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Abstract Repetitive sequences derived from transposons make up a large fraction of eukaryotic

genomes and must be silenced to protect genome integrity. Repetitive elements are often found in

heterochromatin; however, the roles and interactions of heterochromatin proteins in repeat

regulation are poorly understood. Here we show that a diverse set of C. elegans heterochromatin

proteins act together with the piRNA and nuclear RNAi pathways to silence repetitive elements

and prevent genotoxic stress in the germ line. Mutants in genes encoding HPL-2/HP1, LIN-13, LIN-

61, LET-418/Mi-2, and H3K9me2 histone methyltransferase MET-2/SETDB1 also show functionally

redundant sterility, increased germline apoptosis, DNA repair defects, and interactions with small

RNA pathways. Remarkably, fertility of heterochromatin mutants could be partially restored by

inhibiting cep-1/p53, endogenous meiotic double strand breaks, or the expression of MIRAGE1

DNA transposons. Functional redundancy among factors and pathways underlies the importance of

safeguarding the genome through multiple means.

DOI: 10.7554/eLife.21666.001

Introduction
Heterochromatin, the more tightly packed form of chromatin, plays important roles in maintaining

the structural and functional integrity of the genome (Wang et al., 2016). It is less transcriptionally

active than euchromatin and highly enriched for repetitive elements such as transposons and satellite

repeats, which are kept silent to maintain genome integrity. The heterochromatin state is stable and

heritable across generations highlighting the importance of keeping certain regions of the genome

repressed.

Histones in heterochromatin are marked with modifications associated with transcriptional repres-

sion such as H3K9 methylation. In organisms with point centromeres, heterochromatin is typically

found in large domains adjacent to centromeres and telomeres (Wang et al., 2016). In C. elegans,

heterochromatin associated histone methylations H3K9me2 and H3K9me3 are instead mostly found

in many small domains on the distal arm regions of autosomal chromosomes (Liu et al., 2011). This

pattern is likely to be related to the holocentric nature of C. elegans chromosomes, which have dis-

tributed centromeres rather than a single point centromere. Two histone methyltransferases carry

out all H3K9 methylation (Towbin et al., 2012). The SETDB1 homolog MET-2 carries out mono- and

di-methylation of H3K9. SET-25 primarily carries out tri-methylation of H3K9, but it can generate all

three methylated forms of H3K9. In the absence of both proteins, H3K9 methylation is undetectable,
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heterochromatic distal arm regions show reduced association with the nuclear lamina, and hetero-

chromatic transgenes are desilenced (Towbin et al., 2012).

A hallmark of heterochromatin is heterochromatin protein 1 (HP1), the first heterochromatin pro-

tein to be discovered through work in Drosophila (Zeng et al., 2010; James and Elgin, 1986). HP1

contains a chromodomain that binds to methylated H3K9, and it is essential for heterochromatin

maintenance (Zeng et al., 2010). In addition to HP1, a large and diverse array of proteins is associ-

ated with heterochromatin, including nucleosome remodelers, histone modifying enzymes, histone

binding proteins, and DNA binding proteins (Saksouk et al., 2015; Meier and Brehm, 2014). How-

ever, the functions and interactions of heterochromatin proteins are not well understood.

Many C. elegans proteins that have predicted functions in heterochromatin or transcriptional

repression are important for development. These include MET-2/SETDB1, HPL-2/HP1, LIN-61, LIN-

13, and LET-418/Mi-2 (8–13). HPL-2 is a C. elegans ortholog of heterochromatin protein HP1, and

LIN-61 is a protein containing MBT (malignant brain tumor) repeats. Both HPL-2 and LIN-61 can bind

to all methylated forms of H3K9 in vitro (Koester-Eiserfunke and Fischle, 2011; Garrigues et al.,

2015; Studencka et al., 2012), and both can repress a heterochromatic reporter (Towbin et al.,

2012; Couteau et al., 2002; Harrison et al., 2007). LIN-13 is a multi-zinc finger protein

(Meléndez and Greenwald, 2000). A complex containing LIN-13, HPL-2, and LIN-61 has been

detected in vivo, and LIN-13 is required for the formation of HPL-2::GFP nuclear foci (Wu et al.,

2012; Coustham et al., 2006). LET-418 is an ortholog of Mi-2, an ATP-dependent nucleosome

remodelling component of the repressive NuRD and Mec complexes (von Zelewsky et al., 2000;

Unhavaithaya et al., 2002; Passannante et al., 2010).

Mutants of hpl-2, lin-61, lin-13, met-2, and let-418 display both germ line and somatic defects.

let-418 and lin-13 null mutants are sterile (von Zelewsky et al., 2000; Meléndez and Greenwald,

2000), hpl-2 null mutants show temperature sensitive sterility (Schott et al., 2006), and lin-61 and

met-2 null mutants have slightly reduced brood sizes (Koester-Eiserfunke and Fischle, 2011). The

underlying cause of the fertility defects is not known, but hpl-2 mutants have been shown to produce

abnormal oocytes, suggesting defective gametogenesis (Couteau et al., 2002). Somatic defects are

pleiotropic and show similarities among mutants, with most showing slow growth, somatic expres-

sion of germ line genes, synthetic vulval development defects, and larval arrest (some only at high

temperature) (Meléndez and Greenwald, 2000; Schott et al., 2006; Wu et al., 2012;

Harrison et al., 2007; Coustham et al., 2006; Unhavaithaya et al., 2002; Andersen and Horvitz,

2007; Kerr et al., 2014; Petrella et al., 2011; Poulin et al., 2005). Additionally, genetic interactions

have been observed between some of the mutants, suggesting partially redundant functions, and

that defects may result from alteration of a shared heterochromatin-linked process (Koester-

Eiserfunke and Fischle, 2011; Coustham et al., 2006; Simonet et al., 2007).

The genomic distribution of only one of the above heterochromatin proteins has been studied.

An HPL-2 ChIP-chip study in early embryos showed that most binding was on the distal arm regions

of autosomes in a pattern of similar to H3K9me1 and H3K9me2; interestingly, binding to chromatin

was not dependent on H3K9 methylation (Garrigues et al., 2015). HPL-2 was observed to be

broadly genic, with additional association at promoters in central chromosome regions and at

repeats on distal arm regions; however, no clear relationship between HPL-2 binding and gene

expression changes was observed (Garrigues et al., 2015). Systematic and comparative analyses of

heterochromatin factors are needed to understand their functions.

The genomic binding patterns of orthologs of some of the above factors suggest roles in the reg-

ulation of mobile elements. SETDB1 binds to promoters of developmentally regulated genes in

mammalian embryonic stem cells, 40% of which are found next to or overlapping endogenous retro-

viruses (Yuan et al., 2009; Karimi et al., 2011; Bilodeau et al., 2009). In addition, retrotransposons

are derepressed in Setdb1 knockout mouse ES cell lines and primordial germ cells (Karimi et al.,

2011; Liu et al., 2014). Retrotransposons are also repressed by HP1a and HP1b in mESCs, but it is

a different set of retrotransposons than is targeted by SETDB1 (Maksakova et al., 2013). Drosophila

HP1 binds to genes and to transposable elements, particularly in pericentric chromosomal regions,

but transposable element expression in mutants has not been assessed (Greil et al., 2003; de Wit

et al., 2005). A recent study showed that Mi-2 could bind to a LINE1 retrotransposon promoter and

repress a LINE1 reporter in human and mouse cell lines (Montoya-Durango et al., 2016). The geno-

mic distribution of Mi-2 is unclear as different genome-wide binding studies in human ES cells have

yielded conflicting results (Hu and Wade, 2012).
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The expression of repetitive elements can be detrimental to genome stability due to the negative

effects of homologous recombination and transposon-induced breaks. Because the germline produ-

ces the gametes that transmit genetic information across generations, silencing of repetitive ele-

ments is an absolute requirement for germ line health. A small RNA pathway called the piRNA

pathway, present in most animals, plays a role in transposon silencing in the germ line (Weick and

Miska, 2014). Recent work in C. elegans implicated HPL-2/HP1 and the H3K9me3 histone methyl-

transferase SET-25 in piRNA pathway function, indicating a connection between heterochromatin

and small RNA silencing of piRNA targets (Ashe et al., 2012).

In the C. elegans germ line, the piRNA pathway involves generation of 21nt piRNAs that bind to

the Piwi argonaute protein PRG-1 (Wang and Reinke, 2008; Das et al., 2008; Batista et al., 2008).

