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Abstract A molecular model that provides a framework for interpreting the wealth of functional

information obtained on the E. coli F-ATP synthase has been generated using cryo-electron

microscopy. Three different states that relate to rotation of the enzyme were observed, with the

central stalk’s e subunit in an extended autoinhibitory conformation in all three states. The Fo motor

comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side

of the membrane indicate the entry and exit channels for protons. The proton translocating subunit

contains near parallel helices inclined by ~30˚ to the membrane, a feature now synonymous with

rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved

over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that

bifurcates toward the membrane with its helices separating to embrace subunit a from two sides.

DOI: 10.7554/eLife.21598.001

Introduction
In most cells, the bulk of ATP, the principal source of cellular energy, is synthesized by ATP synthase.

This molecular generator couples ion flow across membranes with the addition of inorganic phos-

phate (Pi) to ADP thereby generating ATP (Iino and Noji, 2013; Stewart et al., 2014). Most bacte-

ria, including Escherichia coli have only one type of rotary ATPase, referred to as F-type ATPase.

Like the analogous complexes in other kingdoms, it is based on two reversible motors, termed F1
and Fo (Negrin et al., 1980), connected by central and peripheral stalks (Wilkens and Capaldi,

1998a) (Figure 1). The Fo motor spans the membrane converting the potential energy of the proton

motive force (pmf) into rotation of the central stalk that in turn drives conformational changes in the

F1 catalytic sites.

The Fo motor is constructed from subunits a, b and c (Figure 1). Subunit c assembles into a ring,

thought, in E. coli, to have decameric stoichiometry (Jiang et al., 2001; Ballhausen et al., 2009;

Düser et al., 2009; Ishmukhametov et al., 2010), whereas subunits a and b associate to form a heli-

cal bundle adjacent to this ring. Recent sub nanometer electron cryo-microscopy (cryo-EM) recon-

structions of F-type (Allegretti et al., 2015; Zhou et al., 2015; Kühlbrandt and Davies, 2016;

Hahn et al., 2016) and the analogous V- and A-type ATPases (Zhao et al., 2015; Schep et al.,

2016) as well as a low-resolution crystal structure of Paracoccus denitrificans F-ATPase (Morales-

Rios et al., 2015) are consistent with a two half-channel mechanism for the generation of rotation

within the membrane (Vik and Antonio, 1994; Junge et al., 1997). All structures confirm that a
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four-helix bundle of subunit a, inclined by 20–30˚ to the membrane plane, forms a crucial structural

component. In this mechanism, protons from the bacterial periplasm access a conserved negatively

charged carboxylate in subunit c (Asp61 in E. coli [Hoppe et al., 1982]) through an aqueous half

channel at the subunit a/c interface (Steed and Fillingame, 2008). Neutralizing this carboxylate ena-

bles the c-ring to rotate within the hydrophobic membrane and to access a second aqueous half

channel that opens to the cytoplasm into which the protons are released (Pogoryelov et al., 2010).

A conserved arginine residue in helix-4 of subunit a (Arg210 in E. coli) prevents the c-ring rotating in

the opposite direction and short-circuiting of the system (Lightowlers et al., 1987; Cain and Simoni,

1989; Mitome et al., 2010). The sequential binding of protons in combination with thermal fluctua-

tions generates rotation within the complex in a manner akin to a turbine (Oster and Wang, 1999;

Pogoryelov et al., 2010; Aksimentiev et al., 2004). The torque generated in the Fo motor is then

transferred to the F1 motor by the central shaft consisting of subunits g and e (Wilkens et al., 1995).

The N- and C-termini of subunit g form a curved coiled-coil that extends into the central cavity of F1.

The F1 motor is the chemical generator in which ATP is synthesized. The motor comprises a ring

of three heterodimers, each containing an active site at the interface of subunits a and b. Within the

F1 motor, each ab dimer has a different conformation at any point in time and can be either empty,

bound to ADP and Pi, or bound to ATP (open, half-closed, closed) (Abrahams et al., 1994;

Yoshida et al., 2001). These different catalytic states relate to the position of the curved coiled-coil

of subunit g in the central stalk, which drives the conformational changes associated with catalysis.

To enable the central stalk to rotate relative to the F1 ab heterodimers, the Fo and F1 motors need

to be coupled. This coupling is mediated by the peripheral stalk that is constructed from subunits b

and d (Figure 1). Subunit b forms an amphipathic homodimeric coiled-coil that spans the periphery

eLife digest ATP synthase is a biological motor that produces a molecule called adenosine tri-

phosphate (ATP for short), which acts as the major store of chemical energy in cells. A single

molecule of ATP contains three phosphate groups: the cell can remove one of these phosphates to

make a molecule called adenosine di-phosphate (ADP) and release energy to drive a variety of

biological processes.

