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Abstract Trial-and-error learning requires evaluating variable actions and reinforcing successful

variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related

circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated

in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage

learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g.,

LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient

learning. We further describe a reinforcement learning framework through which the tutor can

build its teaching signal. We show that mismatches between the tutor signal and the plasticity

mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of

the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied

predictively to other paired brain areas showing two-stage learning.

DOI: 10.7554/eLife.20944.001

Introduction
Two-stage learning has been described in a variety of different contexts and neural circuits. During

hippocampal memory consolidation, recent memories, that are dependent on the hippocampus, are

transferred to the neocortex for long-term storage (Frankland and Bontempi, 2005). Similarly, the

rat motor cortex provides essential input to sub-cortical circuits during skill learning, but then

becomes dispensable for executing certain skills (Kawai et al., 2015). A paradigmatic example of

two-stage learning occurs in songbirds learning their courtship songs (Andalman and Fee, 2009;

Turner and Desmurget, 2010; Warren et al., 2011). Zebra finches, commonly used in birdsong

research, learn their song from their fathers as juveniles, and keep the same song for life

(Immelmann, 1969).

The birdsong circuit has been extensively studied; see Figure 1A for an outline. Area HVC is a

timebase circuit, with projection neurons that fire sparse spike bursts in precise synchrony with the

song (Hahnloser et al., 2002; Lynch et al., 2016; Picardo et al., 2016). A population of neurons

from HVC projects to the robust nucleus of the arcopallium (RA), a pre-motor area, which then proj-

ects to motor neurons controlling respiratory and syringeal muscles (Leonardo and Fee, 2005;

Simpson and Vicario, 1990; Yu and Margoliash, 1996). A second input to RA comes from the lat-

eral magnocellular nucleus of the anterior nidopallium (LMAN). Unlike HVC and RA activity patterns,

LMAN spiking is highly variable across different renditions of the song (Kao et al., 2008;

Ölveczky et al., 2005). LMAN is the output of the anterior forebrain pathway, a circuit involving the

song-specialized basal ganglia (Perkel, 2004).
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Because of the variability in its activity patterns, it was thought that LMAN’s role was simply to

inject variability into the song (Ölveczky et al., 2005). The resulting vocal experimentation would

enable reinforcement-based learning. For this reason, prior models tended to treat LMAN as a pure

Poisson noise generator, and assume that a reward signal is received directly in RA (Fiete et al.,

2007). More recent evidence, however, suggests that the reward signal reaches Area X, the song-

specialized basal ganglia, rather than RA (Gadagkar et al., 2016; Hoffmann et al., 2016;

Kubikova et al., 2010). Taken together with the fact that LMAN firing patterns are not uniformly

random, but rather contain a corrective bias guiding plasticity in RA (Andalman and Fee, 2009;

Warren et al., 2011), this suggests that we should rethink our models of song acquisition.

Here we build a general model of two-stage learning where one neural circuit ‘tutors’ another.

We develop a formalism for determining how the teaching signal should be adapted to a specific

plasticity rule, to best instruct a student circuit to improve its performance at each learning step. We

develop analytical results in a rate-based model, and show through simulations that the general find-

ings carry over to realistic spiking neurons. Applied to the vocal control circuit of songbirds, our

model reproduces the observed changes in the spiking statistics of RA neurons as juvenile birds

learn their song. Our framework also predicts how the LMAN signal should be adapted to properties

of RA synapses. This prediction can be tested in future experiments.

Our approach separates the mechanistic question of how learning is implemented from what the

resulting learning rules are. We nevertheless demonstrate that a simple reinforcement learning algo-

rithm suffices to implement the learning rule we propose. Our framework makes general predictions

Figure 1. Relation between the song system in zebra finches and our model. (A) Diagram of the major brain regions involved in birdsong. (B)

Conceptual model inspired by the birdsong system. The line from output to tutor is dashed because the reinforcement signal can reach the tutor either

directly or, as in songbirds, indirectly. (C) Plasticity rule measured in bird RA (measurement done in slice). When an HVC burst leads an LMAN burst by

about 100ms, the HVC–RA synapse is strengthened, while coincident firing leads to suppression. Figure adapted from Mehaffey and Doupe (2015).

(D) Plasticity rule in our model that mimics the Mehaffey and Doupe (2015) rule.

DOI: 10.7554/eLife.20944.002
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for how instructive signals are matched to plasticity rules whenever information is transferred

between different brain regions.

Results

Model
We considered a model for information transfer that is composed of three sub-circuits: a conductor,

a student, and a tutor (see Figure 1B). The conductor provides input to the student in the form of

temporally precise patterns. The goal of learning is for the student to convert this input to a prede-

fined output pattern. The tutor provides a signal that guides plasticity at the conductor–student syn-

apses. For simplicity, we assumed that the conductor always presents the input patterns in the same

order, and without repetitions. This allowed us to use the time t to label input patterns, making it

easier to analyze the on-line learning rules that we studied. This model of learning is based on the

logic implemented by the vocal circuits of the songbird (Figure 1A). Relating this to the songbird,

the conductor is HVC, the student is RA, and the tutor is LMAN. The song can be viewed as a map-

ping between clock-like HVC activity patterns and muscle-related RA outputs. The goal of learning is

to find a mapping that reproduces the tutor song.

Birdsong provides interesting insights into the role of variability in tutor signals. If we focus solely

on information transfer, the tutor output need not be variable; it can deterministically provide the

best instructive signal to guide the student. This, however, would require the tutor to have a detailed

model of the student. More realistically, the tutor might only have access to a scalar representation

of how successful the student rendition of the desired output is, perhaps in the form of a reward sig-

nal. A tutor in this case has to solve the so-called ‘credit assignment problem’—it needs to identify

which student neurons are responsible for the reward. A standard way to achieve this is to inject var-

iability in the student output and reinforce the firing of neurons that precede reward (see for exam-

ple (Fiete et al., 2007) in the birdsong context). Thus, in our model, the tutor has a dual role of

providing both an instructive signal and variability, as in birdsong.

We described the output of our model using a vector yaðtÞ where a indexed the various output

channels (Figure 2A). In the context of motor control a might index the muscle to be controlled, or,

more abstractly, different features of the motor output, such as pitch and amplitude in the case of

birdsong. The output yaðtÞ was a function of the activity of the student neurons sjðtÞ. The student

neurons were in turn driven by the activity of the conductor neurons ciðtÞ. The student also received

tutor signals to guide plasticity; in the songbird, the guiding signals for each RA neuron come from

several LMAN neurons (Canady et al., 1988; Garst-Orozco et al., 2014; Herrmann and Arnold,

1991). In our model, we summarized the net input from the tutor to the jth student neuron as a sin-

gle function gjðtÞ.

We started with a rate-based implementation of the model (Figure 2A) that was analytically trac-

table but averaged over tutor variability. We further took the neurons to be in a linear operating

regime (Figure 2A) away from the threshold and saturation present in real neurons. We then relaxed

these conditions and tested our results in spiking networks with initial parameters selected to imitate

measured firing patterns in juvenile birds prior to song learning. The student circuit in both the rate-

based and spiking models included a global inhibitory signal that helped to suppress excess activity

driven by ongoing conductor and tutor input. Such recurrent inhibition is present in area RA of the

bird (Spiro et al., 1999). In the spiking model we implemented the suppression as an activity-depen-

dent inhibition, while for the analytic calculations we used a constant negative bias for the student

neurons.

Learning in a rate-based model
Learning in our model was enabled by plasticity at the conductor–student synapses that was modu-

lated by signals from tutor neurons (Figure 2B). Many different forms of such hetero-synaptic plastic-

ity have been observed. For example, in rate-based synaptic plasticity high tutor firing rates lead to

synaptic potentiation and low tutor firing rates lead to depression (Chistiakova and Volgushev,

2009; Chistiakova et al., 2014). In timing-dependent rules, such as the one recently measured by

Mehaffey and Doupe (2015) in slices of zebra finch RA (see Figure 1C), the relative arrival times of

spike bursts from different input pathways set the sign of synaptic change. To model learning that

Teşileanu et al. eLife 2017;6:e20944. DOI: 10.7554/eLife.20944 3 of 29

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.20944


lies between these rate and timing-based extremes, we introduced a class of plasticity rules gov-

erned by two parameters a and b (see also Materials and methods and Figure 2B):

dWij

dt
¼ h~ciðtÞ

�

gjðtÞ� �
�

;

~ciðtÞ ¼

Z t

0

dt0ciðt
0Þ

a

t1

e�ðt�t0Þ=t1 �
b

t2

e�ðt�t0Þ=t2

� �

; (1)

where Wij is the weight of the synapse from the ith conductor to the jth student neuron, h is a learn-

ing rate, � is a threshold on the firing rate of tutor neurons, and t1 and t2 are timescales associated

with the plasticity. This is similar to an STDP rule, except that the dependence on postsynaptic

Figure 2. Schematic representation of our rate-based model. (A) Conductor neurons fire precisely-timed bursts, similar to HVC neurons in songbirds.