This triggers generation of secondary 22G siRNAs that mediate silencing either in the cytoplasm or

nucleus (Ashe et al., 2012; Das et al., 2008; Shirayama et al., 2012; Luteijn et al., 2012;

Lee et al., 2012; Guang et al., 2010; Gu et al., 2009, 2012; Burton et al., 2011; Burkhart et al.,

2011; Buckley et al., 2012). Cytoplasmic silencing mechanisms are not well understood, but recent

advances have been made in the understanding of transcriptional silencing. In the nucleus, the

piRNA pathway engages a second small RNA pathway called the nuclear RNAi pathway (or nrde

pathway), which orchestrates H3K9 and H3K27 methylation and/or inhibition of RNA Pol II

(Guang et al., 2010; Burkhart et al., 2011; Mao et al., 2015; Alló and Kornblihtt, 2010). Although

the nrde pathway can be triggered by the piRNA pathway in the germ line, it is also active in the

soma, with dedicated Argonaute proteins for germ line (HRDE-1) and soma (NRDE-3) (Guang et al.,

2010; Burkhart et al., 2011; Buckley et al., 2012; Guang et al., 2008). Regions transcriptionally

upregulated in hrde-1 mutants were found to be enriched for retrotransposons, suggesting that

repetitive elements may be endogenous targets in the germ line (Ni et al., 2014).

In addition to silencing transcription and maintaining the structural and functional integrity of the

genome, heterochromatin also plays an important role in DNA repair. Heterochromatic compaction

protects DNA from damage, and regulated decondensation is important for damage repair

(Feng et al., 2016). Additionally, in mammals, transient formation of heterochromatin occurs at the

edges of double strand breaks, which involves recruitment of heterochromatin-associated proteins

HP1 and nucleosome remodeller Mi-2, as well as methylation of H3K9 (Gursoy-Yuzugullu et al.,

2016). This is thought to aid in damage repair by keeping the broken strands in proximity and inhib-

iting local transcription.

Here, through systematic genetic and genomic analyses, we investigate interactions and functions

of five heterochromatin proteins (HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2 and MET-2/SETDB1) and

relationships with the piRNA and nuclear RNAi pathways. Our results reveal a nexus of factors that

cooperate to prevent expression of repetitive elements and protect the germ line from endogenous

damage.

Results

Heterochromatin factors show partially redundant functions for fertility
The five genes we study here (hpl-2/HP1, lin-13, lin-61, let-418/Mi-2, and met-2) are needed for nor-

mal fertility ([von Zelewsky et al., 2000; Meléndez and Greenwald, 2000; Schott et al., 2006;

Koester-Eiserfunke and Fischle, 2011; Ceol et al., 2006; Thomas et al., 2003];

Supplementary file 1). Previous analyses uncovered genetic interactions in fertility between three

pairs of genes (hpl-2 and lin-13, lin-61 and hpl-2, lin-61 and met-2; (Koester-Eiserfunke and Fischle,

2011; Coustham et al., 2006; Simonet et al., 2007); however, the remaining six combinations were

untested. Using RNAi in mutant backgrounds, we found that double loss of function of each of the

uninvestigated pairs also caused synthetic sterility, which we also observed for three tested double

mutant combinations (Figure 1A–C). The single mutants show complex and pleiotropic germ line

defects, but they all showed a high occurrence of abnormal oocytes, suggesting that sterility may be

due in part to abnormal oogenesis (Figure 1—figure supplement 1). The fertility defects of single

mutants and the enhancement in double loss of function combinations indicate that the five hetero-

chromatin factors each have unique and partially redundant germ line roles. The genetic interactions

suggest that the five factors may cooperate in a germ line process required for fertility.
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Figure 1. Heterochromatin proteins have redundant roles in fertility. (A) Genetic interactions in fertility assayed

using RNAi. Indicated RNAi of wild-type, let-418(n3536), or lin-13(n770) was conducted by feeding at 20˚C as

described in the methods. Results are a combination of two independent experiments with the progeny of 3–8

total broods counted for each strain/RNAi combination. A one-sided t-test was used to determine whether the

mutant/RNAi combination had a lower brood size than expected under a multiplicative model of interaction when

compared to the mutant grown on empty vector RNAi and the individual RNAi knockdowns in wild-type animals.

Brood size is significantly lower than expected for all RNAi/mutant combinations at p<0.05. (B) Indicated double

mutants were constructed and their brood sizes compared to that of the individual signal mutants raised at 20˚C.
Statistical testing was as in (A), with brood sizes of the three double mutants significantly lower than expected at

p<0.05 in a one-sided t-test. (C) All pairs of hpl-2, lin-13, lin-61, let-418, and met-2 show genetic interactions in

fertility, as determined in this study or previous studies. ref 1. Coustam et al, Dev Biol. 2006. ref 2. Koester-

Eiserfunke and Fischle, PLoS Genet. 2011. ref 3. Simonet et al, Dev Biol. 2007. Supplementary file 1 shows

previously reported sterility phenotypes. Figure 1—figure supplement 1 shows examples and quantification of

abnormal oogenesis in heterochromatin mutants.

DOI: 10.7554/eLife.21666.002

The following figure supplement is available for figure 1:

Figure supplement 1. Heterochromatin mutants display abnormal oogenesis.

DOI: 10.7554/eLife.21666.003
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HPL-2, LIN-13, LIN-61, LET-418, and MET-2 are enriched at repetitive
elements and show extensive co-binding
To begin to investigate the roles of HPL-2, LIN-13, LIN-61, LET-418, and MET-2 in genome regula-

tion, we mapped their binding locations using ChIP-seq analyses in young adults and compared the

patterns to each other and to those of H3K9me2 and H3K9me3. Binding of each of the five factors is

enriched on the distal arm regions of the autosomes (Figure 2A; Figure 2—figure supplement 1A),

as previously seen for H3K9me2, H3K9me3, and HPL-2 (Garrigues et al., 2015; Liu et al., 2011;

Sha et al., 2010). Examination of ChIP-seq signals at a more local level revealed similar binding pat-

terns for the five heterochromatin proteins (Figure 2B). Indeed, genome-wide correlation analyses

showed significant positive correlations in signal between all datasets (Figure 2—figure supplement

1B). In addition, signals for each of the five heterochromatin factors showed high correlation with

H3K9me2 but not with H3K9me3 (Figure 2B, Figure 2—figure supplement 1B).

To further investigate patterns of binding, we identified regions of peak enrichment for each

dataset (Figure 2—figure supplement 1C, Figure 2—source data 1; 12449 to 19313 peaks per fac-

tor). For each factor, peaks are enriched on the distal chromosomal regions of autosomes; most

peaks are intergenic or located in introns, with enrichment for intergenic binding in central chromo-

somal regions and enrichment for intronic binding in distal arm regions (Figure 2—figure supple-

ment 1A).

To facilitate comparisons between datasets, we merged peak calls from all factors into a superset

termed Any5 (n = 33,301), then annotated each region in the Any5 set for the factors bound (Fig-

ure 2—source data 1). There is a high degree of peak overlap among the five factors, with 58% of

sites in the Any5 set being bound by >1 factor (Figure 2C). Sites uniquely bound by only one factor

are in the minority within each dataset (3.4–27.4%, Figure 2C and Figure 2—figure supplement

1C). Strikingly, the largest binding group contains all five factors (termed ‘All5’; Figure 2C). Enrich-

ments for H3K9me2 and H3K9me3 vary between binding classes, with the All5 class showing high

enrichment for H3K9me2 (Figure 2C). These results show that HPL-2, LET-418, LIN-13, LIN-61, and

MET-2 extensively overlap in binding genome-wide.

The previous HPL-2 ChIP-chip study in embryos noted binding at repetitive elements, which are

concentrated on the distal arm regions of autosomes (Garrigues et al., 2015). Repeat-rich hetero-

chromatin in C. elegans is distributed in small domains rather than being concentrated in large

regions as in mammals or Drosophila; therefore, the sequences of most repetitive regions have been

determined. To investigate the association of heterochromatin factor binding at repetitive DNA, we

used the recent Dfam2.0 annotation, which classified 62,331 individual repetitive elements in C. ele-

gans into 184 repeat families, which were further classified by type (e.g., DNA transposon, retro-

transposon, satellite, or unknown [Hubley et al., 2016]).

We observed that HPL-2, LIN-13, LIN-61, LET-418, and MET-2 are all strongly associated with

repetitive DNA elements (Figure 2C). A large proportion of each factor’s peaks overlaps a repeat

sequence (46.3–71.0%), and regions with all five factors have particularly strong repeat association

(76.6%, Figure 2C, Figure 2—figure supplement 1C). Furthermore, of the total set of 62331 anno-

tated repetitive elements, nearly half (46%) overlap a peak of at least one factor, and 8002 (13%)

overlap all five factors (Figure 2—figure supplement 1D). All repeat types and 180 of 184 repeat

families are associated with a heterochromatin factor peak; of these, 105 repeat families are

enriched for binding by at least one factor (Figure 2—source data 2). HPL-2, LIN-13, LIN-61, MET-

2, and H3K9me2 have a particularly strong association with Helitron families; LET-418 shows gener-

ally lower enrichment on repeat families than the other factors (Figure 2D; Figure 2—figure supple-

ments 2–6).