ATP synthase sits in the membranes that separate cell compartments or form barriers around

cells. When cells break down food they transport hydrogen ions across these membranes so that

each side of the membrane has a different level (or “concentration”) of hydrogen ions. Movement of

hydrogen ions from an area with a high concentration to a low concentration causes ATP synthase to

rotate like a turbine. This rotation of the enzyme results in ATP synthase adding a phosphate group

to ADP to make a new molecule of ATP. In certain conditions cells need to switch off the ATP

synthase and this is done by changing the shape of the central shaft in a process called

autoinhibition, which blocks the rotation.

The ATP synthase from a bacterium known as E. coli – which is commonly found in the human gut

–has been used as a model to study how this biological motor works. However, since the precise

details of the three-dimensional structure of ATP synthase have remained unclear it has been

difficult to interpret the results of these studies.

Sobti et al. used a technique called Cryo-electron microscopy to investigate the structure of ATP

synthase from E. coli. This made it possible to develop a three-dimensional model of the ATP

synthase in its autoinhibited form. The structural data could also be split into three distinct shapes

that relate to dwell points in the rotation of the motor where the rotation has been inhibited. These

models further our understanding of ATP synthases and provide a template to understand the

findings of previous studies.

Further work will be needed to understand this essential biological process at the atomic level in

both its inhibited and uninhibited form. This will reveal the inner workings of a marvel of the natural

world and may also lead to the discovery of new antibiotics against related bacteria that cause

diseases in humans.

DOI: 10.7554/eLife.21598.002
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of the complex linking subunit a with subunit a, whereas subunit d provides additional coupling of

the C-termini of the b and a subunits (Carbajo et al., 2005; Wilkens et al., 2005).

The bacterial F-ATPase can also function in reverse, employing ATP hydrolysis to generate a pro-

ton gradient across the membrane when needed (von Ballmoos et al., 2008). In vivo, subunit e is

believed to change conformation in an ATP-dependent manner to prevent rotation of the complex

(Capaldi et al., 1992; Rodgers and Wilce, 2000; Yagi et al., 2007; Imamura et al., 2009) thereby

conserving ATP when its concentration is low. This regulatory function is mediated by the C-terminal

domain of subunit e (eCTD) that, when not bound to ATP, opens to an extended conformation and

inserts into the ab heterodimers. The crystal structures of both the E. coli and Bacillus PS3 F1 motors

in this autoinhibited state show the eCTD intercalating into the ab heterodimers (Cingolani and Dun-

can, 2011; Shirakihara et al., 2015). However, in each structure, the F1 motor had been captured in

a different conformation (E. coli – half-closed, closed, open [Cingolani and Duncan, 2011] and Bacil-

lus PS3 – open, closed, open [Shirakihara et al., 2015]) which could either relate to inter species dif-

ferences or crystal contacts and crystallization conditions.

The crystal structure of the F-ATPase from P. denitrificans (Morales-Rios et al., 2015), that is

closely related to E. coli (38% sequence identity over all subunits), shows a similar overall architec-

ture to bovine F1Fo ATP synthase as well as to the main features of A/V ATPases. However, it is

inhibited by the z-protein rather than by subunit e, which is generally employed by bacterial

Figure 1. Schematic illustration showing the arrangement of subunits in E. coli F-ATPase. Subunits a in red, b in

yellow, g in blue, e in green, c in grey, a in orange, b in magenta or pink, and d in teal. The proton path and ATP

synthesis are labeled accordingly.

DOI: 10.7554/eLife.21598.003
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F-ATPases for this purpose. Moreover, this crystal structure shows only one conformation of the

rotary catalytic cycle.

Here, we present three cryo-EM maps along with molecular models of E. coli F-ATPase in its auto-

inhibited state, determined to resolutions of 6.9, 7.8, and 8.5 Å. In all three reconstructions, the

eCTD is in an extended conformation, stabilizing an overall F1 motor conformation similar to that

seen in the thermophilic Bacillus PS3 F1 ATPase structure. Density for the peripheral stalk extends

the entire length of the complex and its coiled-coil bifurcates towards the N-terminus to enter the

membrane as two separate helices that clamp the a subunit to the c ring. Moreover, our maps

allowed us to interpret the complete F1-delta interface, showing the three a subunit N-termini in dis-

tinct orientations. Each map also confirmed the c-ring stoichiometry to be decameric, which to date

has been only characterized by crosslinking and single molecule analyses. We used our maps in com-

bination with published crosslinking and mutagenesis information to generate a molecular model of

the complex in three states. These models provide crucial structural information on a key complex

that extends our understanding of the mechanism of rotary ATPases in general, together with infor-

mation on the bacterial ATP synthase, which is seen as an important antimicrobial target in organ-

isms related to E. coli such as Mycobacterium tuberculosis (Ahmad et al., 2013).