Conductor and tutor activities, cðtÞ and gðtÞ, provide excitation to student neurons, which integrate these inputs and respond linearly, with activity sðtÞ.

Student neurons also receive a constant inhibitory input, xinh. The output neurons linearly combine the activities from groups of student neurons using

weights Maj. The linearity assumptions were made for mathematical convenience but are not essential for our qualitative results (see Appendix). (B). The

conductor–student synaptic weights Wij are updated based on a plasticity rule that depends on two parameters, a and b, and two timescales, t1 and t2

(see Equation (1) and Materials and methods). The tutor signal enters this rule as a deviation from a constant threshold �. The figure shows how

synaptic weights change (DW ) for a student neuron that receives a tutor burst and a conductor burst separated by a short lag. Two different choices of

plasticity parameters are illustrated in the case when the threshold � ¼ 0. (C) The amount of mismatch between the system’s output and the target

output is quantified using a loss (error) function. The figure sketches the loss landscape obtained by varying the synaptic weights Wij and calculating the

loss function in each case (only two of the weight axes are shown). The blue dot shows the lowest value of the loss function, corresponding to the best

match between the motor output and the target, while the orange dot shows the starting point. The dashed line shows how learning would proceed in

a gradient descent approach, where the weights change in the direction of steepest descent in the loss landscape.

DOI: 10.7554/eLife.20944.003
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activity was replaced by dependence on the input from the tutor. Thus plasticity acts heterosynapti-

cally, with activation of the tutor–student synapse controlling the change in the conductor–student

synaptic weight. The timescales t1 and t2, as well as the coefficients a and b, can be thought of as

effective parameters describing the plasticity observed in student neurons. As such, they do not nec-

essarily have a simple correspondence in terms of the biochemistry of the plasticity mechanism, and

the framework we describe here is not specifically tied to such an interpretation.

If we set a or b to zero in our rule, Equation (1), the sign of the synaptic change is determined

solely by the firing rate of the tutor gjðtÞ as compared to a threshold, reproducing the rate rules

observed in experiments. When a=b» 1, if the conductor leads the tutor, potentiation occurs, while

coincident signals lead to depression (Figure 2B), which mimics the empirical findings from

Mehaffey and Doupe (2015). For general a and b, the sign of plasticity is controlled by both the fir-

ing rate of the tutor relative to the baseline, and by the relative timing of tutor and conductor. The

overall scale of the parameters a and b can be absorbed into the learning rate h and so we set a�

b ¼ 1 in all our simulations without loss of generality (see Materials and methods). Note that if a and

b are both large, it can be that a� b ¼ 1 and a=b » 1 also, as needed to realize the Mehaffey and

Doupe (2015) curve.

We can ask how the conductor–student weights Wij (Figure 2A) should change in order to best

improve the output yaðtÞ. We first need a loss function L that quantifies the distance between the

current output yaðtÞ and the target �yaðtÞ (Figure 2C). We used a quadratic loss function, but other

choices can also be incorporated into our framework (see Appendix). Learning should change the

synaptic weights so that the loss function is minimized, leading to a good rendition of the targeted

output. This can be achieved by changing the synaptic weights in the direction of steepest descent

of the loss function (Figure 2C).

We used the synaptic plasticity rule from Equation (1) to calculate the overall change of the

weights, DWij, over the course of the motor program. This is a function of the time course of the

tutor signal, gjðtÞ. Not every choice for the tutor signal leads to motor output changes that best

improve the match to the target. Imposing the condition that these changes follow the gradient

descent procedure described above, we derived the tutor signal that was best matched to the stu-

dent plasticity rule (detailed derivation in Materials and methods). The result is that the best tutor

for driving gradient descent learning must keep track of the motor error

�jðtÞ ¼
X

a

MajðyaðtÞ��yaðtÞÞ (2)

integrated over the recent past

gjðtÞ ¼ ��
z

a�b

1

ttutor

Z t

0

�jðt
0Þe�ðt�t0Þ=ttutor dt0 ; (3)

where Maj are the weights describing the linear relationship between student activities and motor

outputs (Figure 2A) and z is a learning rate. Moreover, for effective learning, the parameter ttutor

appearing in Equation (3), which quantifies the timescale on which error information is integrated

into the tutor signal, should be related to the synaptic plasticity parameters according to

ttutor ¼ t

�
tutor ; where

t

�
tutor �

at1 �bt2

a�b

(4)

is the optimal timescale for the error integration.

In short, motor learning with a heterosynaptic plasticity rule requires convolving the motor error

with a kernel whose timescale is related to the structure of the plasticity rule, but is otherwise inde-

pendent of the motor program. As explained in more detail in Materials and methods, this result is

derived in an approximation that assumes that the tutor signal does not vary significantly over time-

scales of the order of the student timescales t1 and t2. Given Equation (4), this implies that we are

assuming ttutor � t1;2. This is a reasonable approximation because variations in the tutor signal that

are much faster than the student timescales t1;2 have little effect on learning since the plasticity rule

(1) blurs conductor inputs over these timescales.
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Matched vs. unmatched learning
Our rate-based model predicts that when the timescale on which error information is integrated into

the tutor signal (ttutor) is matched to the student plasticity rule as described above, learning will pro-

ceed efficiently. A mismatched tutor should slow or disrupt convergence to the desired output. To

test this, we numerically simulated the birdsong circuit using the linear model from Figure 2A with a

motor output ya filtered to more realistically reflect muscle response times (see Materials and meth-

ods). We selected plasticity rules as described in Equation (1) and Figure 2B and picked a target

output pattern to learn. The target was chosen to resemble recordings of air-sac pressure from sing-

ing zebra finches in terms of smoothness and characteristic timescales (Veit et al., 2011), but was

otherwise arbitrary. In our simulations, the output typically involved two different channels, each

with its own target, but for brevity, in figures we typically showed the output from only one of these.

For our analytical calculations, we made a series of assumptions and approximations meant to

enhance tractability, such as linearity of the model and a focus on the regime ttutor � t1;2. These con-

straints can be lifted in our simulations, and indeed below we test our numerical model in regimes

that go beyond the approximations made in our derivation. In many cases, we found that the basic

findings regarding tutor–student matching from our analytical model remain true even when some

of the assumptions we used to derive it no longer hold.

We tested tutors that were matched or mismatched to the plasticity rule to see how effectively

they instructed the student. Figure 3A and online Video 1 show convergence with a matched tutor

when the sign of plasticity is determined by the tutor’s firing rate. We see that the student output

rapidly converged to the target. Figure 3B and online Video 2 show convergence with a matched

tutor when the sign of plasticity is largely determined by the relative timing of the tutor signal and

the student output. We see again that the student converged steadily to the desired output, but at

a somewhat slower rate than in Figure 3A.

To test the effects of mismatch between tutor and student, we used tutors with timescales that

did not match Equation (4). All student plasticity rules had the same effective time constants t1 and

t2, but different parameters a and b (see Equation 1), subject to the constraint a� b ¼ 1 described

in the previous section. Different tutors had different memory time scales ttutor (Equation 3).

Figure 3C and D demonstrate that learning was more rapid for well-matched tutor-student pairs

(the diagonal neighborhood, where ttutor » t
�
tutor). When the tutor error integration timescale was

shorter than the matched value in Equation (4), ttutor < t

�
tutor, learning was often completely dis-

rupted (many pairs below the diagonal in Figure 3C and D). When the tutor error integration time-

scale was longer than the matched value in Equation (4), ttutor > t

�
tutor learning was slowed down.

Figure 3C also shows that a certain amount of mismatch between the tutor error integration time-

scale ttutor and the matched timescale t

�
tutor implied by the student plasticity rule is tolerated by the

system. Interestingly, the diagonal band over which learning is effective in Figure 3C is roughly of

constant width—note that the scale on both axes is logarithmic, so that this means that the tutor

error integration timescale ttutor has to be within a constant factor of the optimal timescale t

�
tutor for

good learning. We also see that the breakdown in learning is more abrupt when ttutor < t

�
tutor than in

the opposite regime.

An interesting feature of the results from Figure 3C and D is that the difference in performance

between matched and mismatched pairs becomes less pronounced for timescales shorter than

about 100ms. This is due to the fact that the plasticity rule (Equation 1) implicitly smooths over time-

scales of the order of t1;2, which in our simulations were equal to t1 ¼ 80ms, t2 ¼ 40ms. Thus, varia-

tions of the tutor signal on shorter timescales have little effect on learning. Using different values for

the effective timescales t1;2 describing the plasticity rule can increase or decrease the range of

parameters over which learning is robust against tutor–student mismatches (see Appendix).

