Extensive cargo identification reveals distinct biological roles of the 12 importin pathways

  1. Makoto Kimura  Is a corresponding author
  2. Yuriko Morinaka
  3. Kenichiro Imai
  4. Shingo Kose
  5. Paul Horton
  6. Naoko Imamoto  Is a corresponding author
  1. RIKEN, Japan
  2. National Institute of Advanced Industrial Science and Technology, Japan

Abstract

Vast numbers of proteins are transported into and out of the nuclei by approximately 20 species of importin-β family nucleocytoplasmic transport receptors. However, the significance of the multiple parallel transport pathways that the receptors constitute is poorly understood because only limited numbers of cargo proteins have been reported. Here, we identified cargo proteins specific to the 12 species of human import receptors with a high-throughput method that employs stable isotope labeling with amino acids in cell culture, an in vitro reconstituted transport system, and quantitative mass spectrometry. The identified cargoes illuminated the manner of cargo allocation to the receptors. The redundancies of the receptors vary widely depending on the cargo protein. Cargoes of the same receptor are functionally related to one another, and the predominant protein groups in the cargo cohorts differ among the receptors. Thus, the receptors are linked to distinct biological processes by the nature of their cargoes.

Data availability

The following data sets were generated
    1. Makoto Kimura
    2. Naoko Imamoto
    (2016) SILAC-Tp (12 importins)
    Publicly available at the Pride Archive (accession no: PXD004655).

Article and author information

Author details

  1. Makoto Kimura

    Cellular Dynamics Laboratory, RIKEN, Wako, Japan
    For correspondence
    makimura@riken.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0868-5334
  2. Yuriko Morinaka

    Cellular Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Kenichiro Imai

    Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Shingo Kose

    Cellular Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Paul Horton

    Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Naoko Imamoto

    Cellular Dynamics Laboratory, RIKEN, Wako, Japan
    For correspondence
    nimamoto@riken.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2886-3022

Funding

Japan Society for the Promotion of Science (KAKENHI,15K07064)

  • Makoto Kimura

RIKEN (FY2014 Incentive Research Project)

  • Makoto Kimura

Japan Society for the Promotion of Science (KAKENHI,26251021,26116526,15H05929)

  • Naoko Imamoto

Japan Agency for Medical Research and Development (Platform Project for Supporting in Drug Discovery and Life Science Research)

  • Kenichiro Imai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Kimura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,540
    views
  • 866
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Makoto Kimura
  2. Yuriko Morinaka
  3. Kenichiro Imai
  4. Shingo Kose
  5. Paul Horton
  6. Naoko Imamoto
(2017)
Extensive cargo identification reveals distinct biological roles of the 12 importin pathways
eLife 6:e21184.
https://doi.org/10.7554/eLife.21184

Share this article

https://doi.org/10.7554/eLife.21184

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.