Results

Complete molecular models of three different F-ATPase conformations
Cysteine-free E. coli F-ATPase, as described in Ishmukhametov et al. (2005) where all 10 cysteines

were replaced with alanines and a His-tag introduced on the b subunit, was solubilized in digitonin

detergent and purified as described in the Materials and methods. This procedure provided pure

protein (Figure 2—figure supplement 1) capable of ATP hydrolysis-driven proton pumping upon

reconstitution into proteoliposomes (Figure 2—figure supplement 1). N,N‘-dicyclohexylcarbodii-

mide (DCCD), a compound which selectively modifies Asp61 of subunit c at 50 mM

(Pogoryelov et al., 2010) completely abolished proton pumping (Figure 2—figure supplement 1B)

and inhibited 90% of ATPase activity of isolated protein (Figure 2—figure supplement 1C). Such

inhibition indicates coupling between the F1 and Fo motors (Cook et al., 2003; Peskova and Naka-

moto, 2000; Tsunoda et al., 2000).

Protein was further examined by cryo-EM without addition of nucleotides. 395,140 particles were

picked, of which 216,711 were used in refinement. Three different conformations of the complex

were identified using 3D classification in RELION (Scheres, 2012). The particles in each subset were

then refined to generate sub-nanometre reconstructions, to a resolution of 6.9, 7.8 and 8.5 Å

(Figure 2A–C, and Figure 2—figure supplements 2 and 3). In these three conformations, the cen-

tral stalk was progressively rotated 120˚ relative to the peripheral stalk.

Even though the resolution of the reconstructions varied throughout the complex, it was sufficient

to resolve individual helices. Additional density of the N-terminal His-tag of the b subunit, as well as

helical and b sheet patterns observed in parts of the map in the F1 motor region illustrate the high

quality of the maps, with the c-ring density being poorest (Figure 2—figure supplement 4). Local

resolution estimates showed the region corresponding to the F1 motor to be of highest quality, the

Fo motor with moderate detail and, the detergent micelle being clearly the worst region of the map

(Figure 2—figure supplement 5). Docking of high-resolution crystal and NMR models of different

components into the maps followed by manual building and refinement enabled virtually complete

molecular models of the three different states to be built (Figure 2D–F), with varying quality of the

docked structures as indicated in Figure 2—figure supplement 6. The positions of the Cys-Ala

mutants are depicted in Figure 2—figure supplement 7.

The cryo-EM maps provided novel insights into the architecture and function of the E. coli

F-ATPase. Thus, although its overall architecture was similar to that of F-ATPase from P. denitrificans

(Morales-Rios et al., 2015) and F1Fo ATP synthases from Bos Taurus (Zhou et al., 2015), Yarrowia

lipolytica (Hahn et al., 2016) and Polytomella (Allegretti et al., 2015), with the catalytic F1 motor

attached to a proton powered membrane Fo motor and single central and peripheral stalks, differen-

ces in the individual motors and peripheral stalk were apparent. Comparison with the membrane-

embedded motors from other sub nanometre cryo-EM maps indicated the E. coli F-ATPase had a

simpler stator architecture, containing only seven helices in the a and b subunits rather than the
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Figure 2. The three states of the autoinhibited E. coli F-ATPase. (A–B) Cryo-EM maps shown as surface representation, states 1, 2 and 3, respectively,

resulting from rotation of the central stalk by 120˚. (D–F) Molecular models built into the cryo-EM maps shown as cartoon representation. Subunits a in

red, b in yellow, g in blue, e in green, c in grey, a in orange, b in magenta or pink and d in teal.

DOI: 10.7554/eLife.21598.004

The following source data and figure supplements are available for figure 2:

Source data 1. Data collection and image processing statistics.

DOI: 10.7554/eLife.21598.005

Figure supplement 1. Characterization of E.coli F1Fo ATP synthase used for cryo-EM.

Figure 2 continued on next page
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eight seen in mitochondrial F-type ATP synthase (Figure 2—figure supplement 8), consistent with

labeling approaches (Wada et al., 1999). This difference suggested that the extra helices present in

other rotary ATPase subtypes could have additional functions such as the dimerization seen in mito-

chondria (Hahn et al., 2016).

A movie generated by interpolation between the three states (Video 1) indicated that the F1
motor rocks or wobbles during the catalytic cycle (Kinosita et al., 2000; Stewart et al., 2012) as

previously predicted, although of course the structures described here do not represent the complex

in its uninhibited active synthesizing form. Two pivot points, one near the peripheral stalk/Fo inter-

face (~bArg36) (Welch et al., 2008) and one near the peripheral stalk/F1 interface (~bGln106),

enabled the stalk to accommodate this eccentric movement of F1 (Figure 2—figure supplement 9).