Robust learning with nonlinearities
In the model above, firing rates for the tutor were allowed to grow as large as necessary to imple-

ment the most efficient learning. However, the firing rates of realistic neurons typically saturate at

some fixed bound. To test the effects of this nonlinearity in the tutor, we passed the ideal tutor activ-

ity (Equation 3) through a sigmoidal nonlinearity,
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~gjðtÞ ¼ �� � tanh
z

a�b

1

ttutor

Z t

0

�jðt
0Þe�ðt�t0Þ=ttutor dt0 : (5)

where 2� is the range of firing rates. We typically chose �¼ �¼ 80Hz to constrain the rates to the

range 0–160 Hz (Ölveczky et al., 2005; Garst-Orozco et al., 2014). Learning slowed down with this

change (Figure 4A and online Video 3) as a result of the tutor firing rates saturating when the mis-

match between the motor output and the target output was large. However, the accuracy of the

final rendition was not affected by saturation in the tutor (Figure 4A, inset). An interesting effect

occurred when the firing rate constraint was imposed on a matched tutor with a long memory time-

scale. When this happened and the motor error was large, the tutor signal saturated and stopped

growing in relation to the motor error before the end of the motor program. In the extreme case of

very long integration timescales, learning became sequential: early features in the output were

Figure 3. Learning with matched or mismatched tutors in rate-based simulations. (A) Error trace showing how the average motor error evolved with the

number of repetitions of the motor program for a rate-based (a ¼ 0) plasticity rule paired with a matching tutor. (See online Video 1). (B) The error

trace and final motor output shown for a timing-based learning rule matched by a tutor with a long integration timescale. (See online Video 2.) In both

A and B the inset shows the final motor output for one of the two output channels (thick orange line) compared to the target output for that channel

(dotted black line). The output on the first rendition and at two other stages of learning indicated by orange arrows on the error trace are also shown as

thin orange lines. (C) Effects of mismatch between student and tutor on reproduction accuracy. The heatmap shows the final reproduction error of the

motor output after 1000 learning cycles in a rate-based simulation where a student with parameters a, b, t1, and t2 was paired with a tutor with memory

timescale ttutor. On the y axis, t1 and t2 were kept fixed at 80ms and 40ms, respectively, while a and b were varied (subject to the constraint a� b ¼ 1;

see text). Different choices of a and b lead to different optimal timescales t�tutor according to Equation (4). The diagonal elements correspond to

matched tutor and student, ttutor ¼ t

�
tutor. Note that the color scale is logarithmic. (D) Error evolution curves as a function of the mismatch between

student and tutor. Each plot shows how the error in the motor program changed during 1000 learning cycles for the same conditions as those shown in

the heatmap. The region shaded in light pink shows simulations where the mismatch between student and tutor led to a deteriorating instead of

improving performance during learning.

DOI: 10.7554/eLife.20944.004
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learned first, before later features were

addressed, as in Figure 4B and online Video 4.

This is reminiscent of the learning rule described

in (Memmesheimer et al., 2014).

Nonlinearities can similarly affect the activities

of student neurons. Our model can be readily

extended to describe efficient learning even in

this case. The key result is that for efficient learn-

ing to occur, the synaptic plasticity rule should

depend not just on the tutor and conductor, but

also on the activity of the postsynaptic student

neurons (details in Appendix). Such dependence

on postsynaptic activity is commonly seen in

experiments (Chistiakova and Volgushev, 2009;

Chistiakova et al., 2014).

The relation between student neuron activa-

tions sjðtÞ and motor outputs yaðtÞ (Figure 2A) is

in general also nonlinear. Compared to the linear

assumption that we used, the effect of a mono-

tonic nonlinearity, ya ¼ Nað
P

j MajsjÞ, with Na an

increasing function, is similar to modifying the

loss function L, and does not significantly change our results (see Appendix). We also checked that

imposing a rectification constraint that conductor–student weights Wij must be positive does not

modify our results either (see Appendix). This shows that our model continues to work with biologi-

cally realistic synapses that cannot change sign from excitatory to inhibitory during learning.

Spiking neurons and birdsong
To apply our model to vocal learning in birds, we extended our analysis to networks of spiking neu-

rons. Juvenile songbirds produce a ‘babble’ that converges through learning to an adult song

strongly resembling the tutor song. This is reflected in the song-aligned spiking patterns in pre-

motor area RA, which become more stereotyped and cluster in shorter, better-defined bursts as the

bird matures (Figure 5A). We tested whether our model could reproduce key statistics of spiking in

RA over the course of song learning. In this context, our theory of efficient learning, derived in a

rate-based scenario, predicts a specific relation between the teaching signal embedded in LMAN fir-

ing patterns, and the plasticity rule implemented in RA. We tested whether these predictions contin-

ued to hold in the spiking context.

Following the experiments of

Hahnloser et al. (2002), we modeled each neu-

ron in HVC (the conductor) as firing one short,

precisely timed burst of 5–6 spikes at a single

moment in the motor program. Thus the popula-

tion of HVC neurons produced a precise time-

base for the song. LMAN (tutor) neurons are

known to have highly variable firing patterns that

facilitate experimentation, but also contain a cor-

rective bias (Andalman and Fee, 2009). Thus we

modeled LMAN as producing inhomogeneous

Poisson spike trains with a time-dependent firing

rate given by Equation (5) in our model.

Although biologically there are several LMAN

neurons projecting to each RA neuron, we again

simplified by ‘summing’ the LMAN inputs into a

single, effective tutor neuron, similarly to the

approach in (Fiete et al., 2007). The LMAN-RA

synapses were modeled in a current-based

Video 1. Evolution of motor output during learning in

a rate-based simulation using a rate-based (a ¼ 0)

plasticity rule paired with a matching tutor. This video

relates to Figure 3A.

DOI: 10.7554/eLife.20944.005

Video 2. Evolution of motor output during learning in

a rate-based simulation using a timing-based (a »b)

plasticity rule paired with a matching tutor. This video

relates to Figure 3B.

DOI: 10.7554/eLife.20944.006
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approach as a mixture of AMPA and NMDA receptors, following the songbird data (Garst-

Orozco et al., 2014; Stark and Perkel, 1999). The initial weights for all synapses were tuned to pro-

duce RA firing patterns resembling juvenile birds (Ölveczky et al., 2011), subject to constraints from

direct measurements in slice recordings (Garst-Orozco et al., 2014) (see Materials and methods for

details, and Figure 5B for a comparison between neural recordings and spiking in our model). In

Figure 4. Effects of adding a constraint on the tutor firing rate to the simulations. (A) Learning was slowed down by the firing rate constraint, but the

accuracy of the final rendition stayed the same (inset, shown here for one of two simulated output channels). Here a ¼ 0, b ¼ �1, and

ttutor ¼ t

�
tutor ¼ 40ms. (See online Video 3.) (B) Sequential learning occurred when the firing rate constraint was imposed on a matched tutor with a long

memory scale. The plots show the evolution of the motor output for one of the two channels that were used in the simulation. Here a ¼ 24, b ¼ 23, and

ttutor ¼ t

�
tutor ¼ 1000ms. (See online Video 4.).

DOI: 10.7554/eLife.20944.007

Video 3. Effects of adding a constraint on tutor firing

rates on the evolution of motor output during learning

in a rate-based simulation. The plasticity rule here was

rate-based (a ¼ 0). This video relates to Figure 4A.

DOI: 10.7554/eLife.20944.008

Video 4. Evolution of motor output showing sequential

learning in a rate-based simulation when the firing rate

constraint is imposed on a tutor with a long memory

timescale. This video relates to Figure 4B.

DOI: 10.7554/eLife.20944.009

Teşileanu et al. eLife 2017;6:e20944. DOI: 10.7554/eLife.20944 9 of 29

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.20944.007
http://dx.doi.org/10.7554/eLife.20944.008
http://dx.doi.org/10.7554/eLife.20944.009
http://dx.doi.org/10.7554/eLife.20944


contrast to the constant inhibitory bias that we used in our rate-based simulations, for the spiking

simulations we chose an activity-dependent global inhibition for RA neurons. We also tested that a

constant bias produced similar results (see Appendix).

Synaptic strength updates followed the same two-timescale dynamics that was used in the rate-

based models (Figure 2B). The firing rates ciðtÞ and gjðtÞ that appear in the plasticity equation were

calculated in the spiking model by filtering the spike trains from conductor and tutor neurons with

exponential kernels. The synaptic weights were constrained to be non-negative. (See Materials and

methods for details.)

As long as the tutor error integration timescale was not too large, learning proceeded effectively

when the tutor error integration timescale and the student plasticity rule were matched (see

Figure 5C and online Video 5), with mismatches slowing down or abolishing learning, just as in our

rate-based study (compare Figure 5D with Figure 3C). The rate of learning and the accuracy of the

trained state were lower in the spiking model compared to the rate-based model. The lower accu-

racy arises because the tutor neurons fire stochastically, unlike the deterministic neurons used in the

rate-based simulations. The stochastic nature of the tutor firing also led to a decrease in learning

accuracy as the tutor error integration timescale ttutor increased (Figure 5D). This happens through

two related effects: (1) the signal-to-noise ratio in the tutor guiding signal decreases as ttutor

increases once the tutor error integration timescale is longer than the duration T of the motor pro-

gram (see Appendix); and (2) the fluctuations in the conductor–student weights lead to some

weights getting clamped at 0 due to the positivity constraint, which leads to the motor program

overshooting the target (see Appendix). The latter effect can be reduced by either allowing for neg-

ative weights, or changing the motor output to a push-pull architecture in which some student neu-

rons enhance the output while others inhibit it. The signal-to-noise ratio effect can be attenuated by

increasing the gain of the tutor signal, which inhibits early learning, but improves the quality of the

guiding signal in the latter stages of the learning process. It is also worth emphasizing that these

effects only become relevant once the tutor error integration timescale ttutor becomes significantly

longer than the duration of the motor program, T, which for a birdsong motif would be around 1 s.