H3K9me2 and H3K9me3 show different patterns of repeat enrichment. H3K9me2 is more associ-

ated with DNA transposons and satellite repeats, similar to the heterochromatin factors, whereas

H3K9me3 is particularly associated with retrotransposon families, especially LINE and SINE elements

(Figure 2D; Figure 2—figure supplements 7–8). We also observed that H3K9me2 and all hetero-

chromatin factors are enriched at telomeres, whereas H3K9me3 is not (Figure 2—figure supple-

ment 1E). The binding and co-association of HPL-2, LET-418, LIN-13, LIN-61, and MET-2 at

repetitive elements suggests roles in the regulation of these sequences.
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Figure 2. HPL-2, LET-418, LIN-13, LIN-61, and MET-2 show extensive co-binding and are enriched at repetitive elements. (A) Distribution of the

indicated proteins and histone modifications over each C. elegans chromosome. z-scored ChIP-seq tracks are shown for HPL-2 (red), LET-418 (blue),

LIN-13 (green), LIN-61 (orange), MET-2 (pink), H3K9me2 (grey) and H3K9me3 (black) on each chromosome, demonstrating enrichment over the

autosomal arms. Figure 2—figure supplement 1A shows distributions of peak locations in different chromosome regions. (B) IGV browser screenshot

showing similar patterns of the heterochromatin factors and H3K9me2 methylation over a 45 kb region containing multiple repeat elements. z-scored

ChIP-seq tracks are as in (A). Any5 peak calls denote combined peak calls for any of the five proteins; repeats are from Dfam2.0 (Hubley et al., 2016).

Figure 2—figure supplement 1B shows correlations in signal between all datasets. (C) UpSet plot of the association of heterochromatin factors with

the 33,301 Any5 peak calls. Dots indicate peak class is bound by the factor. Bars show total number of peaks per class, the orange portion denoting

overlap with repeat elements. Below the bar chart relative enrichments for H3K9me2 and H3K9me3 are shown. The peaks that overlap all five factors

constitute the largest class (n = 4810). Figure 2—figure supplement 1 gives total peak numbers per factor, number of peaks overlapping repeats, and

number of repeats bound by each factor. Figure 2—source data 1 gives peak calls. (D) Associations of factors and repeat classes. Upper panel: levels

of indicated protein or histone modification on families within indicated Dfam 2.0 repeat classes relative to the genome average. Bottom panel:

Proportion of families within each repeat class significantly enriched for indicated factor or histone modification. Criteria for enrichment are >1.5 fold

mean enrichment of family relative to genome, FDR < 0.1, considering families with at least 10 members. Number of families with 10 or more members

within each class are: Cut and paste (n = 89), Helitron (n = 7), LTR (n = 31), LINE (n = 13), SINE (n = 3), Satellite (n = 16), Unknown (n = 7). Figure 2—

source data 2 gives enrichment scores for repeat family factor binding.

DOI: 10.7554/eLife.21666.004

Figure 2 continued on next page
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Repetitive elements are desilenced in hpl-2, lin-13, lin-61, let-418, and
met-2 set-25 mutants
Because silencing of repetitive DNA elements is important for germ line function, we considered

that the heterochromatin factors might function in preventing repeat expression. To investigate this

possibility, we generated and analysed RNA sequence expression data for wild-type and heterochro-

matin mutant adults. MET-2 deposits H3K9me1 and H3K9me2, but all three methylation states of

H3K9 are still present in met-2 mutants (at lower levels) due to the action of SET-25 (Towbin et al.,

2012). Therefore we assayed a met-2 set-25 double mutant, in which H3K9 methylation was not

detectable (Towbin et al., 2012). For each strain, we performed two biological replicates and differ-

ential expression analyses of the 62,331 Dfam2.0 repeat elements.

We observed upregulation of repetitive elements in every mutant strain (hpl-2, let-418, lin-13, lin-

61, and met-2 set-25) (Figure 3A–D, Figure 3—figure supplement 1, Figure 3—source data 1). A

total of 71 individual repeat elements representing 29 different families were upregulated in at least

one mutant (Figure 3—source data 2; upregulation of 61/71 individual elements was confirmed

based on uniquely mapping reads, see Materials and methods). We observed a striking overlap in

the sets of repetitive elements regulated by the heterochromatin factors: 41% of elements are upre-

gulated in more than one mutant (Figure 3A; Figure 3—source data 2). Furthermore, seven repeat

elements are upregulated in all five strains, all of which are MIRAGE1 DNA transposable elements

(Figure 3A,C,D, Figure 3—source data 2). The majority of repetitive elements upregulated in each

heterochromatin mutant strain are DNA transposons, but retrotransposons are enriched for being

upregulated (Figure 3B). Mutants show variation in the classes of repeats regulated; for example,

SINE retrotransposons are particularly affected in let-418 mutants, while many Helitron elements are

upregulated in lin-13 mutants (Figure 3B).

Overall, the total number of individual repetitive elements found with significantly altered expres-

sion is extremely small (<1%) relative to the >30,000 with factor binding, indicating that binding

does not generally regulate repeat transcription. There are many types of repetitive elements, and

only a small fraction would be expected to have potential for RNA expression. For example, 67% of

repetitive elements are predicted to be non-autonomous DNA transposons, which would be mobi-

lised in trans by a transposase encoded by another repetitive element, and many annotated

Figure 2 continued

The following source data and figure supplements are available for figure 2:

Source data 1. Peak calls.

DOI: 10.7554/eLife.21666.005

Source data 2. Enrichment of factors at repeat families.

DOI: 10.7554/eLife.21666.006

Source data 3. Alignment Statistics for ChIP and RNA sequencing.

DOI: 10.7554/eLife.21666.007

Figure supplement 1. Correlation of HPL-2, LET-418, LIN-13, LIN-61, and MET-2 ChIP-seq tracks and enrichment on chromosome arms, repetitive

elements, and telomeres.

DOI: 10.7554/eLife.21666.008

Figure supplement 2. Enrichment of HPL-2 at repeat families.

DOI: 10.7554/eLife.21666.009

Figure supplement 3. Enrichment of LIN-61 at repeat families.

DOI: 10.7554/eLife.21666.010

Figure supplement 4. Enrichment of MET-2 at repeat families.

DOI: 10.7554/eLife.21666.011

Figure supplement 5. Enrichment of LIN-13 at repeat families.

DOI: 10.7554/eLife.21666.012

Figure supplement 6. Enrichment of LET-418 at repeat families.

DOI: 10.7554/eLife.21666.013

Figure supplement 7. Enrichment of H3K9me2 at repeat families.

DOI: 10.7554/eLife.21666.014

Figure supplement 8. Enrichment of H3K9me3 at repeat families.

DOI: 10.7554/eLife.21666.015
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Figure 3. Repetitive elements are upregulated in hpl-2, let-418, lin-13, lin-61, met-2 set-25, prg-1, nrde-2, and nrde-2; let-418 mutants. (A) Venn diagram

of elements upregulated in hpl-2, let-418, lin-13, lin-61, and met-2 set-25 mutants. The seven elements upregulated in all five strains are MIRAGE1

elements. (B) Distribution of Dfam 2.0 repeat classes upregulated in each strain. (C) Repeat families with members upregulated in at least one of hpl-2,

let-418, lin-13, lin-61, or met-2 set-25 mutant strains. (D) IGV browser screenshot of a MIRAGE1 element that is upregulated in all mutant strains. Tracks

are reads per million of two combined replicates. Figure 3—figure supplement 1 gives further examples of elements upregulated in different strains.

(E) Single molecule RNA-FISH signals of MIRAGE one element RNA in the adult germ line (white dots). Signal is not detectable in wild-type but is

abundant in the indicated mutant backgrounds. Figure 3—figure supplement 3 shows additional images of MIRAGE1 and sqv-1 control RNA FISH in

germline and somatic tissues. Figure 3—figure supplement 2 shows enrichment of heterochromatin factors, H3K9me2, and H3K9me3 on regulated

genes and repeats.

DOI: 10.7554/eLife.21666.016

The following source data and figure supplements are available for figure 3:

Source data 1. Analysis of repeats.