Subunit d interaction with subunit b dimer and all three a subunits
The maps showed a long right-handed coiled-coil dimer generated by the two b subunits of the

peripheral stalk together with the globular d sub-

unit that anchors them to the catalytic head

(Figure 3A). The quality of the map was suffi-

cient to enable almost the entire of the d subunit

to be built as a polyalanine model (Figure 2D–

F), whereas previous structural information was

limited to the N-terminal domain (Wilkens et al.,

2005). Interestingly, the peripheral stalk con-

tacted all three a subunits via their N-terminal

helices, but did so asymmetrically employing

three different interfaces with each a subunit

(Figure 4). Although the resolution of the map

was insufficient to assign the precise interface,

the binding of the peripheral stalk to three

anchor points in different geometries would pro-

vide a molecular key that would result in the d

subunit binding in a single orientation across the

top of the symmetrical ab heterodimers.

Figure 2 continued

DOI: 10.7554/eLife.21598.006

Figure supplement 2. cryoEM analysis.

DOI: 10.7554/eLife.21598.007

Figure supplement 3. Flowchart describing cryoEM data analysis.

DOI: 10.7554/eLife.21598.008

Figure supplement 4. Examples of the electron density map of State 1, to highlight strengths and weaknesses.

DOI: 10.7554/eLife.21598.009

Figure supplement 5. Local resolution map of State 1.

DOI: 10.7554/eLife.21598.010

Figure supplement 6. Quality of the models built into the state one cryoEM map.

DOI: 10.7554/eLife.21598.011

Figure supplement 7. Position of the natural cysteines in E. coli F1Fo.

DOI: 10.7554/eLife.21598.012

Figure supplement 8. Transmembrane architecture of (A) E.coli, (B) P. denitrificans, (C) Y. lipolytica.

DOI: 10.7554/eLife.21598.013

Figure supplement 9. Comparison of peripheral stalk position between the three states; diagrams on left depict part of complex that each state is

superposed to.

DOI: 10.7554/eLife.21598.014

Figure supplement 10. FSC curves showing the effects of masking on the refined map, with the gold-standard, corrected FSC curve (black), FSC of the

unmasked map (green), FSC of the masked map (blue), and FSC of the phase-randomized masked map (red).

DOI: 10.7554/eLife.21598.015

Video 1. Interpolation between States 1, 3 and 2 to

simulate ATP synthesis by E. coli F-ATPase. A and B are

rotated 90˚ about the y-axis.

DOI: 10.7554/eLife.21598.016
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The peripheral stalk bifurcates into the membrane
The b subunits formed a homodimeric coiled-coil that spaned almost the entire complex (212 of 232

Å) with their N-termini bifurcating just above the membrane to generate two separate helices within

the membrane (Figure 3A). This was unexpected, albeit reminiscent of the yeast F-type ATP syn-

thase dimer (Figure 2—figure supplement 8C), where subunit eight is an evolutionary derivative of

the bacterial b subunit (Hahn et al., 2016). Furthermore, NMR analysis of the transmembrane

domain of E. coli F-ATPase b subunit (Dmitriev et al., 1999) showed a helical structure that was

interrupted by a rigid 20˚ bend at residues 23–26 that result in a structure consistent with the b sub-

unit bifurcation.

Inhibition of the E. coli F-ATPase by central stalk subunit e
All three reconstructions showed the complex in its autoinhibited state, with clear density for the

eCTD extending deep into the central cavity of the F1 enzyme (Figure 3B). Fitting of the E. coli

a3b3ge crystal structure (Cingolani and Duncan, 2011) into our cryo-EM maps showed that the

b1 subunit had adopted a different more open conformation (Figure 3—figure supplement 1). In

the above crystal structure, the eCTD contacts more subunits in F1 (a1, a2, b1, b2 and g) compared

to our cryo-EM reconstructions, where it contacted fewer subunits (a1, a2, b2 and g ). The conforma-

tion of our cryo-EM structure was more similar to that seen in the Bacillus PS3 structure

Figure 3. The peripheral and central stalks of E. coli F-ATPase. (A) The peripheral stalk is comprised of a globular

head (subunit d in teal) and a homodimeric coiled-coil (subunits b in pink and magenta) that bifurcates at the

membrane interface to brace subunit a (orange). (B) The eCTD is in an extended conformation, inhibiting the

enzyme from rotating. The arrow depicts the extended vs closed conformation of subunit e.

DOI: 10.7554/eLife.21598.017

The following figure supplements are available for figure 3:

Figure supplement 1. Fitting of the of the autoinhibited E.coli F1-ATPase crystal structure (pdb 3oaa) into the

State one cryoEM map of E. coli F-ATPase.

DOI: 10.7554/eLife.21598.018

Figure supplement 2. Stimulation of ATP hydrolase activity of isolated F1Fo by 0.4% LDAO.

DOI: 10.7554/eLife.21598.019
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(Shirakihara et al., 2015), where it is proposed to be in an ‘open, closed, open’ conformation

(Figure 5).