Spiking in our model tends to be a little more regular than that in the recordings (compare

Figure 5A and Figure 5B). This could be due to sources of noise that are present in the brain which

we did not model. One detail that our model does not capture is the fact that many LMAN spikes

occur in bursts, while in our simulation LMAN firing is Poisson. Bursts are more likely to produce

spikes in downstream RA neurons particularly because of the NMDA dynamics, and thus a bursty

LMAN will be more effective at injecting variability into RA (Kojima et al., 2013). Small inaccuracies

in aligning the recorded spikes to the song are also likely to contribute apparent variability between

renditions in experiments. Indeed, some of the variability in Figure 5A looks like it could be due to

time warping and global time shifts that were not fully corrected.

Robust learning with credit assignment errors
The calculation of the tutor output in our rule involved estimating the motor error �j from Equa-

tion (2). This required knowledge of the assignment between student activities and motor output,

which in our model was represented by the matrix Maj (Figure 2A). In our simulations, we typically

chose an assignment in which each student neuron contributed to a single output channel, mimick-

ing the empirical findings for neurons in bird RA. Mathematically, this implies that each column of

Maj contained a single non-zero element. In Figure 6A, we show what happened in the rate-based

model when the tutor incorrectly assigned a certain fraction of the neurons to the wrong output.

Specifically, we considered two output channels, y1 and y2, with half of the student neurons contrib-

uting only to y1 and the other half contributing only to y2. We then scrambled a fraction � of this

assignment when calculating the motor error, so that the tutor effectively had an imperfect knowl-

edge of the student–output relation. Figure 6A shows that learning is robust to this kind of mis-

assignment even for fairly large values of the error fraction � up to about 40%, but quickly deterio-

rates as this fraction approaches 50%.

Due to environmental factors that affect development of different individuals in different ways, it

is unlikely that the student–output mapping can be innate. As such, the tutor circuit must learn the

mapping. Indeed, it is known that LMAN in the bird receives an indirect evaluation signal via Area X,

which might be used to effect this learning (Andalman and Fee, 2009; Gadagkar et al., 2016;
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Hoffmann et al., 2016; Kubikova et al., 2010). One way in which this can be achieved is through a

reinforcement paradigm. We thus considered a learning rule where the tutor circuit receives a

reward signal that enables it to infer the student–output mapping. In general the output of the tutor

circuit should depend on an integral of the motor error, as in Equation (3), to best instruct the stu-

dent. For simplicity, we start with the memory-less case, ttutor ¼ 0, in which only the instantaneous

value of the motor error is reflected in the tutor signal; we then show how to generalize this for

ttutor > 0.

As before, we took the tutor neurons to fire Poisson spikes with time-dependent rates fjðtÞ, which

were initialized arbitrarily. Because of stochastic fluctuations, the actual tutor activity on any given

Figure 5. Results from simulations in spiking neural networks. (A) Spike patterns recorded from zebra finch RA during song production, for a juvenile

(top) and an adult (bottom). Each color corresponds to a single neuron, and the song-aligned spikes for six renditions of the song are shown. Adapted

from Ölveczky et al. (2011). (B) Spike patterns from model student neurons in our simulations, for the untrained (top) and trained (bottom) models.

The training used a ¼ 1, b ¼ 0, and ttutor ¼ 80ms, and ran for 600 iterations of the song. Each model neuron corresponds to a different output channel

of the simulation. In this case, the targets for each channel were chosen to roughly approximate the time course observed in the neural recordings. (C)

Progression of reproduction error in the spiking simulation as a function of the number of repetitions for the same conditions as in panel B. The inset

shows the accuracy of reproduction in the trained model for one of the output channels. (See online Video 5.) (D) Effects of mismatch between student

and tutor on reproduction accuracy in the spiking model. The heatmap shows the final reproduction error of the motor output after 1000 learning

cycles in a spiking simulation where a student with parameters a, b, t1, and t2 was paired with a tutor with memory timescale ttutor. On the y axis, t1
and t2 were kept fixed at 80ms and 40ms, respectively, while a and b were varied (subject to the constraint a� b ¼ 1; see section "Learning in a rate-

based model"). Different choices of a and b lead to different optimal timescales t�tutor according to Equation (4). The diagonal elements correspond to

matched tutor and student, ttutor ¼ t

�
tutor. Note that the color scale is logarithmic.

DOI: 10.7554/eLife.20944.010
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trial, gjðtÞ, differs somewhat from the average,

�gjðtÞ. Denoting the difference by

�jðtÞ ¼ gjðtÞ � �gjðtÞ, the update rule for the tutor

firing rates was given by

DfjðtÞ ¼ htutorðRðtÞ� �RÞ�jðtÞ ; (6)

where htutor is a learning rate, RðtÞ is the instanta-

neous reward signal, and �R is its average over

recent renditions of the motor program. In our

implementation, �R is obtained by convolving RðtÞ

with an exponential kernel (timescale = 1 s). The

reward RðtmaxÞ at the end of one rendition

becomes the baseline at the start of the next ren-

dition Rð0Þ. The baseline �gjðtÞ of the tutor activity

is calculated by averaging over recent renditions

of the song with exponentially decaying weights

(one e-fold of decay for every five renditions).

Further implementation details are available in

our code at https://github.com/ttesileanu/

twostagelearning (Teşileanu, 2016) (with a copy

archived at https://github.com/elifesciences-pub-

lications/twostagelearning).

The intuition behind this rule is that, whenever a fluctuation in the tutor activity leads to better-

than-average reward (RðtÞ > �R), the tutor firing rate changes in the direction of the fluctuation for

subsequent trials, ‘freezing in’ the improvement. Conversely, the firing rate moves away from the

directions in which fluctuations tend to reduce the reward.

To test our learning rule, we ran simulations using this reinforcement strategy and found that

learning again converges to an accurate rendition of the target output (Figure 6B, inset and online

Video 6). The number of repetitions needed for training is greatly increased compared to the case

in which the credit assignment is assumed known by the tutor circuit (compare Figure 6B to

Figure 5C). This is because the tutor needs to use many training rounds for experimentation before

it can guide conductor–student plasticity. The rate of learning in our model is similar to the songbird

(i.e., order 10 000 repetitions for learning, given that a zebra finch typically sings about 1000 repeti-

tions of its song each day, and takes about one month to fully develop adult song).

Because of the extra training time needed for the tutor to adapt its signal, the motor output in

our reward-based simulations tends to initially overshoot the target (leading to the kink in the error

at around 2000 repetitions in Figure 6B). Interestingly, the subsequent reduction in output that

leads to convergence of the motor program, combined with the positivity constraint on the synaptic

strengths, leads to many conductor–student connections being pruned (Figure 6D). This mirrors

experiments on songbirds, where the number of connections between HVC and RA first increases

with learning and then decreases (Garst-Orozco et al., 2014).

The reinforcement rule described above responds only to instantaneous values of the reward sig-

nal and tutor firing rate fluctuations. In general, effective learning requires that the tutor keep a

memory trace of its activity over a timescale ttutor > 0, as in Equation (4). To achieve this in the rein-

forcement paradigm, we can use a simple generalization of Equation (6) where the update rule is fil-

tered over the tutor memory timescale:

DfjðtÞ ¼ htutor

1

ttutor

Z t

dt0 ðRðt0Þ� �RÞ�jðt
0Þe�ðt�t0Þ=ttutor : (7)

We tested that this rule leads to effective learning when paired with the corresponding student,

i.e., one for which Equation (4) is obeyed (Figure 6C and online Video 7).

The reinforcement rules proposed here are related to the learning rules from (Fiete and Seung,

2006; Fiete et al., 2007) and (Farries and Fairhall, 2007). However, those models focused on learn-

ing in a single pass, instead of the two-stage architecture that we studied. In particular, in

Fiete et al. (2007), area LMAN was assumed to generate pure Poisson noise and reinforcement

Video 5. Evolution of motor output during learning in

a spiking simulation. The plasticity rule parameters

were a ¼ 1, b ¼ 0, and the tutor had a matching

timescale ttutor ¼ t

�
tutor ¼ 80ms. This video relates to

Figure 5C.

DOI: 10.7554/eLife.20944.011
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learning took place at the HVC–RA synapses. In our model, which is in better agreement with recent

evidence regarding the roles of RA and LMAN in birdsong (Andalman and Fee, 2009), reinforce-

ment learning first takes place in the anterior forebrain pathway (AFP), for which LMAN is the out-

put. A reward-independent heterosynaptic plasticity rule then solidifies the information in RA.