DOI: 10.7554/eLife.21666.017

Source data 2. Repeats upregulated in any mutant strain.

Figure 3 continued on next page
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elements are small fragments of larger elements. We therefore wondered whether the upregulation

of repetitive element expression in heterochromatin mutants might be particularly associated with

transposases or retrotransposons. Of 62331 Dfam2.0 elements, 221 overlap a predicted transposase

ORF, and 1085 are annotated as LTR retrotransposons. We found that elements upregulated in any

heterochromatin factor mutant are 83-fold enriched for containing a transposase (21 of 71) and 10-

fold enriched for LTR retrotransposons (13 of 71), together accounting for nearly half of upregulated

repeats. Therefore, a key role of heterochromatin factors is to suppress expression of repetitive ele-

ment transposases. The widespread binding of heterochromatin factors to non-expressed repetitive

elements is likely to play roles other than in the regulation of transcription. These could include pre-

venting the cutting, copying, or movement of elements, or maintaining genome integrity by supress-

ing homologous recombination between repetitive elements (Chiolo et al., 2011; Sinha et al.,

2009).

We also analysed alterations in protein coding gene expression in the heterochromatin mutants.

Consistent with roles in repression, we identified three to five times more genes with upregulated

expression in each mutant strain compared to those with reduced expression (267–513 upregulated

genes per mutant; Figure 3—source data 3). Additionally, there is a high degree of overlap among

the upregulated genes; of the total set of 1155 genes upregulated in any of the five mutant strains,

404 are upregulated in more than one (Figure 3—source data 3). Heterochromatin factors are

enriched at upregulated genes, but not downregulated genes (except for genes misregulated in let-

418 mutants); additionally, both H3K9me2 and H3K9me3 are enriched at upregulated genes in all

mutant strains (Figure 3—figure supplement 2). Enrichment for all factors and H3K9 methylation is

particularly strong at genes upregulated in met-2 set-25 mutants (Figure 3—figure supplement 2).

These associations suggest direct roles in repression.

Repression of desilenced MIRAGE1 elements partially restores fertility
of heterochromatin mutants
The silencing of repetitive elements is a universal conserved feature of germ line function. The prom-

inent upregulation of MIRAGE1 elements in all heterochromatin mutants prompted us to ask

whether expression of this element might play a role in their reduced fertility. MIRAGE1 is an auton-

omous DNA transposable element that has two open reading frames. Of 69 MIRAGE1 element

annotations in Dfam2.0, only six are full length. These six, plus an additional six partial MIRAGE1 ele-

ments are upregulated in at least one heterochromatin mutant, and both ORFs show upregulation.

We first examined the tissue distribution of MIRAGE RNA using RNA-FISH (Raj et al., 2008). As

expected from the RNA-seq results, wild-type adults had very low levels of MIRAGE1 RNA-FISH sig-

nal in germ line and soma (Figure 3E and Figure 3—figure supplement 3). In three tested hetero-

chromatin mutants (hpl-2, let-418, and lin-13), we observed abundant germ line localized MIRAGE1

RNA whereas somatic expression remained low (Figure 3E and Figure 3—figure supplement 3).

Therefore, hpl-2, let-418, and lin-13 are important for repression of MIRAGE1 in the germ line.

To test whether upregulation of MIRAGE1 contributes to sterility, we used two sets of RNAi

clones to simultaneously knockdown ORF1 and ORF2 (sets termed mirage-A and mirage-B). mirage-

A and mirage-B target 16 different MIRAGE1 elements, including all full length elements and most

of the MIRAGE1 elements upregulated in each of these mutants (8/8 for let-418, 7/8 for lin-13, and

10/11 for hpl-2). To assess an effect on fertility, we grew hpl-2, lin-13, and let-418 mutants at 25˚C, a
condition under which they are nearly sterile, and tested for an increase in brood size after RNAi

Figure 3 continued

DOI: 10.7554/eLife.21666.018

Source data 3. Analysis of genes.

DOI: 10.7554/eLife.21666.019

Figure supplement 1. Examples of unique and co-regulated repeat elements in various heterochromatin mutants.

DOI: 10.7554/eLife.21666.020

Figure supplement 2. Heterochromatin factors and H3K9 methylation show enriched association with upregulated genes and repeats.

DOI: 10.7554/eLife.21666.021

Figure supplement 3. MIRAGE1 RNA is upregulated in the germ lines of hpl-2, lin-13, let-418, and prg-1 mutants.

DOI: 10.7554/eLife.21666.022
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knockdown. Remarkably, RNAi of MIRAGE1 using mirage-A or mirage-B sets of RNAi clones led to a

small but significant increase in fertility of all three mutants, showing that inappropriate MIRAGE1

expression contributes to their sterility (Figure 4A). We also observed that MIRAGE1 RNAi resulted

in amelioration of somatic growth defects (not shown). These results indicate that one mechanism by

Figure 4. Phenotypic suppression of hpl-2, let-418 and lin-13 by inhibition of MIRAGE1, cep-1/p53, or spo-11. (A) RNAi of MIRAGE1, cep-1/p53 or spo-

11 partially suppresses sterility of hpl-2, let-418, and lin-13. Average number of progeny per worm for control empty vector RNAi (EV) or the indicated

RNAi treatments in hpl-2(tm1489), let-418(n3536), or lin-13(n770) (averages of 5–11 experiments). Experiments were done under conditions where the

mutant strain was nearly sterile to detect an increase in fertility (see Materials and methods). Control progeny numbers vary by experiment, but were

always paired with experimental RNAi. Stars indicate statistical significance assessed using paired t-tests, comparing experimental to control RNAi

(p<0.05, one star; p<0.01, two stars; p<0.001, three stars). Two sets of RNAi clones were used to target MIRAGE1 elements (termed mirage-A and

mirage-B). RNAi clones used are given in the methods. (B) Mutation of cep-1/p53 partially suppresses sterility of hpl-2, let-418, and lin-13 mutants at

25˚C. Statistical significance was assessed using single sided t-tests, asking if cep-1; hpl-2, cep-1; let-418, and cep-1; lin-13 double mutants had larger

broods than the corresponding heterochromatin single mutants. See methods for growth conditions. (C) Loss of cep-1 partially rescues growth delay

defect of heterochromatin mutants at 25˚C. Developmental stage of worms grown from L1 at 25C for approximately 48 hr was assessed (adult, L4,

younger than L4). A representative experiment out of three replicates is shown, assaying between 95 and 213 worms in each. See methods for growth

conditions.

DOI: 10.7554/eLife.21666.023
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which heterochromatin proteins promote normal germ line function is via the repression of repetitive

elements, in particular those encoding transposases.

Heterochromatin mutants display DNA repair defects, increased germ
line apoptosis and fertility dependence on CEP-1/p53
Desilencing of repetitive elements has been reported to cause DNA damage in other organisms

(Wallace et al., 2013); therefore, repeat expression in heterochromatin mutants might lead to geno-

toxic stress and genome instability in the germ line. Consistent with this, loss of lin-61 leads to repli-

cation stress and genome instability, with increased germ line and somatic mutation frequency

(Johnson et al., 2013; Pothof et al., 2003). lin-61 mutants also have defects in DNA repair

(Johnson et al., 2013; Pothof et al., 2003). A previous study reported that an hpl-2(tm1489) null

mutant strain was hypersensitive to ionizing radiation (IR) (Luijsterburg et al., 2009); however, we

found that this strain also harboured a deletion in the polq-1 gene, which encodes DNA polymerase

theta. Because polq-1 mutants are reported to have increased sensitivity to DNA damaging agents

and display genome instability (Muzzini et al., 2008), it was unclear if the defects observed were

due to hpl-2 (see Materials and methods).

To determine whether hpl-2 has a role in DNA repair, we tested the response of the isolated hpl-

2(tm1489) mutant to IR induced DNA damage. Following IR, we observed that hpl-2 mutants show

higher levels of oocyte fragmentation compared to wild type, suggesting that they are defective in

DNA repair (Figure 5—figure supplement 1). Additionally, hpl-2 mutant germ lines are hypersensi-

tive to induction of phosphorylation of the DNA damage checkpoint kinase CHK-1 (Figure 5—figure

supplement 1). The hypersensitivity of hpl-2 and lin-61 mutants to exogenous DNA damage are

consistent with increased genotoxic stress in the germ line.