To ascertain the enzymatic state of the F1 motor, we generated a difference density map between

the cryo-EM density and our built model. Remarkably, clear peaks were seen at the nucleotide bind-

ing pockets, indicating that the non-catalytic binding sites in subunit a contained nucleotide, as well

as the ‘closed’ ab heterodimer (Figure 5). These were modeled as ATP and ADP respectively based

on known orientations of these nucleotides from high-resolution crystal structures. Interestingly, this

did not correspond to the nucleotide binding states of either the E. coli (Cingolani and Duncan,

2011) or the PS3 crystal structures (Shirakihara et al., 2015).

Single particle analysis revealed highly uniform homogeneity of the protein preparation, where

100% of F1Fo molecules observed demonstrated the extended conformation of eCTD. Our structural

data were supported by an enzymatic assay (Figure 3—figure supplement 2), where the extent of

ATP hydrolysis inhibition of the protein by subunit e was tested with N,N-dimethyldodecylamine

N-oxide (LDAO), a well-known activator of the subunit e inhibited protein. LDAO used at 0.4%

(weight/volume) concentration has been shown to stimulate ATP hydrolysis by the E coli protein 3–4

Figure 4. Subunit d and peripheral stalk attachments to the a subunits. Top panel; left, the segmented cryoEM map viewed from the side and right,

viewed from above with the orientation of views 1, 2 and 3 depicted. Bottom panel; detailed views of the three attachment points labeled 1, 2 and 3,

with d in teal, b in pink and magenta and a in red.

DOI: 10.7554/eLife.21598.020
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times (Dunn et al., 1990; Peskova and Nakamoto, 2000), including earlier studies

(Ishmukhametov et al., 2008, 2016) on the same cysteine-free F1Fo construct using the same batch

of LDAO. Prior to addition of LDAO, the hydrolysis rate was 0.75 mmol ATP/min/mg protein but sur-

prisingly in presence of 0.4% LDAO it was stimulated ~13 times. To our best knowledge, such a high

LDAO stimulation of ATP hydrolysis by E. coli F1Fo was not described in the literature before and is

consistent with our single particle data.

The E. coli Fo motor – architecture of a proton channel
Density in Fo defined the overall architecture of the membrane-embedded motor together with two

invaginations of the detergent micelle that have previously been proposed to facilitate proton trans-

location (Allegretti et al., 2015; Kühlbrandt and Davies, 2016) (Figure 6—figure supplement 1).

While the overall density of the c-ring was relatively weak, 10 peaks of density were clearly present

when viewed from above (Figure 6—figure supplement 2), confirming the stoichiometry of the c-

ring to be decameric in E. coli F-ATPase (Jiang et al., 2001; Ballhausen et al., 2009; Düser et al.,

2009; Ishmukhametov et al., 2010). Furthermore, density inside the c-ring corroborates data sug-

gesting it to be filled with phospholipids (Oberfeld et al., 2006).

By combining the helical density from the cryo-EM maps (Figure 6A), with models previously sug-

gested for the related bovine subunit, together with crosslinking data and transmembrane topogra-

phy prediction for the E. coli F-ATPase (Jiang and Fillingame, 1998; Valiyaveetil and Fillingame,

1998; Moore and Fillingame, 2008; Wada et al., 1999), it was possible to build a molecular model

of the a subunit (Figure 6B). The crosslinks mapped to two clusters (Figure 6—figure supplement

3), allowing a likely sequence register for the model to be proposed. This was consistent with the

two half channel hypothesis, placing Arg210 of subunit a adjacent to Asp61 of the c-ring

(Figure 6B). Interestingly, density for the c subunit is clearest adjacent to Arg210 of subunit a sug-

gesting this area to be well ordered (Figure 6—figure supplement 4).

Figure 5. Autoinhibted E. coli F1-ATPase conformation. The ab hetrodimers of state 1 as viewed from the

membrane with the peripheral stalk to the left of the figure. The ‘open, closed, open’ conformation of the F1
motor is labeled and the positions of nucleotides are shown as blue surfaces.

DOI: 10.7554/eLife.21598.021
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Discussion
We have generated cryo-EM maps of a bacterial F-ATPase providing new insights into this rotary

ATPase subtype. These maps enabled the generation of a molecular model that presents a frame-

work onto which the vast array of information available on the widely studied E. coli enzyme can be

mapped, including the attachment of the peripheral stalk to the F1 and Fo motors, the inhibition

mediated by the e subunit, and the stoichiometry of the c-ring. In addition, the model confirmed the

presence of key features such as the near ‘horizontal’ helices angled at 20–30˚ relative to the mem-

brane, indicating that this feature is conserved and is a signature of F, V and A-type ATPases.