In our simulations, tutor neurons fire Poisson spikes with specific time-dependent rates which

change during learning. The timecourse of the firing rates in each repetition must then be stored

somewhere in the brain. In fact, in the songbird, there are indirect projections from HVC to LMAN,

going through the basal ganglia (Area X) and the dorso-lateral division of the medial thalamus (DLM)

in the anterior forebrain pathway (Figure 1A) (Perkel, 2004). These synapses could store the

required time-dependence of the tutor firing rates. In addition, the same synapses can provide the

timebase input that would ensure synchrony between LMAN firing and RA output, as necessary for

learning. Our reinforcement learning rule for the tutor area, Equation (6), can be viewed as an effec-

tive model for plasticity in the projections between HVC, Area X, DLM, and LMAN, as in Fee and

Goldberg (2011). In this picture, the indirect HVC–LMAN connections behave somewhat like the

‘hedonistic synapses’ from Seung (2003), though we use a simpler synaptic model here.

Figure 6. Credit assignment and reinforcement learning. (A) Effects of credit mis-assignment on learning in a rate-based simulation. Here, the system

learned output sequences for two independent channels. The student–output weights Maj were chosen so that the tutor wrongly assigned a fraction of

student neurons to an output channel different from the one it actually mapped to. The graph shows how the accuracy of the motor output after 1000

learning steps depended on the fraction of mis-assigned credit. (B) Learning curve and trained motor output (inset) for one of the channels showing

two-stage reinforcement-based learning for the memory-less tutor (ttutor ¼ 0). The accuracy of the trained model is as good as in the case where the

tutor was assumed to have a perfect model of the student–output relation. However, the speed of learning is reduced. (See online Video 6.) (C)

Learning curve and trained motor output (inset) for one of the output channels showing two-stage reinforcement-based learning when the tutor circuit

needs to integrate information about the motor error on a certain timescale. Again, learning was slow, but the accuracy of the trained state was

unchanged. (See online Video 7.) (D) Evolution of the average number of HVC inputs per RA neuron with learning in a reinforcement example.

Synapses were considered pruned if they admitted a current smaller than 1 nA after a pre-synaptic spike in our simulations.

DOI: 10.7554/eLife.20944.012
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Implementing the integral from Equation (7)

would require further recurrent circuitry in LMAN

which is beyond the scope of this paper, but

would be interesting to investigate in future

work.

Discussion
We built a two-stage model of learning in which

one area (the student) learns to generate a pat-

terned motor output under guidance from a tutor

area. This architecture is inspired by the song sys-

tem of zebra finches, where area LMAN provides

a corrective bias to the song that is then consoli-

dated in the HVC–RA synapses. Using an

approach rooted in the efficient coding literature,

we showed analytically that, in a simple model,

the tutor output that is most likely to lead to

effective learning by the student involves an inte-

gral over the recent magnitude of the motor

error. We found that efficiency requires that the

timescale for this integral should be related to the synaptic plasticity rule used by the student. Using

simulations, we tested our findings in more general settings. In particular, we demonstrated that

tutor-student matching is important for learning in a spiking-neuron model constructed to reproduce

spiking patterns similar to those measured in zebra finches. Learning in this model changes the spik-

ing statistics of student neurons in realistic ways, for example, by producing more bursty, stereo-

typed firing events as learning progresses. Finally, we showed how the tutor can build its error-

correcting signal by means of reinforcement learning.

If the birdsong system supports efficient learning, our model can predict the temporal structure

of the firing patterns of RA-projecting LMAN neurons, given the plasticity rule implemented at the

HVC–RA synapses. These predictions can be directly tested by recordings from LMAN neurons in

singing birds, assuming that a good measure of motor error is available, and that we can estimate

how the neurons contribute to this error. Moreover, recordings from a tutor circuit, such as LMAN,

could be combined with a measure of motor error to infer the plasticity rule in a downstream student

circuit, such as RA. This could be compared with direct measurements of the plasticity rule obtained

in slice. Conversely, knowledge of the student

plasticity rule could be used to predict the time-

dependence of tutor firing rates. According to

our model, the firing rate should reflect the inte-

gral of the motor error with the timescale pre-

dicted by the model. A different approach

would be to artificially tutor RA by stimulating

LMAN neurons electrically or optogenetically.

We would predict that if the tutor signal is deliv-

ered appropriately (e.g., in conjunction with a

particular syllable [Tumer and Brainard, 2007]),

then the premotor bias produced by the stimula-

tion should become incorporated into the motor

pathway faster when the timescale of the artifi-

cial LMAN signal is properly matched to the RA

synaptic plasticity rule.

Our model can be applied more generally to

other systems in the brain exhibiting two-stage

learning, such as motor learning in mammals. If

the plasticity mechanisms in these systems are

different from those in songbirds, our

Video 6. Evolution of motor output during learning in

a spiking simulation with a reinforcement-based tutor.

Here the tutor was memory-less (ttutor ¼ 0). This video

relates to Figure 6B.

DOI: 10.7554/eLife.20944.013

Video 7. Evolution of motor output during learning in

a spiking simulation with a reinforcement-based tutor.

Here the tutor needed to integrate information about

the motor error on a timescale ttutor ¼ 440ms. This

video relates to Figure 6C.

DOI: 10.7554/eLife.20944.014

Teşileanu et al. eLife 2017;6:e20944. DOI: 10.7554/eLife.20944 14 of 29

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.20944.013
http://dx.doi.org/10.7554/eLife.20944.014
http://dx.doi.org/10.7554/eLife.20944


predictions for the structure of the guiding signal will vary correspondingly. This would allow a fur-

ther test of our model of ‘efficient learning’ in the brain. It is worth pointing out that our model was

derived assuming a certain hierarchy among the timescales that model the student plasticity and the

tutor signal. A mismatch between the model predictions and observations could also imply a break-

down of these approximations, rather than failure of the hypothesis that the particular system under

study evolved to support efficient learning. Of course our analysis could be extended by relaxing

these assumptions, for example by keeping more terms in the Taylor expansion that we used in our

derivation of the matched tutor signal.

Applied to birdsong, our model is best seen as a mechanism for learning song syllables. The

ordering of syllables in song motifs seems to have a second level of control within HVC and perhaps

beyond (Basista et al., 2014; Hamaguchi et al., 2016). Songs can also be distorted by warping their

timebase through changes in HVC firing without alterations of the HVC–RA connectivity (Ali et al.,

2013). In view of these phenomena, it would be interesting to incorporate our model into a larger

hierarchical framework in which the sequencing and temporal structure of the syllables are also

learned. A model of transitions between syllables can be found in Doya and Sejnowski (2000),

where the authors use a ‘weight perturbation’ optimization scheme in which each HVC–RA synaptic

weight is perturbed individually. We did not follow this approach because there is no plausible

mechanism for LMAN to provide separate guidance to each HVC–RA synapse; in particular, there

are not enough LMAN neurons (Fiete et al., 2007).

In this paper we assumed a two-stage architecture for learning, inspired by birdsong. An interest-

ing question is whether and under what conditions such an architecture is more effective than a sin-

gle-step model. Possibly, having two stages is better when a single tutor area is responsible for

training several different dedicated controllers, as is likely the case in motor learning. It would then

be beneficial to have an area that can learn arbitrary behaviors, perhaps at the cost of using more

resources and having slower reaction times, along with the ability to transfer these behaviors into

low-level circuitry that is only capable of producing stereotyped motor programs. The question then

arises whether having more than two levels in this hierarchy could be useful, what the other levels

might do, and whether such hierarchical learning systems are implemented in the brain.

Materials and methods

Equations for rate-based model
The basic equations we used for describing our rate-based model (Figure 2A) are the following:

yaðtÞ ¼
X

j

MajsjðtÞ ;

sjðtÞ ¼
X

i

WijciðtÞþwgjðtÞ� xinh :
(8)

In simulations, we further filtered the output using an exponential kernel,

~yaðtÞ ¼
X

j

Maj

Z t

0

sjðt
0Þe�ðt�t0Þ=tout dt0 ; (9)

with a timescale tout that we typically set to 25 ms. The smoothing produces more realistic outputs

by mimicking the relatively slow reaction time of real muscles, and stabilizes learning by filtering out

high-frequency components of the motor output. The latter interfere with learning because of the

delay between the effect of conductor activity on synaptic strengths vs. motor output. This delay is

of the order t1;2 � tout (see the plasticity rule below).