We considered that the repeat desilencing and DNA repair defects of heterochromatin mutants

might lead to increased germ line apoptosis, and thereby contribute to germ line and fertility

defects. In wild-type animals, physiological apoptosis occurs in the pachytene region of the gonad,

with around half of the initially produced germ cells eliminated by apoptosis as a quality control

mechanism (Gartner et al., 2008). DNA damage causes increased apoptosis over physiological lev-

els, and this increase is dependent on cep-1/p53 (Schumacher et al., 2001; Derry et al., 2001). To

assess germ line cell death in the heterochromatin mutants we used a CED-1::GFP reporter, which

allows visualization of apoptotic germ cells in adult animals (Zhou et al., 2001). We observed that

hpl-2, lin-13, lin-61, and set-25 met-2 mutants all displayed increased germ line apoptosis (Figure 5;

let-418 was not assayed because the apoptosis reporter used is genetically linked). Thus, heterochro-

matin factor mutants have increased germ cell death.

p53 is important for transduction of the DNA damage response and other stresses, and C. ele-

gans cep-1/p53 is required for damage induced cell death (Schumacher et al., 2001; Derry et al.,

2001). We used RNAi to test whether activation of p53 dependent pathways played a role in hetero-

chromatin mutant sterility. Following RNAi of cep-1/p53, we found that the brood sizes of hpl-2, lin-

13, and let-418 mutants grown at 25˚C were modestly increased (Figure 4A). We further tested the

effect of loss of cep-1 by making double mutants with cep-1(lg12501). Similar to the RNAi results,

we observed that mutation of cep-1 increased the fertility of lin-13, let-418 and hpl-2 mutants

(Figure 4B). This increase is not due to a general effect of cep-1 on fertility, as cep-1 mutants have a

slightly reduced brood size compared to wild-type animals (Figure 4B). We also observed that cep-1

loss partially rescued the slow growth phenotype of the mutants (Figure 4C). These results suggest

that genotoxic stress and DNA damage signalling in heterochromatin mutants activates p53, which

contributes to sterility and slow growth. The increase in fertility upon cep-1/p53 inhibition may be a

direct consequence of reduced germ line apoptosis, or alternatively the effect may be indirect, by

preventing DNA damage signalling or improving growth rate. We also note that although fertility of

heterochromatin mutants is increased when cep-1/p53 is inhibited, it is not restored to wild-type lev-

els indicating that other mechanisms contribute to sterility.

SPO-11 induced endogenous DNA damage contributes to
heterochromatin mutant sterility
We next investigated whether endogenous physiological DNA damage may also contribute to het-

erochromatin mutant sterility. During meiosis, double strand breaks are induced by the
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topoisomerase-like protein SPO-11 to facilitate crossover formation and meiotic recombination

(Dernburg et al., 1998). Similar to inhibition of damage induced cell death or MIRAGE1 expression,

we found that inhibiting meiotic double strand breaks by RNAi of spo-11 increased the brood size of

hpl-2, lin-13, and let-418 mutants (Figure 4A), suggesting that defects in repair of meiotic double

strand breaks contributes to sterility.

The piRNA pathway shows similarity in repeat regulation and functional
connections to heterochromatin factors
The piRNA pathway has a well-known role in preventing the activity of transposons in the germ line

(Weick and Miska, 2014). In C. elegans, the piRNA pathway operates through the Piwi Argonaut

protein PRG-1. Silencing occurs both transcriptionally, through engagement of the nuclear RNAi

pathway, and post-transcriptionally, through a poorly understood mechanism. Interestingly, prg-1

mutants have fertility defects, displaying a low brood size and a mortal germline phenotype that is

more pronounced at elevated temperatures (Das et al., 2008; Batista et al., 2008). The observation

that heterochromatin mutants desilence repetitive elements together with the finding that HPL-2

and H3K9 methyltransferse SET-25 are needed for piRNA pathway function in conjunction with the

Figure 5. Heterochromatin mutants have increased germline apoptosis. CED-1::GFP (bcIs39 [Plim-7::ced-1::gfp]),

expressed in gonad sheath cells, marks engulfed apoptotic cells in the pachytene region of the adult gonad. (A)

CED-1::GFP images for wild type, hpl-2, and met-2 set-25 mutant gonads. Arrows point to engulfed apoptotic

cells; scale bar = 16 um. (B) Number of apoptotic cells per gonad arm for wild-type (bcIs39), hpl-2(tm1489); bcIs39,

lin-13(n770); bcIs39, and met-2(n4256) set-25(n5021); bcIs39. Shown are the combined data points of at least three

independent replicates; each dot represents an individual gonad arm count. Bars denote mean and SD. Mann-

whitney non-parametric tests were performed on mutant versus control. (p-values for hpl-2, lin-61, met-2 set-25

are <0.0001; p-value for lin-13 is 0.009). Strains were cultured at 20˚C and scored 48 hr after the L4 stage.

Figure 5—figure supplement 1 shows increased sensitivity of hpl-2 to IR-induced DNA damage.

DOI: 10.7554/eLife.21666.024

The following figure supplement is available for figure 5:

Figure supplement 1. hpl-2 mutants are hypersensitive to ionizing radiation-induced DNA damage.

DOI: 10.7554/eLife.21666.025
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nuclear RNAi pathway (Ashe et al., 2012) prompted us to further investigate connections between

these factors.

We first assayed the expression of repetitive DNA in prg-1 mutant adults because genome-wide

profiling had not previously been done. We detected upregulation of 18 repetitive elements in prg-

1 mutants, 14 of which are also upregulated in at least one of the heterochromatin mutants, includ-

ing MIRAGE1 elements (Figure 6A, Figure 3—source data 1 and 2). RNA FISH experiments showed

that MIRAGE1 RNA is increased in prg-1 mutant germ lines, similar to observations in heterochroma-

tin mutants described above (Figure 3E and Figure 3—figure supplement 3). Given this overlap in

targets and the fertility defects of prg-1 mutants, we assessed whether they also showed increased

germ line apoptosis as seen in heterochromatin factor mutants. Indeed, we observed significantly

increased germ cell death in prg-1 mutant adults (Figure 6B). Therefore, the piRNA pathway and

heterochromatin factors have shared targets and phenotypes, and likely collaborate in maintaining

genomic integrity of the developing germline.

We next used a piRNA activity sensor to test whether heterochromatin factors other than hpl-2

are needed for piRNA pathway function. Similar to hpl-2 and set-25, we found that lin-61 and let-

418 mutants derepress the piRNA sensor reporter (Figure 6C,D). We also observed weak desilenc-

ing in a fraction of met-2 mutants (Figure 6D), which was not observed in a previous assay

(Ashe et al., 2012). However, the piRNA sensor was not desilenced in lin-13 mutants. It is possible

that the lack of desilencing is due to the lin-13(n770) allele being non-null, however this mutant does

show defects such as upregulation of repetitive elements and increased apoptosis.

Figure 6. Heterochromatin factors interact with the piRNA pathway. (A) Venn diagram showing extent of overlap between repeats upregulated in prg-1

mutants and repeats upregulated in any of the five heterochromatin factor mutant strains (hpl-2, let-418, lin-13, lin-61, or met-2 set-25). Listed in the

Venn are the numbers of repeats and repeat families common or unique to prg-1. (B) prg-1 mutant germ lines show increased germ cell death. Shown

are the number of apoptotic cells per gonad arm for bcIs39 (CED-1::GFP) and prg-1; bcIs39 (CED-1::GFP). Each dot represents an individual gonad arm

count. Bars denote mean and SD. A minimum of 25 gonads were scored per experiment and shown are the combined datapoints of at least three

independent replicates. Mann-whitney non-parametric tests were performed on mutant versus control (p-value<0.0001). Strains were cultured at 20˚C
until L4 stage, then shifted to 25˚C for 48 hr before scoring. (C, D) Heterochromatin mutants desilence a piRNA sensor. piRNA sensor expression

(mjIs144 [mex-5p::HIS-58::GFP::piRNA(21UR-1)::tbb-2–3’UTR]) was quantified in one day old wild-type and heterochromatin mutants cultured at 20˚C. (C)
Representative GFP and DIC microscope images of adult germlines in which the reporter is silent (WT, lin-13) or expressed (lin-61). (D) Quantification of

piRNA sensor expression in wild type and heterochromatin mutants. Shown are the means and standard error of the percentage of worms which at

least weakly desilenced the GFP reporter in oocytes and pachytene regions. A minimum of 100 worms for each strain was assessed over four

independent experiments. Fishers exact tests were performed on the combined datapoints to address significance, with let-418 (p-value<0.0001), lin-61

(p-value<0.0001) and set-25 (p-value<0.0001) all displaying increased frequency of expression of the piRNA sensor reporter, while sensor expression in

lin-13 is not significantly different from wild type (p-value 0.4419). met-2 mutants weakly desilence the sensor in a small subset of adults scored (p-value

0.0215).