Our reconstructions extended previous work (Wilkens and Capaldi, 1998b) by showing the struc-

ture of the complete peripheral stalk and how it is attached to both the F1 and Fo components. The

peripheral stalk functions to counteract rotation of the F1 stator relative to the Fo stator as the cen-

tral stalk rotates, but must also accommodate conformational changes in the F1 motor during cataly-

sis. The peripheral stalk is based on a long right-handed coiled-coil dimer, that is the hallmark of all

rotary ATPase peripheral stalks (Lee et al., 2010), showed near parallel a-helices, based on an 11-

residue hendecad sequence repeat, spanning the space between the Fo and F1 motors, that

changed into a 15-residue quindecad sequence repeat along the F1 motor enabling it to accommo-

date conformational changes (Stewart and Stock, 2012; Stewart et al., 2012). Although sequence

identity is low (22%), the overall fold of the soluble portion of the peripheral stalk was strikingly

Figure 6. The E. coli F-ATPase subunit a and the suggested path of proton translocation. (A) Density map of subunit a, shown as orange surface viewed

from the c-ring. Grey outline depicts invaginations of the detergent micelle, with arrows showing possible proton path. (B) Cartoon representation of

subunit a with a horizontal stripe to depict the position of Asp61 on the c-ring (red where Asp61 would be bound to a proton and blue when bound to

Arg210). Functional mutants labeled as follows; essential arginine in blue, substitution with Arg210 resulting in functional complex in yellow, mutation to

arginine resulting in a dysfunctional complex in teal and residues that are aqueous accessible in red. Solid arrows show a possible proton path via two

‘half’ channels and dashed arrows show the path when bound to Asp61 of the c-ring and rotating.

DOI: 10.7554/eLife.21598.022

The following figure supplements are available for figure 6:

Figure supplement 1. Aqueous cavities of the E.coli FO motor.

DOI: 10.7554/eLife.21598.023

Figure supplement 2. View of the State two map from F1 to show c-ring stoichiometry (numbered).

DOI: 10.7554/eLife.21598.024

Figure supplement 3. Crosslinks of the E.coli FO motor.

DOI: 10.7554/eLife.21598.025

Figure supplement 4. Strong density near Arg210.

DOI: 10.7554/eLife.21598.026

Figure supplement 5. Functional mutants of E.coli F-ATPase subunit a.

DOI: 10.7554/eLife.21598.027
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similar to that of Thermus thermophilus A-ATPase (Lee et al., 2010), illustrating a strong evolution-

ary pressure for this fold and its function to prevent rotation between the ab heterodimers and the a

subunit while accommodating wobbling of the F1 motor. The bifurcation of the peripheral stalk

coiled-coil into two separate helices in the membrane was unexpected, but this arrangement

enabled the peripheral stalk to bind to the a subunit in two regions. This in turn increased the dis-

tance about the fulcrum of interaction, which may help clamp the a subunit to the c-ring and coun-

teract rotation and pivoting relative to the rotor. The cryo-EM maps also indicated that the

peripheral stalk is able to flex about two hinges adjacent to the F1 and Fo motors, enabling it to

accommodate conformational changes in the catalytic head.

In addition to its fundamental importance in cell metabolism, the regulation of ATP synthase is

also an attractive antibiotic discovery target for pathogenic bacteria closely related to E. coli

(Ahmad et al., 2013). Bacterial F-ATPases employ a unique method of regulation whereby the

enzyme can be autoinhibited with the integral subunit e. In all three rotational states of the E. coli

F-ATPase, the eCTD had an extended conformation, albeit with a different proportion of particles

observed at each state (46%, 30% and 24%) (Figure 2—figure supplement 3), suggesting State one

to be the lowest energy. No reconstruction at any stage of data processing contained density corre-

sponding to a closed/down conformation of the eCTD, and this along with the strong stimulation of

ATPase activity by LDAO, suggests that the majority of the protein to be in an autoinhibited form.

Although the position of eCTD relative to the ab subunits was similar to that of the mitochondrial

inhibitor protein (IF1), the observation that it bound to all three states was different to that seen for

IF1 that is bound to a single rotational F1 state (a/bDP site proximal to the peripheral stalk) in the

F1Fo ATP synthase dimer structure (Hahn et al., 2016). The cryo-EM maps resembled the ‘open,

closed, open’ conformation as seen in the Bacillus PS3 F1 crystal structure, despite different nucleo-

tide binding positions. However, the major contacts formed by the F1 motor with the eCTD in our

maps were similar to that of the E. coli crystal structure, except that one b subunit changed confor-

mation substantially (Figure 3—figure supplement 1). Because our cryo-EM study was performed in

the absence of externally added nucleotide, it is likely that the structures correspond to the autoin-

hibited conformations in solution, and the crystal structure of the isolated E. coli F1 could instead

represent a partially bound state, especially since the crystals were soaked in 1 mM AMPPNP prior

to freezing (Cingolani and Duncan, 2011).

The c-ring is responsible for the rotation of the complex and contains the conserved carboxylate

that binds the proton. Different species have varying numbers of subunits in their ring, believed to

‘gear’ the motor tailoring them to their environ-

ment and ranging from 8 to 15 subunits

(Stock et al., 1999; Pogoryelov et al., 2007;

Watt et al., 2010; Stewart et al., 2013).