The conductor activity in the rate-based model is modeled after songbird HVC (Hahnloser et al.,

2002): each neuron fires a single burst during the motor program. Each burst corresponds to a sharp

increase of the firing rate ciðtÞ from 0 to a constant value, and then a decrease 10ms later. The activi-

ties of the different neurons are spread out to tile the whole duration of the output program. Other

choices for the conductor activity also work, provided no patterns are repeated (see Appendix).
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Mathematical description of plasticity rule
In our model the rate of change of the synaptic weights obeys a rule that depends on a filtered ver-

sion of the conductor signal (see Figure 2B). This is expressed mathematically as

dWij

dt
¼ h~ciðtÞðgjðtÞ� �Þ ; (10)

where h is a learning rate and ~ci ¼K � ci, with the star representing convolution and K being a filter-

ing kernel. We considered a linear combination of two exponential kernels with timescales t1 and t2,

KðtÞ ¼ aK1ðtÞ�bK2ðtÞ ; (11)

with KiðtÞ given by

KiðtÞ ¼
t

�1

i e�t=ti for t� 0;

0 else:

(

(12)

Different choices for the kernels give similar results (see Appendix). The overall scale of a and b

can be absorbed into the learning rate h in Equation (10). In our simulations, we fix a�b¼ 1 and

keep the learning rate constant as we change the plasticity rule (see Equation 3).

In the spiking simulations with and without reinforcement learning in the tutor circuit, the firing

rates ciðtÞ and gjðtÞ were estimated by filtering spike trains with exponential kernels whose timescales

were in the range 5ms–40ms. The reinforcement studies typically required longer timescales for sta-

bility, possibly because of delays between conductor activity and reward signals.

Derivation of the matching tutor signal
To find the tutor signal that provides the most effective teaching for the student, we first calculate

how much synaptic weights change according to our plasticity rule, Equation (10). Then we require

that this change matches the gradient descent direction. We have

DWij ¼

Z T

0

dWij

dt
dt¼ h

Z T

0

~ciðtÞðgjðtÞ� �Þdt : (13)

Because of the linearity assumptions in our model, it is sufficient to focus on a case in which each

conductor neuron, i, fires a single short burst, at a time ti. We write this as ciðtÞ ¼ dðt� tiÞ, and so

DWij ¼

Z T

0

dWij

dt
dt¼ h

Z T

0

Kðt� tiÞðgjðtÞ� �Þdt ; (14)

where we used the definition of ~ciðtÞ. If the time constants t1, t2 are short compared to the timescale

on which the tutor input gjðtÞ varies, only the values of gjðtÞ around time ti will contribute to the inte-

gral. If we further assume that T � ti, we can use a Taylor expansion of gjðtÞ around t¼ ti to perform

the calculation:

DWij »h

Z

¥

ti

Kðt� tiÞ
�

gjðtiÞ� �þðt� tiÞg
0
jðtiÞ

�

dt

¼ hðgjðtiÞ� �Þ

Z

¥

0

KðtÞdtþhg0jðtiÞ

Z

¥

0

tKðtÞdt

¼ hðgjðtiÞ� �Þ

Z

¥

0

�

aK1ðtÞ�bK2ðtÞ
�

dtþhg0jðtiÞ

Z

¥

0

t
�

aK1ðtÞ�bK2ðtÞ
�

dt :

(15)

Doing the integrals involving the exponential kernels K1 and K2, we get

DWij ¼ h
�

ða�bÞ ðgjðtiÞ� �Þþ ðat1 �bt2Þg
0
jðtiÞ

�

: (16)

We would like this synaptic change to optimally reduce a measure of mismatch between the out-

put and the desired target as measured by a loss function. A generic smooth loss function

LðyaðtÞ;�yaðtÞÞ can be quadratically approximated when ya is sufficiently close to the target �yaðtÞ. With

this in mind, we consider a quadratic loss
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L¼
1

2

X

a

Z T

0

�

yaðtÞ��yaðtÞ
�2
dt : (17)

The loss function would decrease monotonically during learning if synaptic weights changed in

proportion to the negative gradient of L:

DWij ¼�g
qL

qWij

; (18)

where g is a learning rate. This implies

DWij ¼�g
X

a

Z T

0

Maj

�

yaðtÞ��yaðtÞ
�

ciðtÞ : (19)

Using again ciðtÞ ¼ dðt� tiÞ, we obtain

DWij ¼�g�jðtiÞ ; (20)

where we used the notation from Equation (2) for the motor error at student neuron j.

We now set Equations (16) and (20) equal to each other. If the conductor fires densely in time,

we need the equality to hold for all times, and we thus get a differential equation for the tutor signal

gjðtÞ. This identifies the tutor signal that leads to gradient descent learning as a function of the motor

error �jðtÞ, Equation (3) (with the notation z ¼ g=h).

Spiking simulations
We used spiking models that were based on leaky integrate-and-fire neurons with current-based

dynamics for the synaptic inputs. The magnitude of synaptic potentials generated by the conductor–

student synapses was independent of the membrane potential, approximating AMPA receptor

dynamics, while the synaptic inputs from the tutor to the student were based on a mixture of AMPA

and NMDA dynamics. Specifically, the equations describing the dynamics of the spiking model were:

tm

dVj

dt
¼ ðVR�VjÞþR

�

IAMPA
j þ INMDA

j

�

�Vinh ; ðexcept during refractory periodÞ

dIAMPA
j

dt
¼�

IAMPA
j

tAMPA

þ
X

i

Wij

X

k

dðt� t
conductor#i
k Þþ ð1� rÞw

X

k

dðt� ttutork Þ ;
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ginh
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X
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SjðtÞ ;

dSj

dt
¼�

Sj
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þ
X

k

dðt� tstudentk Þ ;

GðVÞ ¼ 1þ
½Mg�

3:57mM
expð�V=16:13mVÞ

� ��1

:

(21)

Here Vj is the membrane potential of the jth student neuron and VR is the resting potential, as

well as the potential to which the membrane was reset after a spike. Spikes were registered when-

ever the membrane potential went above a threshold Vth, after which a refractory period tref ensued.

Apart from excitatory AMPA and NMDA inputs modeled by the IAMPA
j and INMDA

j variables in our

model, we also included a global inhibitory signal Vinh which is proportional to the overall activity of

student neurons averaged over a timescale tinh. The averaging is performed using the auxiliary varia-

bles Sj which are convolutions of student spike trains with an exponential kernel. These can be

thought of as a simple model for the activities of inhibitory interneurons in the student.

Table 1 gives the values of the parameters we used in the simulations. These values were chosen

to match the firing statistics of neurons in bird RA, as described below.

The voltage dynamics for conductor and tutor neurons was not simulated explicitly. Instead, each

conductor neuron was assumed to fire a burst at a fixed time during the simulation. The onset of
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each burst had additive timing jitter of �0:3ms and each spike in the burst had a jitter of �0:2ms.

This modeled the uncertainty in spike times that is observed in in vivo recordings in birdsong

(Hahnloser et al., 2002). Tutor neurons fired Poisson spikes with a time-dependent firing rate that

was set as described in the main text.

The initial connectivity between conductor and student neurons was chosen to be sparse (see

Table 1). The initial distribution of synaptic weights was log-normal, matching experimentally mea-

sured values for zebra finches (Garst-Orozco et al., 2014). Since these measurements are done in

the slice, the absolute number of HVC synapses per RA neuron is likely to have been underesti-

mated. The number of conductor–student synapses we start with in our simulations is thus chosen to

be higher than the value reported in that paper (see Table 1), and is allowed to change during learn-

ing. We checked that the learning paradigm described here is robust to substantial changes in these

parameters, but we have chosen values that are faithful to birdsong experiments and which are thus

able to imitate the RA spiking statistics during song.

The synapses projecting onto each student neuron from the tutor have a weight that is fixed dur-

ing our simulations reflecting the finding in Garst-Orozco et al. (2014) that the average strength of

LMAN–RA synapses for zebra finches does not change with age. There is some evidence that indi-

vidual LMAN–RA synapses undergo plasticity concurrently with the HVC–RA synapses

(Mehaffey and Doupe, 2015) but we did not seek to model this effect. There are also developmen-

tal changes in the kinetics of NMDA-mediated synaptic currents in both HVC–RA and LMAN–RA syn-

apses which we do not model (Stark and Perkel, 1999). These, however, happen early in

development, and thus are unlikely to have an effect on song crystallization, which is what our model

focuses on. Stark and Perkel, 1999 also observed changes in the relative contribution of NMDA to

AMPA responses in the HVC–RA synapses. We do not incorporate such effects in our model since

we do not explicitly model the dynamics of HVC neurons in this paper. However, this is an interest-

ing avenue for future work, especially since there is evidence that area HVC can also contribute to

learning, in particular in relation to the temporal structure of song (Ali et al., 2013).

Matching spiking statistics with experimental data
We used an optimization technique to choose parameters to maximize the similarity between the

statistics of spiking in our simulations and the firing statistics observed in neural recordings from the

songbird. The comparison was based on several descriptive statistics: the average firing rate; the

coefficient of variation and skewness of the distribution of inter-spike intervals; the frequency and

average duration of bursts; and the firing rate during bursts. For calculating these statistics, bursts

were defined to start if the firing rate went above 80 Hz and last until the rate decreased below 40

Hz.

To carry out such optimizations in the stochastic context of our simulations, we used an evolution-

ary algorithm—the covariance matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006). The

objective function was based on the relative error between the simulation statistics xsimi and the

observed statistics xobsi ,

Table 1. Values for parameters used in the spiking simulations.