DOI: 10.7554/eLife.21666.026

The following figure supplement is available for figure 6:

Figure supplement 1. Quantification of piRNAs and dependent 22G RNAs in prg-1 and hpl-2 mutants.

DOI: 10.7554/eLife.21666.027
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A previous study profiling small RNAs in hpl-2 mutants in a piRNA sensor background showed

that piRNAs targeting the sensor or a few endogenous targets were not altered in abundance, sug-

gesting that hpl-2 acts downstream of piRNA production (Ashe et al., 2012). To investigate this fur-

ther, we compared the global abundance of piRNAs in hpl-2 and wild-type adults. Similar to the

above results, we found that hpl-2 mutants make normal levels of piRNAs (Figure 6—figure supple-

ment 1). We also investigated the production of secondary 22G siRNAs in hpl-2 mutants. We

detected a decrease in 22G RNAs mapping near predicted piRNA target sites in prg-1 mutants as

previously observed (Lee et al., 2012), but levels were normal in hpl-2 mutants (Figure 6—figure

supplement 1). hpl-2 mutants also showed normal levels of 22Gs at repeat elements. (Figure 6—fig-

ure supplement 1). Therefore, at least for hpl-2, the role in the piRNA pathway appears to be down-

stream of piRNA and subsequent 22G RNA synthesis.

To summarize, hpl-2, lin-61, let-418, set-25, and met-2 are important for piRNA pathway function.

Nevertheless, the widespread binding sites and desilencing of additional targets relative to prg-1

indicate that heterochromatin proteins also mediate repression that is not piRNA-induced.

Partial redundancy between let-418/Mi-2 and the nuclear RNAi
pathway
The C. elegans nuclear RNAi pathway (called the nrde pathway) mediates transcriptional repression

and directs H3K9me3 methylation to its targets (Guang et al., 2010; Gu et al., 2012; Burton et al.,

2011; Burkhart et al., 2011; Buckley et al., 2012; Guang et al., 2008). The nrde pathway also func-

tions in repression of piRNA targets (Ashe et al., 2012). To investigate the relationship between the

nrde pathway, the piRNA pathway, and heterochromatin factors in repetitive element regulation, we

carried out RNA-seq on nrde-2(gg91), a putative null mutant, and compared results to those of het-

erochromatin and prg-1 mutants. We observed that nrde-2 mutants showed a larger and different

spectrum of repetitive element desilencing compared to prg-1 or any of the heterochromatin

mutants (Figure 7—figure supplement 1, Figure 3—source data 1 and 2). Of 71 elements desi-

lenced in nrde-2 mutants, only seven overlap a repeat desilenced in one of the heterochromatin

mutant strains (Figure 7—figure supplement 1). Notably MIRAGE1 elements, prominently upregu-

lated in heterochromatin and prg-1 mutants, are not desilenced in nrde-2 mutants (Figure 3—

source data 1 and 2; Figure 7—figure supplement 1). Retrotransposons are highly enriched among

nrde-2 targets (45/71) whereas heterochromatin factors and prg-1 are more associated with DNA

transposon misregulation (Figure 3B). Therefore, although the nrde pathway is required for aspects

of piRNA function, repetitive element targets largely differ. Notably, the finding that elements dere-

pressed in nrde-2 mutants differ from those in met-2 set-25 mutants, which lack detectable H3K9

methylation, suggests that H3K9 methylation may not be required for nrde dependent repression.

Like the heterochromatin factor and prg-1 mutants, nrde-2 mutants also show a temperature sen-

sitive decrease in fertility (Guang et al., 2010). To test whether the nrde-2 fertility function had func-

tional overlap with heterochromatin factors, we constructed double mutants between nrde-2 and

three mutants (hpl-2, lin-61, and let-418). We observed no reduction in fertility for nrde-2; hpl-2, and

a weak but non-significant reduction for nrde-2; lin-61 double mutants (Figure 7A). However, nrde-

2; let-418, double mutants showed a significantly smaller brood size than expected compared to the

single mutants, indicating partial functional redundancy between let-418 and the nrde pathway

(Figure 7A). We also observed that all three double mutants showed significantly increased embryo

lethality compared to the single mutants (Figure 7B).

To further investigate the genetic interaction between nrde-2 and let-418, we carried out RNA-

seq of nrde-2; let-418 adults to test for redundancy in repeat element repression. We found that

more repeats are upregulated in nrde-2; let-418 double mutants compared to nrde-2 or let-418 sin-

gle mutants (Figure 7B). Most of the repeat elements upregulated only in the nrde-2; let-418 double

mutant are retrotransposons (27/46; Figure 7B and Figure 3—source data 2). We conclude that

NRDE-2 and LET-418 have unique and redundant roles in the repression of repetitive DNA

elements.

Because a key output of the nrde pathway is the deposition of H3K9me3, the observed redun-

dancy between NRDE-2 and LET-418 prompted us to investigate whether the nrde pathway might

control H3K9me3 levels at heterochromatin regulated loci. To this end, we used published

H3K9me3 ChIP-seq datasets in four different nrde mutants (hrde-1, nrde-2, nrde-3, and nrde-4;

(Gu et al., 2012; Buckley et al., 2012; Ni et al., 2014). and analysed levels at genes and repeats
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Figure 7. nrde-2 and let-418 show functional redundancy. (A) nrde-2 and let-418 mutants show genetic interaction

in fertility. Brood sizes of nrde-2; hpl-2, nrde-2; let-418, and nrde-2; lin-61 double mutants were compared to those

of single mutants. Synchronized single or double mutant strains of the indicated genotype were grown at 15˚C
until the L3 stage and then transferred to 25˚C, and total progeny including dead embryos determined for 12–24

mothers across two independent experiments. A single-sided Mann-Whitney U test was used to determine

whether the double mutant had a lower brood size than expected under a multiplicative model of interaction

when compared to the individual single mutants. Brood size is significantly lower than expected for nrde-2; let-418

(p=9.21E-11) but not lin-61; nrde-2 (p=0.20) or nrde-2; hpl-2 (p=98). (B) nrde-2; hpl-2, nrde-2;let-418 and lin-61;

nrde-2 double mutants show increased proportion of dead embryos within their broods compared to single

mutants. Total number of dead embryos was determined as a proportion relative to their total brood size for the

experiment in (A). Mann-Whitney U tests were performed to compare the proportion of unhatched eggs in double

mutants relative to nrde-2 single mutants, and were all found to be significant at p<0.05. (C) Repeat families with

members upregulated in let-418, nrde-2, and nrde-2; let-418 young adult worms. Figure 7—figure supplement

1A compares repeat families upregulated in nrde-2, prg-1, or any of the five heterochromatin mutants (D)

Example of repeats upregulated in nrde-2; let-418, but not the single mutants. Tracks are RNA-seq reads per

million of two combined replicates. Figure 7—figure supplement 1B shows lack of MIRAGE1 expression in the

nrde-2 mutant background.

DOI: 10.7554/eLife.21666.028

The following figure supplements are available for figure 7:

Figure supplement 1. Overlap of nrde-2, prg-1, and heterochromatin targets.

DOI: 10.7554/eLife.21666.029

Figure 7 continued on next page
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upregulated in nrde-2 mutants or only in heterochromatin mutants. The nrde pathway acts in the

germ line and soma: HRDE-1 and NRDE-3 are argonautes specific for germ line or soma, respec-

tively, whereas NRDE-2 and NRDE-4 act in all tissues (Guang et al., 2010; Burkhart et al., 2011;

Buckley et al., 2012; Guang et al., 2008). We observed that repeat elements and genes upregu-

lated in nrde-2 mutants also have reduced H3K9me3 levels, supporting the link between H3K9me3

methylation and repression of endogenous targets (Figure 7—figure supplements 2 and

3). H3K9me3 was also reduced on nrde-2 upregulated elements in mutants of other nrde genes that

act in the germ line (hrde-1 and nrde-4), but not in the soma specific argonaute mutant nrde-3 (Fig-

ure 7—figure supplements 2 and 3). This suggests that the transcriptional upregulation observed in

nrde-2 mutants occurs largely in the germ line.

We next analysed H3K9me3 levels in sets of genes and repeats upregulated in heterochromatin

mutant strains but not in nrde-2 mutants to ask if these elements were also under nrde control.

Indeed, genes upregulated in any of the five heterochromatin factor mutant strains (hpl-2, lin-13, let-

418, lin-61, met-2 set-25) but not in nrde-2 mutants also showed reduced H3K9me3 in germ line

nrde mutants, though the reduction was weaker than for nrde-2 regulated genes (Figure 7—figure

supplement 3). Repeats upregulated only in heterochromatin factor mutants showed a trend of

reduced H3K9me3 (Figure 7—figure supplement 2). Therefore, the germ line nuclear RNAi path-

way partially controls H3K9me3 levels at loci regulated by heterochromatin factors. Because these

elements are not upregulated in nrde-2 mutants, this indicates that the observed reduction of

H3K9me3 is not sufficient for derepression and supports partial redundancy between the nrde path-

way and heterochromatin factors in repeat silencing.