Although the density corresponding to the c-

ring was quite weak, 10 peaks can be discrimi-

nated in the density at either end of the ring

(Figure 6—figure supplement 2). This con-

firmed the c-ring stoichiometry of E. coli

F-ATPase that had previously been suggested to

be decameric by crosslinking (Ballhausen et al.,

2009), fusion (Jiang et al., 2001) and single mol-

ecule analysis (Düser et al., 2009;

Ishmukhametov et al., 2010).

The model of subunit a generated from our

cryo-EM maps confirmed that the Fo motor likely

operates using two half channels separated by a

conserved arginine that directs its rotation

(Vik and Antonio, 1994; Junge et al., 1997).

Importantly, in this context, our model placed

Arg210, which is believed to mediate the rota-

tion of the c-ring, adjacent to the conserved car-

boxylate residue, Asp61, of the c subunit that

has been shown to bind protons (Vik and

Video 2. View of Fo motor during ATP synthesis. Same

as main text Figure 6b, but with rotating c-ring in the

foreground.

DOI: 10.7554/eLife.21598.028
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Antonio, 1994; Pogoryelov et al., 2010) (Figure 6b and Video 2). In addition Gln252, which can

be substituted with Arg210 and retain ATP synthase function (Ishmukhametov et al., 2008;

Hatch et al., 1995), is positioned on a proximal helix with a similar distance to Asp61 of subunit c

(Figure 6B and Figure 6—figure supplement 5). Moreover, mainly charged residues, that have

been shown to be aqueous accessible (Angevine and Fillingame, 2003; Angevine et al., 2003),

map to two channel-like areas exposed to solvent by the invagination of the detergent micelle

(Figure 6B and Figure 6—figure supplement 5). Furthermore, residue A217, which has been shown

to be sensitive to arginine mutation, and therefore been suggested to be near or part of the aque-

ous pocket (Cain and Simoni, 1989), is positioned next to the periplasmic half channel (Figure 6B

and Figure 6—figure supplement 5). Additionally. residues E219 and H245, which when substituted

for one another result in a functional enzyme, are proximal to one another in our model (Cain and

Simoni, 1988) (Figure 6—figure supplement 5). Further analysis of inter subunit crosslinking fits our

model well (Figure 6—figure supplement 3), with the distances between the c-ring and a subunit

being minimal.

In summary, our models show a new level of detail for the bacterial F-ATPase, providing a tem-

plate for further experiments as well as to guide future antibiotic discovery in related pathogenic

bacteria.

Accession codes
The three models and maps were deposited in the pdb and emDB with codes 5T4O, EMD-8357

(State 1), 5 T4P, EMD-8358 (State 2), 5T4Q and EMD-8359 (State 3).

Materials and methods

Protein purification
A cysteine-free version of E. coli F-ATPase cloned in plasmid pFV2 and expressed in E. coli DK8

strain was used (Ishmukhametov et al., 2005). Cells were grown at 37˚C in LB medium supple-

mented with 100 mg/ml ampicillin, for 4–5 hr. The harvested cells were resuspended in lysis buffer

containing 50 mM Tris/Cl pH 8.0, 100 mM NaCl, 5 mM MgCl2, 0.1 mM EDTA, 2.5% glycerol and 1

mg/ml DNase I and processed by one pass in French press at 20 kPSI. Cellular debris was removed

by centrifuging at 7700 � g for 15 min, and the membranes were collected by ultracentrifugation at

100,000 � g for 1 hr. The ATP synthase complex was extracted from membranes at 4˚C for 1 hr by

resuspending the pellet in extraction buffer consisting of 20 mM Tris/Cl, pH 8.0, 300 mM NaCl, 2

mM MgCl2, 100 mM sucrose, 20 mM imidazole, 10% glycerol, 4 mM digitonin and EDTA-free prote-

ase inhibitor tablets (Roche). The complex was then purified by binding on Talon resin (Clontech)

and eluted in 150 mM imidazole. The protein was further purified and sugars removed by size exclu-

sion chromatography on a 16/60 Superose six column equilibrated in a buffer containing 20 mM

Tris/Cl pH 8.0, 100 mM NaCl, 4 mM digitonin and 2 mM MgCl2. The purified protein was then con-

centrated to 2 mg/ml for cryo-EM.

Protein reconstitution into proteoliposomes
Seventy microgram of F1Fo was reconstituted into extrusion-preformed 100 nm soybean phosphati-

dylcholine liposomes exactly as descried (Ishmukhametov et al., 2016).

Functional assays
Proton pumping by proteoliposomes was studied using quenching of a pH sensitive fluorescent

probe 9-Amino-6-Chloro-2-Methoxyacridine (ACMA) exactly as described (Ishmukhametov et al.,

2016). The assay was performed with 100 ml of proteoliposomes in 2-ml cuvettes. The reaction was

started with 0.25 mM ATP and stopped by 2 mM of the uncoupler FCCP.

