Regulation of B cell fate by chronic activity of the IgE B cell receptor

  1. Zhiyong Yang
  2. Marcus J Robinson
  3. Xiangjun Chen
  4. Geoffrey Alexander Smith
  5. Jack Taunton
  6. Wanli Liu
  7. Christopher DC Allen  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Tsinghua University, China

Abstract

IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE+ B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE+ germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE+ GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses.

Article and author information

Author details

  1. Zhiyong Yang

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marcus J Robinson

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiangjun Chen

    MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Geoffrey Alexander Smith

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1638-4219
  5. Jack Taunton

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Wanli Liu

    MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0395-2800
  7. Christopher DC Allen

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    Chris.Allen@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1879-9047

Funding

Sandler Asthma Basic Research Center

  • Zhiyong Yang
  • Marcus J Robinson
  • Christopher DC Allen

Weston Havens Foundation

  • Christopher DC Allen

National Institute of Allergy and Infectious Diseases (F30AI120517)

  • Geoffrey Alexander Smith

Pew Charitable Trusts

  • Christopher DC Allen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The care, maintenance, and experimental manipulation of mice followed guidelines established by the by the Institutional Animal Care and Use Committee of the University of California, San Francisco under approved protocols AN089524 and AN111286.

Reviewing Editor

  1. Tomohiro Kurosaki, Osaka University, Japan

Publication history

  1. Received: September 4, 2016
  2. Accepted: December 8, 2016
  3. Accepted Manuscript published: December 9, 2016 (version 1)
  4. Version of Record published: January 3, 2017 (version 2)

Copyright

© 2016, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,974
    Page views
  • 669
    Downloads
  • 48
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiyong Yang
  2. Marcus J Robinson
  3. Xiangjun Chen
  4. Geoffrey Alexander Smith
  5. Jack Taunton
  6. Wanli Liu
  7. Christopher DC Allen
(2016)
Regulation of B cell fate by chronic activity of the IgE B cell receptor
eLife 5:e21238.
https://doi.org/10.7554/eLife.21238

Further reading

    1. Cell Biology
    Vi T Tang, Joseph McCormick ... David Ginsburg
    Research Advance

    PCSK9 negatively regulates low-density lipoprotein receptor (LDLR) abundance on the cell surface, leading to decreased hepatic clearance of LDL particles and increased levels of plasma cholesterol. We previously identified SURF4 as a cargo receptor that facilitates PCSK9 secretion in HEK293T cells (Emmer et al., 2018). Here, we generated hepatic SURF4-deficient mice (Surf4fl/fl Alb-Cre+) to investigate the physiologic role of SURF4 in vivo. Surf4fl/fl Alb-Cre+ mice exhibited normal viability, gross development, and fertility. Plasma PCSK9 levels were reduced by ~60% in Surf4fl/fl Alb-Cre+ mice, with a corresponding ~50% increase in steady state LDLR protein abundance in the liver, consistent with SURF4 functioning as a cargo receptor for PCSK9. Surprisingly, these mice exhibited a marked reduction in plasma cholesterol and triglyceride levels out of proportion to the partial increase in hepatic LDLR abundance. Detailed characterization of lipoprotein metabolism in these mice instead revealed a severe defect in hepatic lipoprotein secretion, consistent with prior reports of SURF4 also promoting the secretion of apolipoprotein B. Despite a small increase in liver mass and lipid content, histologic evaluation revealed no evidence of steatohepatitis or fibrosis in Surf4fl/fl Alb-Cre+ mice. Acute depletion of hepatic SURF4 by CRISPR/Cas9 or liver-targeted siRNA in adult mice confirms these findings. Together, these data support the physiologic significance of SURF4 in the hepatic secretion of PCSK9 and APOB-containing lipoproteins and its potential as a therapeutic target in atherosclerotic cardiovascular diseases.

    1. Cell Biology
    Jing Zhao, Anahid B Ahmadi ... Paul Sharpe
    Research Article

    Telocytes (TCs) or interstitial cells are characterised in vivo by their long projections that contact other cell types. Although telocytes can be found in many different tissues including the heart1, lung2 and intestine3, their tissue-specific roles are poorly understood. Here we identify a specific cell signalling role for telocytes in the periodontium whereby telocytes regulate macrophage activity. We performed scRNA-seq and lineage tracing to identify telocytes and macrophages in mouse periodontium in homeostasis and periodontitis and carried out HGF signalling inhibition experiments using Tivantinib. We show that telocytes are quiescent in homeostasis, however, they proliferate and serve as a major source of HGF in periodontitis. Macrophages receive telocyte-derived HGF signals and shift from an M1 to a M1/M2 state. Our results reveal the source of HGF signals in periodontal tissue and provide new insights into the function of telocytes in regulating macrophage behaviour in periodontitis through HGF/Met cell signalling, that may provide a novel approach in periodontitis treatment.