Discussion
All animal genomes contain abundant repetitive elements, which are subject to silencing control.

This study expands our knowledge of repetitive element silencing by showing that a diverse set of

heterochromatin factors (HPL-2/HP1, LIN-61, LET-418/Mi-2, LIN-13, and MET-2) work together with

the piRNA and nuclear RNAi pathways to silence repetitive elements such as DNA transposons and

retrotransposons. The systematic analyses of multiple factors, most of which are conserved, uncov-

ered a network of functional interactions between them. We suggest that the interactions we identify

here are likely to be relevant to the control of repetitive elements in other animals.

All factors and pathways studied are individually important for germ line function, as evidenced

by reduced fertility or sterility of single mutants, and all are individually necessary for repetitive ele-

ment silencing. Importantly, functional redundancy among the factors and pathways demonstrates

widespread safeguards for ensuring germ line health and fertility. Our results show that there are

interacting and overlapping mechanisms of repeat element silencing (Figure 8A).

Heterochromatin factors and small RNA pathways
Connections between heterochromatin formation and transcriptional silencing via RNAi mechanisms

involving small RNAs have been observed in a variety of organisms (Castel and Martienssen, 2013;

Holoch and Moazed, 2015; Martienssen and Moazed, 2015). For instance, RNAi machinery directs

silencing at repetitive centromeric regions in S. pombe in a process that involves H3K9 methylation

and the chromodomain protein Swi6, which is similar to HP1 (Holoch and Moazed, 2015;

Hayashi et al., 2012; Motamedi et al., 2008; Rougemaille et al., 2012). A second S. pombe HP1

homolog, Chp2, functions in transcriptional repression in heterochromatin downstream of the RNAi

factors via a complex called SHREC2, which contains Mit2, an Mi-2 related protein (Holoch and

Moazed, 2015; Motamedi et al., 2008). These two HP1 homologs each make partial contributions

to silencing, since swi6 chp2 double mutant cells have a stronger silencing defect than either single

mutant, suggesting partial redundancy in the two processes (Motamedi et al., 2008). Nuclear

Figure 7 continued

Figure supplement 2. H3K9me3 levels on repeats in nrde mutants.

DOI: 10.7554/eLife.21666.030

Figure supplement 3. H3K9me3 levels on genes in nrde mutants.

DOI: 10.7554/eLife.21666.031
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pathways involving small RNAs, H3K9 methylation, HP1 homologs and/or Mi-2 proteins also repress

repetitive elements and genes in different eukaryotes including Arabidopsis, Drosophila, mouse, and

humans (Castel and Martienssen, 2013; Holoch and Moazed, 2015; Martienssen and Moazed,

2015; Friedli and Trono, 2015; Iwasaki et al., 2015). However, the mechanisms linking silencing

pathways are not fully understood and factors involved in heterochromatin formation and function

remain to be identified. For example, a recent study of HP1a interactors in Drosophila identified

many new proteins needed for gene silencing and/or heterochromatin organization (Swenson et al.,

2016).

Previous studies in C. elegans have also uncovered connections between heterochromatin factors

and small RNA pathways. The piRNA pathway is a small RNA pathway active in the germ line that

silences transposons and genes through cytoplasmic and nuclear mechanisms (Weick and Miska,

2014). In the nucleus, the piRNA pathway engages the nrde pathway and heterochromatin factors

for transcriptional repression: HPL-2, the H3K9me3 histone methyltransferase SET-25, and nuclear

RNAi factors are necessary for silencing a piRNA pathway sensor (Ashe et al., 2012). The nrde path-

way directs H3K9me3 both endogenously and in response to exogenous dsRNA and effects tran-

scriptional repression in both the germ line and soma (Guang et al., 2010; Gu et al., 2012;

Burkhart et al., 2011; Guang et al., 2008). Endogenous germ line nrde targets have been sug-

gested to include retrotransposons based on their enrichment within genomic intervals that display

increased expression and decreased H3K9me3 levels in germ line nuclear RNAi mutants (Ni et al.,

2014). Here, through genetic and profiling analyses, we have established additional connections

between heterochromatin factors and small RNA pathways, linking them to repetitive element

repression, uncovering functional redundancy, and expanding understanding of their relationships.

Heterochromatin factors associate with and repress repetitive elements
We found that the genome-wide distributions of each of the five heterochromatin factors studied

here (HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2, and MET-2/SETDB1) are highly correlated with each

other and strongly associated with repetitive elements. These patterns are correlated with

H3K9me2, but not with H3K9me3, as previously seen for HPL-2 in embryos (Garrigues et al., 2015).

Figure 8. Heterochromatin proteins collaborate with small RNAi pathways to maintain fertility. (A) Pathways of transposable element silencing in C.

elegans. Heterochromatin factors participate in repetitive element silencing together with the piRNA and nuclear RNAi pathways, as well as targeting

elements independently of these pathways. (B) Derepression of transposable elements and defects in DNA repair likely generate genotoxic stress that

leads to germ line defects and infertility in heterochromatin factor mutants.

DOI: 10.7554/eLife.21666.032
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H3K9me2 and H3K9me3 modifications largely do not overlap (this study and [Liu et al., 2011]), but

both are associated with repetitive elements. We further found that H3K9me2, but not H3K9me3 is

enriched at telomeres. These patterns support functional differences between H3K9me2 and

H3K9me3.

In addition to the similarity in binding profiles, we found that hpl-2, lin-13, lin-61, let-418, and

met-2 set-25 mutant strains all showed derepression of repetitive elements and genes. While this

paper was under review, Zeller et al reported that met-2 set-25 mutants derepressed transposable

element expression in embryos and gonads, similar to the results presented here for met-2 set-25

young adults (Zeller et al., 2016). The global loss of H3K9 methylation also leads to transposon

derepression and mobilization in Drosophila (Penke et al., 2016). The patterns of upregulated

repetitive elements and genes among the five heterochromatin mutant strains are strikingly similar,

indicating shared targets. However, although binding profiles and consequences of loss are similar,

the factors also have unique roles. Furthermore, genetic interactions between all pairs show that

they have partially redundant functions. To understand these relationships, it will be important to

investigate their interdependencies and the consequences of inactivating multiple factors together.

Relationships between heterochromatin factors and small RNA
pathways
Comparing expression profiles of heterochromatin mutants to those of prg-1 (piRNA pathway) and

nrde-2 (nuclear RNAi pathway) mutants, we observed that repeat elements and genes have similar

patterns of derepression in heterochromatin factor and prg-1 mutants, but these largely differ from

those in nrde-2 mutants. Consistent with a functional link between the heterochromatin factors and

the piRNA pathway, a previous study showed that HPL-2 and SET-25 are needed for piRNA pathway

function (Ashe et al., 2012). Here we further found that LIN-61, LET-418, and MET-2 (weakly) are

also important. It appears that heterochromatin proteins act as downstream effectors of the piRNA

pathway rather than having a role in small RNA biogenesis or stability since levels of piRNAs and

their secondary 22G RNAs are normal in hpl-2 mutants (Ashe et al., 2012) (and this study). Investi-

gating whether small RNA populations are altered in other heterochromatin mutants will be needed

to confirm this hypothesis. This mechanism appears to differ from the situation in S. pombe, where

H3K9 methylation and the chromodomain protein Swi6 are required for the association of silencing

complexes that generate siRNAs (Holoch and Moazed, 2015; Martienssen and Moazed, 2015;

Motamedi et al., 2008, 2004; Verdel et al., 2004). However, it is possible that redundancy

between heterochromatin factors in C. elegans may have masked involvement in small RNA

production.

Many more elements are desilenced in nrde-2 mutants than in prg-1 mutants, with little overlap

between the two. The elements derepressed in nrde-2 mutants are mostly LTR retrotransposons, in

line with a study finding transcriptionally upregulated genomic intervals in hrde-1 mutants to be

enriched for LTRs and unaffected in prg-1 mutants (Ni et al., 2014). The apparent difference in tar-

gets between NRDE-2 and PRG-1 could be due to the requirement for PRG-1 in initiation but not

maintenance of silencing. Once silencing is established by PRG-1, nuclear RNAi maintains silencing

in a process termed RNAe that depends on continued generation of secondary siRNAs by mutator

proteins, the presence of secondary siRNA-associated argonautes (including nrde-2), and mainte-

nance of the established chromatin state by heterochromatin factors (Ashe et al., 2012;

Shirayama et al., 2012; Luteijn et al., 2012; Lee et al., 2012; de Albuquerque et al., 2015).

