792
http://www.ncbi.nlm.nih.gov/pubmed/26928718
http://dx.doi.org/10.1016/j.neuron.2013.01.039
http://www.ncbi.nlm.nih.gov/pubmed/23562541
http://dx.doi.org/10.1016/j.tics.2015.05.004
http://www.ncbi.nlm.nih.gov/pubmed/26051384
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://www.ncbi.nlm.nih.gov/pubmed/19709635
http://dx.doi.org/10.1038/nn.4042
http://www.ncbi.nlm.nih.gov/pubmed/26075643
http://dx.doi.org/10.1115/1.1531112
http://www.ncbi.nlm.nih.gov/pubmed/12661198
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.7554/eLife.20899