Parameter Symbol Value Parameter Symbol Value

No. of conductor neurons 300 No. of student neurons 80

Reset potential VR �72:3mV Input resistance R 353M


Threshold potential Vth �48:6mV Strength of inhibition ginh 1:80mV

Membrane time constant tm 24:5ms Fraction NMDA receptors r 0:9

Refractory period tref 1:1ms Strength of synapses from tutor w 100nA

AMPA time constant tAMPA 6:3ms No. of conductor synapses per student neuron 148

NMDA time constant tNMDA 81:5ms Mean strength of synapses from conductor 32:6 nA

Time constant for global inhibition tinh 20ms Standard deviation of conductor–student weights 17:4 nA

Conductor firing rate during bursts 632Hz

DOI: 10.7554/eLife.20944.015
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error¼
X

i

xsimi

xobsi

� 1

� �2
" #1=2

: (22)

Equal weight was placed on optimizing the firing statistics in the juvenile (based on a recording

from a 43 dph bird) and optimizing firing in the adult (based on a recording from a 160 dph bird). In

this optimization there was no learning between the juvenile and adult stages. We simply required

that the number of HVC synapses per RA neuron, and the mean and standard deviation of the corre-

sponding synaptic weights were in the ranges seen in the juvenile and adult by Garst-Orozco et al.

(2014). The optimization was carried out in Python (RRID:SCR_008394), using code from https://

www.lri.fr/~hansen/cmaes_inmatlab.html. The results fixed the parameter choices in Table 1 which

were then used to study our learning paradigm. While these choices are important for achieving fir-

ing statistics that are similar to those seen in recordings from the bird, our learning paradigm is

robust to large variations in the parameters in Table 1.

Software and data
We used custom-built Python (RRID:SCR_008394) code for simulations and data analysis. The soft-

ware and data that we used can be accessed online on GitHub (RRID:SCR_002630) at https://github.

com/ttesileanu/twostagelearning.
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Ali F, Otchy TM, Pehlevan C, Fantana AL, Burak Y, Ölveczky BP. 2013. The basal ganglia is necessary for learning
spectral, but not temporal, features of birdsong. Neuron 80:494–506. doi: 10.1016/j.neuron.2013.07.049,
PMID: 24075977

Andalman AS, Fee MS. 2009. A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal
errors. PNAS 106:12518–12523. doi: 10.1073/pnas.0903214106, PMID: 19597157
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Appendix 1

Effect of nonlinearities
We can generalize the model from Equation (8) by using a nonlinear transfer function from

student activities to motor output, and a nonlinear activation function for student neurons:

yaðtÞ ¼Na

�

X

j

MajsjðtÞ
�

;

sjðtÞ ¼ F

�

X

i

WijciðtÞþwgjðtÞ� xinh

�

:
(23)

Suppose further that we use a general loss function,

L¼

Z T

0

L
�

fyaðtÞ��yaðtÞg
�

dt : (24)

Following the same argument as that from section "Derivation of the matching tutor signal",

the gradient descent condition, Equation (18), implies

DWij ¼�g

Z T

0

X

a

MajN
0
aF

0ciðtÞ
qL

qya

�

�

�

�

yaðtÞ��yaðtÞ

: (25)

The departure from the quadratic loss function, L 6¼ 1

2

P

aðyaðtÞ � �yaðtÞÞ
2, and the

nonlinearities in the output, Na, have the effect of redefining the motor error,

�jðtÞ ¼
X

a

MajN
0
a

qL

qya

�

�

�

�

yaðtÞ��yaðtÞ

: (26)

A proper loss function will be such that the derivatives qL=qya vanish when yaðtÞ ¼ �yaðtÞ, and

so the motor error �j as defined here is zero when the rendition is perfect, as expected. If we

use a tutor that ignores the nonlinearities in a nonlinear system, i.e., if we use Equation (2)

instead of Equation (26) to calculate the tutor signal that is plugged into Equation (3), we

still expect successful learning provided that N 0
a > 0 and that L is itself an increasing function

of jya � �yaj (see section "Effect of different output functions"). This is because replacing

Equation (26) with Equation (2) would affect the magnitude of the motor error without

significantly changing its direction. In more complicated scenarios, if the transfer function to

the output is not monotonic, there is the potential that using Equation (2) would push the

system away from convergence instead of towards it. In such a case, an adaptive

mechanism, such as the reinforcement rules from Equations (6) or (7) can be used to adapt

to the local values of the derivatives N 0
a and qL=qya.

Finally, the nonlinear activation function F introduces a dependence on the student output

sjðtÞ in Equation (25), since F0 is evaluated at F�1ðsjðtÞÞ. To obtain a good match between

the student and the tutor in this context, we can modify the student plasticity rule

(Equation 10) by adding a dependence on the postsynaptic activity,

dWij

dt
¼ h~ciðtÞðgjðtÞ� �ÞF0ðF�1ðsjðtÞÞÞ : (27)

In general, synaptic plasticity has been observed to indeed depend on postsynaptic activity

(Chistiakova et al., 2014; Chistiakova and Volgushev, 2009). Our derivation suggests that

the effectiveness of learning could be improved by tuning this dependence of synaptic
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change on postsynaptic activity to the activation function of postsynaptic neurons, according

to Equation (27). It would be interesting to check whether such tuning occurs in real

neurons.

Effect of different output functions
In the main text, we assumed a linear mapping between student activities and motor output.

Moreover, we assumed a myotopic organization, in which each student neuron projected to

a single muscle, leading to a student–output assignment matrix Maj in which each column

had a single non-zero entry. We also assumed that student neurons only contributed

additively to the outputs, with no inhibitory activity. Here we show that our results hold for

other choices of student–output mappings.

For example, assume a push-pull architecture, in which half of the student neurons

controlling one output are excitatory and half are inhibitory. This can be used to decouple

the overall firing rate in the student from the magnitude of the outputs. Learning works just

as effectively as in the case of the purely additive student–output mapping when using

matched tutors, Appendix 1—figures 1A and 1B. The consequences of mismatching

student and tutor circuits are also not significantly changed, Appendix 1—figures 1C and

1D.

We can also consider nonlinear mappings between the student activity and the final output.

If there is a monotonic output nonlinearity, as in Equation (23) with N 0
a > 0, the tutor signal

derived for the linear case, Equation (3), can still achieve convergence, though at a slower

rate and with a somewhat lower accuracy (see Appendix 1—figure 1E for the case of a

sigmoidal nonlinearity). For non-monotonic nonlinearities, the direction from which the

optimum is approached can be crucial, as learning can get stuck in local minima of the loss

function (we thank Josh Gold for this observation). Studying this might provide an

interesting avenue to test whether learning in songbirds is based on a gradient descent-type

rule or on a more sophisticated optimization technique.
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Appendix 1—figure 1. Robustness of learning. (A) Error trace showing how average motor

error evolves with repetitions of the motor program for rate-based plasticity paired with a

matching tutor, when the student–output mapping has a push-pull architecture. The inset

shows the final motor output (thick red line) compared to the target output (dotted black

line). The output on the first rendition and at two other stages of learning are also shown. (B)

The error trace and final motor output shown for timing-based plasticity matched by a tutor

with a long integration timescale. (C) Effects of mismatch between student and tutor on

reproduction accuracy when using a push-pull architecture for the student–output mapping.

The heatmap shows the final reproduction error of the motor output after 1000 learning

cycles when a student with plasticity parameters a and b is paired with a tutor with memory

timescale ttutor. Here t1 ¼ 80ms and t2 ¼ 40ms. (D) Error evolution curves as a function of

the mismatch between student and tutor. Each plot shows how the error in the motor

program changes during 1000 learning cycles for the same conditions as those shown in the

heatmap. The region shaded in light pink shows simulations where the mismatch between

student and tutor leads to a deteriorating instead of improving performance during learning.

(E) Convergence in the rate-based model with a linear-nonlinear controller that uses a

sigmoidal nonlinearity. (F) Convergence in the spiking model when inhibition is constant

instead of activity-dependent (Vinh ¼ constant).
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Different inhibition models
In the spiking model, we used an activity-dependent inhibitory signal that was proportional to

the average student activity. Using a constant inhibition instead, Vinh ¼ constant, does not

significantly change the results: see Appendix 1—figure 1F for an example.

Effect of changing plasticity kernels
In the main text, we used exponential kernels with t1 ¼ 80ms and t2 ¼ 40ms for the smoothing

of the conductor signal that enters the synaptic plasticity rule, Equation (10). We can

generalize this in two ways: we can use different timescales t1, t2, or we can use a different

functional form for the kernels. (Note that in the main text we showed the effects of varying

the parameters a and b in the plasticity rule, while the timescales t1 and t2 were kept fixed.)