ATP hydrolase activity and its stimulation by LDAO was measured with ATP regenerating system

using 5 mg of the protein with 1 mM ATP exactly as described (Ishmukhametov et al., 2016).

DCCD inhibition of proteoliposomes was done as described (Ishmukhametov et al., 2016).

DCCD inhibition of pure F1Fo was done as described (Ishmukhametov et al., 2005), with the follow-

ing modification. Ten microgram of the protein was incubated in 1 ml buffer A (50 mM MES, pH 6.4,

100 mM KCl, 1 mM MgCl2) with 50 mM DCCD for 30 min at room temperature. Control sample
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contained 1% ethanol instead of DCCD. Reaction was started by mixing the inhibited protein with 1

ml of buffer A containing all the components of ATP regenerating system.

All the functional experiments presented here were repeated two to three times using the protein

isolated by MS and shipped to RI at liquid N2 temperature. Results of typical experiments are

shown.

Cryo-EM grid preparation and data collection
Aliquots of 4 ml of purified E. coli F-ATPase at a concentration of 3.58 mM were placed on glow-dis-

charged holey carbon grids (Quantifoils Copper R2/2, 200 Mesh). Grids were blotted for 2 s and

flash-frozen in liquid ethane using an FEI Vitrobot Mark IV. Grids were transferred to an FEI Titan

Krios transmission electron microscope that was operating at 300 kV. Images were recorded auto-

matically using the FEI EPU software, yielding a pixel size of 1.4 Å. A dose rate of 29 electrons

(spread over 20 frames) per Å2 per second, and an exposure time of 2 s were used on the Falcon-II

detector. 8640 movies were collected.

Data processing
MotionCorr (Li et al., 2013) was used to correct local beam-induced motion and to align resulting

frames. Defocus and astigmatism values were estimated using CTFFIND4 (Rohou and Grigorieff,

2015), and 252 micrographs were excluded due to drift or excessive ice contamination. 1208 par-

ticles were manually picked and subjected to 2D classification to generate templates for autopicking

in RELION (Scheres, 2012). The automatically picked micrographs were manually inspected to

remove false positives, finally yielding 395,140 particles. These particles then underwent two rounds

of 2D classification to generate 22 classes with 311,887 particles. The final particles were classified

into four 3D classes using a previously generated model from a low-resolution data set of the same

sample (unpublished), low-pass filtered to 60 Å. The resolution was estimated using Fourier Shell

Correlation (FSC = 0.143, gold-standard). Three of the four classes containing 104,510 (State 1),

67,829 (State 2) and 53,587 (State 3) particles were movie-refined and post-processed in RELION

producing maps at 7.4, 7.8, 8.5 Å, respectively (Figure 2—figure supplement 10). State 1 was fur-

ther processed using masked classification (Bai et al., 2015) with residual signal subtraction with a

mask created by removing parts of the detergent micelle. Three out of the four classes from this

classification containing 95,345 particles were combined and refined to generate the final 6.9 Å

map. Figure 2—figure supplement 3 is a summary of these methods, shown as a flowchart. Local

resolution of different parts of the complex was estimated using RELION and ResMap

(Kucukelbir et al., 2014).

Model building
Crystal and NMR structures of subunits from E. coli (abge - 3oaa [Cingolani and Duncan, 2011], d -

2a7u [Wilkens et al., 2005], b - 1b9u [Dmitriev et al., 1999], 1l2p [Del Rizzo et al., 2002] and 2khk

[Priya et al., 2009]) and related organisms (c - 3u2f [Symersky et al., 2012] and a - 5fik [Zhou et al.,

2015]) were rigid body docked into the highest resolution cryo-EM map and the side chains ‘pruned’

to Ca. The sequence was mapped to subunit a using crosslinks as restraints. Subsequent manual

model building and refinement was performed with Coot (Emsley et al., 2010), Phenix

(Adams et al., 2010) and Refmac (Murshudov et al., 2011) (excluding subunit c due to weak den-

sity), with crosslinks again used as external restraints (a summary of the types of models used to

build the initial model can be found in Figure 2—figure supplement 6). Nucleotide occupancy was

determined by first building the model without any nucleotide present, and then segmenting the

map and selecting any density with 15% overlap with atoms and deleting this density. Nucleotide

was subsequently docked into this difference density using the known positions from previous struc-

tures. Once a complete model was built of the highest resolution map, this was docked and refined

to the other two maps to create three models. The three models and maps were deposited in the

pdb and emDataBank with codes 5T4O, EMD-8357 (State 1), 5 T4P, EMD-8358 (State 2), 5T4Q and

EMD-8359 (State 3). Data statistics shown in Figure 2—source data 1.
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