The values for the timescales t1;2 were chosen to roughly match the shape of the plasticity

curve measured in slices of zebra finch RA (Mehaffey and Doupe, 2015) (see Figure 1C and

D). The main predictions of our model, that learning is most effective when the tutor signal

is matched to the student plasticity rule, and that large mismatches between tutor and

student lead to impaired learning, hold well when the student timescales change: see

Appendix 1—figure 2A for the case when t1 ¼ 20ms and t2 ¼ 10ms. In the main text we

saw that the negative effects of tutor–student mismatch diminish for timescales that are

shorter than ~ t1;2. In Appendix 1—figure 2A, the range of timescales where a precise

matching is not essential becomes very small because the student timescales are short.

Appendix 1—figure 2. Effect of changing conductor smoothing kernels in the plasticity rule. (A)

Matrix showing learning accuracy when using different timescales for the student plasticity

rule. Each entry in the heatmap shows the average rendition error after 1000 learning steps

when pairing a tutor with timescale ttutor with a non-matched student. Here the kernels are

exponential, with timescales t1 ¼ 20ms, t2 ¼ 10ms. (B) Evolution of motor error with learning

using kernels ~ e�t=t and ~ te�t=t, instead of the two exponentials used in the main text. The

tutor signal is as before, Equation (3). The inset shows the final output for the trained

model, for one of the two output channels. Learning is as effective and fast as before.

DOI: 10.7554/eLife.20944.017

Another generalization of our plasticity rule can be obtained by changing the functional form

of the kernels used to smooth the conductor input. As an example, suppose K2 is kept

exponential, while K1 is replaced by
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�K1ðtÞ ¼
1

�
t

2

1

te�t=�t1 for t� 0;

0 else:

(

(28)

An example of learning using an STDP rule based on kernels �K1 and K2 where �
t1 ¼ t2 is

shown in Appendix 1—figure 2B. The matching tutor has the same form as before,

Equation (3) with timescale ttutor ¼ t

�
tutor given by Equation (4), but with t1 ¼ 2�t1 ¼ 2t2. We

can see that learning is as effective as in the case of purely exponential kernels.

More general conductor patterns
In the main text, we have focused on a conductor whose activity matches that observed in area

HVC of songbirds (Hahnloser et al., 2002): each neuron fires a single burst during the

motor program. Our model, however, is not restricted to this case. We generated

alternative conductor patterns by using arbitrarily-placed bursts of activity, as in

Appendix 1—figure 3A. The model converges to a good rendition of the target program,

Appendix 1—figure 3B. Learning is harder in this case because many conductor neurons

can be active at the same time, and the weight updates affect not only the output of the

system at the current position in the motor program, but also at all the other positions

where the conductor neurons fire. This is in contrast to the HVC-like conductor, where each

neuron fires at a single point in the motor program, and thus the effect of weight updates is

better localized. More generally, simulations show that the sparser the conductor firing, the

faster the convergence (data not shown). The accuracy of the final rendition of the motor

program (Appendix 1—figure 3B, inset) is also not as good as before.

Appendix 1—figure 3. Learning with arbitrary conductor activity. (A). Typical activity of

conductor neurons. 20 of the 100 neurons included in the simulation are shown. The activity

pattern is chosen so that about 10% of the neurons are active at any given time. The pattern

is chosen randomly but is fixed during learning. Each conductor burst lasts 30ms. (B)

Convergence curve and final rendition of the motor program (in inset). Learning included

two output channels but the final output is shown for only one of them.

DOI: 10.7554/eLife.20944.018

Edge effects
In our derivation of the matching tutor rule, we assumed that the system has enough time to

integrate all the synaptic weight changes from Equation (10). However, some of these

changes occur tens or hundreds of milliseconds after the inputs that generated them, due to

the timescales used in the plasticity kernel. Since our simulations are only run for a finite

amount of time, there will in general be edge effects, where periods of the motor program

towards the end of the simulations will have difficulty converging. To offset such numerical
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issues, we ran the simulations for a few hundred milliseconds longer than the duration of the

motor program, and ignored the data from this extra period. Our simulations typically run

for 600ms, and the time reserved for relaxation after the end of the program was set to

1200ms. The long relaxation time was chosen to allow for cases where the tutor was chosen

to have a very long memory timescale.

Parameter optimization for reproducing juvenile and
adult spiking statistics
We set the parameters in our simulations to reproduce spiking statistics from recordings in

zebra finch RA as closely as possible. Appendix 1—figure 4 shows how the distribution of

summary statistics obtained from 50 runs of the simulation compares to the distributions

calculated from recordings in birds at various developmental stages. Each plot shows a

standard box and whisker plot superimposed over a kernel-density estimate of the

distribution of a given summary statistic, either over simulation runs or over recordings from

birds at various stages of song learning. We ran two sets of simulations, one for a bird with

juvenile-like connectivity between HVC and RA, and one with adult-like connectivity (see

Materials and methods). In these simulations there was no learning to match the timecourse

of songs—the goal was simply to identify parameters that lead to birdsong-like firing

statistics.

Appendix 1—figure 4. Violin plots showing how the spiking statistics from our simulation com-

pared to the statistics obtained from neural recordings. Each violin shows a kernel-density

estimate of the distribution that a particular summary statistic had in either several runs of a

simulation, or in several recordings from behaving birds. The circle and the box within each

violin show the median and the interquartile range.

DOI: 10.7554/eLife.20944.019

The qualitative match between our simulations and recordings is good, but the simulations

are less variable than the measurements. This may be due to sources of variability that we

have ignored—for example, all our simulated neurons had exactly the same membrane time

constants, refractory periods, and threshold potentials, which is not the case for real

neurons. Another reason might be that in our simulations, all the runs were performed for

the same network, while the measurements are from different cells in different birds.
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Effect of spiking stochasticity on learning
As pointed out in the main text, learning is affected in the spiking simulations when the tutor

error integration timescale ttutor becomes very long. More specifically, two distinct effects

occur. First, the fluctuations in the motor output increase, leading to a poorer match to the

shape of the target motor program. And second, the whole output gets shifted up, towards

higher muscle activation values. Both of these effects can be traced back to the stochasticity

of the tutor signal.

In the spiking simulations, tutor neurons are assumed to fire Poisson spikes following a time-

dependent firing rate that obeys Equation (5). By the nature of the Poisson process, the

tutor output in this case will contain fluctuations around the mean, gðtÞ~ �gðtÞ þ �ðtÞ. Recall

that the scale of gðtÞ is set by the threshold � and thus, since this is a Poisson process, so is

the scale of the variability �ðtÞ.

As long as the tutor error integration timescale is not very long, gðtÞ roughly corresponds to

a smoothed version of the motor error �ðtÞ (cf. Equation 5). However, as ttutor grows past

the duration T of the motor program, the exponential term in Equation (5) becomes

essentially constant, leading to a tutor signal �gðtÞ whose departures from the center value �

decrease in proportion to the timescale ttutor. As far as the student is concerned, the

relevant signal is gðtÞ � � (Equation 1), and thus, when ttutor > T, the signal-to-noise ratio in

the tutor guiding signal starts to decrease as 1=ttutor. This ultimately leads to a very noisy

rendition of the target program. One way to improve this would be to increase the gain

factor z that controls the relation between the motor error and the tutor signal (see

Equation 5). This improves the ability of the system to converge onto its target in the late

stages of learning. In the early stages of learning, however, this could lead to saturation

problems. One way to fix this would be to use a variable gain factor z that ensures the whole

range of tutor firing rates is used without generating too much saturation. This would be an

interesting avenue for future research.

Reducing the fluctuations in the tutor signal also decreases the fluctuations in the

conductor–student synaptic weights, which leads to fewer weights being clamped at 0

because of the positivity constraint. This reduces the shift between the learned motor

program and the target. As mentioned in the main text, another approach to reducing or

eliminating this shift is to allow for negative weights or (more realistically) to use a push-pull

mechanism, in which the activity of some student neurons acts to increase muscle output,

while the activity of other student neurons acts as an inhibition on muscle output.
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Appendix 2

Plasticity parameter values
In the heatmaps that appear in many of the figures in the main text and in the supplementary

information, we kept the timescales t1 and t2 constant while varying a and b to modify the

student plasticity rule. Since the overall scale of a and b is inconsequential as it can be

absorbed into the learning rate (as explained in the section "Learning in a rate-based

model"), we imposed the further constraint a� b ¼ 1. This implies that we effectively

focused on a one-parameter family of student plasticity rule, as identified by the value of a

(and the corresponding value for b ¼ a� 1). In the figures, we expressed this instead in

terms of the timescale of the optimally-matching tutor, t�tutor, as defined in Equation (4).

Below we give the explicit values of a and b that we used for each row in the heatmaps.

These can be calculated by solving for a in Equation (4), using b ¼ a� 1, and assuming that

t1 ¼ 80ms and t2 ¼ 40ms.

t

�
tutor (ms) a b

10 �0:75 �1:75

20 �0:5 �1:5

40 0:0 �1:0

80 1:0 0:0

160 3:0 2:0

320 7:0 6:0

640 15:0 14:0

1280 31:0 30:0

2560 63:0 62:0

5120 127:0 126:0

10240 255:0 254:0

20480 511:0 510:0
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