Our study also uncovered interactions between heterochromatin factors and the nuclear RNAi

pathway. We found that let-418; nrde-2 double mutants show a strongly enhanced fertility defect

compared to the single mutants, and that they desilence a larger set and a wider spectrum of repeti-

tive elements. Therefore, for some elements, either LET-418 or NRDE-2 is sufficient for silencing,

demonstrating redundancy in repetitive element silencing. These interactions further emphasize the

overlapping safeguards that function to effectively repress repetitive elements. The increased

embryo lethality seen in double mutants between nrde-2 and three tested heterochromatin factors

(hpl-2, lin-61, or let-418) suggest additional as yet unexplored redundancy between the nuclear

RNAi pathway and heterochromatin factors. That a substantial number of repetitive elements are

desilenced in heterochromatin factor mutants but not in prg-1 or nrde-2 mutants suggests that het-

erochromatin factors can also act as independent agents, silencing repetitive elements indepen-

dently of small RNA pathways.
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Interestingly, genes and repeats upregulated in nrde-2 mutants more often have high levels of

H3K9me3 than H3K9me2 whereas those upregulated in met-2 set-25 mutants (which lack all H3K9

methylation) show the opposite pattern and more often have high H3K9me2 marking (Figure 3—fig-

ure supplement 2). The association between H3K9me3 and nrde-2 upregulated genes suggests that

the nuclear RNAi pathway may specifically engage this modification. Consistent with this, repeats

and genes upregulated in nrde-2 mutants have strongly reduced H3K9me3 levels in germ line

nuclear RNAi pathway mutants. However, the difference in elements desilenced in nrde-2 and met-2

set-25 mutants (which lack H3K9 methylation) argues against an essential requirement for H3K9

methylation in nrde mediated repression. We observed that H3K9me3 levels in nrde-2 and other

germline nuclear RNAi mutants are also weakly reduced at genes and repeats repressed by hetero-

chromatin pathway factors, even though these elements are not upregulated in nrde-2 mutants. This

suggests that the heterochromatin factors and the nuclear RNAi pathway may regulate many com-

mon elements, but that heterochromatin factors can still effectively silence them in the absence of

the nuclear RNAi pathway. Future analyses in mutants compromised for both nuclear RNAi and het-

erochromatin factors will be needed to address the mechanisms of this redundancy.

Heterochromatin factors may act locally within euchromatic domains
We speculate that in many cases, repetitive element regulation involves a local mechanism rather

than the spreading of large heterochromatin domains. First, we observe that heterochromatin factor

binding is often closely associated with repetitive elements and does not extend to adjacent genes.

Second, genes containing repetitive elements bound by heterochromatin factors (usually within

introns) are often expressed. Indeed, one fourth of genes contain a repetitive element bound by a

heterochromatin factor, and of those, 59% (3287/5568) are expressed in the germ line. Formation of

a large inactive heterochromatin domain would clearly be incompatible with such widespread germ

line expression.

In C. elegans, most H3K9 marking occurs on the distal chromosome arms, where small regions of

H3K9 are interspersed with chromatin typical of euchromatin (Liu et al., 2011). Many active genes,

including those expressed in the germ line, reside in these arm regions (Liu et al., 2011). Intrigu-

ingly, the repeat- and H3K9-rich chromosome arms are generally associated with the nuclear lamina,

a region implicated in transcriptional repression (Towbin et al., 2012; Ikegami et al., 2010). Active

genes at the periphery that contain repetitive elements bound by heterochromatin factors may be

subject to special mechanisms for their expression.

Heterochromatin factors and DNA repair
In addition to functioning in repetitive element repression, some of the heterochromatin factors we

studied here are implicated in DNA repair or genome stability. We found that hpl-2 mutant germ

lines show reduced repair and increased activation of DNA damage signaling in response to ionizing

radiation. LIN-61 is needed for DNA repair in the germ line and its loss causes an increase in the

germ line mutation rate (Johnson et al., 2013; Pothof et al., 2003). Additionally, both lin-61 and

set-25 were identified in a genome-wide RNAi screen for genes needed for genome stability in the

soma (Pothof et al., 2003). Furthermore, met-2 set-25 mutants, which lack all H3K9methylation,

were recently shown to have increased sensitivity to replication stress and increased rates of repeat

associated mutations and R loops (Zeller et al., 2016). In mammalian cells, orthologs of LET-418

(Mi-2), HPL-2 (HP1), and MET-2 (SETDB1), have documented roles in DNA repair (Alagoz et al.,

2015; Polo et al., 2010; Urquhart et al., 2011). Mi-2 is needed for recruitment of DNA repair pro-

teins to sites of DSBs, and loss of Mi-2 from human fibroblast cell lines leads to apoptosis and sensi-

tivity to ionizing radiation (Larsen et al., 2010; Pan et al., 2012; Smeenk et al., 2010). HP1

accumulates at DSBs and its depletion causes abnormal recruitment of repair factors (Soria and

Almouzni, 2013). Additionally, DNA damage repair defects caused by depletion of SETDB1 are sim-

ilar to those seen upon loss of HP1 (Alagoz et al., 2015). Defects in repair of DNA lesions are likely

to cause germ line stress and to contribute to the germ line instability, germ line development

defects, and increased germ line apoptosis seen in heterochromatin factor mutants. Such processes

might also underlie the reduced fertility and increased germ line apoptosis seen in prg-1 mutants.

The activation of MIRAGE1 DNA transposases in all heterochromatin factor mutant strains and

prg-1 mutants would be expected to cause double strand breaks and/or replication stress. We show
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that this abnormal expression contributes to sterility because fertility was partially restored in hpl-2,

let-418, and lin-13 mutants when MIRAGE1 transcripts were knocked down via RNAi. Similarly, inhib-

iting endogenous meiotic double strand breaks by knockdown of spo-11 also partially restored fertil-

ity. These results suggest that heterochromatin factors act to combat different types of genotoxic

insults, both through silencing repetitive elements and facilitating repair. If not dealt with, these

insults cause sterility (Figure 8B).

We also observed that loss of cep-1/p53 suppressed heterochromatin factor defects. p53 is

important for mediating DNA damage signaling (Meek, 2009). In C. elegans, p53/cep-1 is required

for damage induced germ cell death (Schumacher et al., 2001; Derry et al., 2001). In the soma,

DNA damage signaling does not lead to p53/CEP-1-mediated apoptosis; however, CEP-1 does play

a role in DNA repair in the soma, and it slows larval development in response to loss of CLK-2/TEL2

DNA damage signaling (Derry et al., 2007; Hoffman et al., 2014). Our findings that loss of cep-1

partially suppresses the sterility and slow growth phenotypes of hpl-2, lin-13, and let-418 suggests

that damage signaling and cep-1/p53 underlies these defects.

Interestingly, none of the heterochromatin mutant strains studied here display hallmarks of muta-

tors such as high embryo lethality or the frequent production of progeny with visible mutant pheno-

types. We propose that quality control mechanisms in the germ lines of heterochromatin factor

mutants largely prevent improperly repaired meiotic germ cells from becoming mature gametes,

either through apoptosis or the arrest of gametogenesis, to ensure that mutation rates are low.

Conclusions
This study indicates a complex orchestration of fertility protection by HPL-2/HP1, LIN-13, LIN-61,

MET-2, and LET-418/Mi-2 together with the piRNA and nuclear RNAi pathways. Repression of repet-

itive elements may prevent replication stress and DNA damage, but when damage does occur, these

heterochromatin proteins participate in repair pathways to maintain genome integrity. Further work

will be required to untangle the mechanisms and individual roles in DNA repair pathways and repeti-

tive element repression.

Materials and methods

Worm culture and strains
Strains were cultured using standard methods (Brenner, 1974). Strains used in the paper are given

in Supplementary file 2. Whole genome sequencing of PFR40 hpl-2(tm1489) identified an 882 bp

deletion in the polq-1 gene at chrIII:5792238–5793119. The underlined T residue marks the junction

of the deletion and matches the flanking sequence of both sides of the deletion: TAAATCTCTA

TCCGATGTGATCCACGTCGATAACATTATTC; we have named this lesion polq-1(we100). The

JA1902 strain harboring hpl-2(tm1489) but lacking polq-1(we100) was derived by outcrossing

MT15062 hpl-2(tm1489);hpl-1(n4317), which does not contain polq-1(we100).

ChIP-seq
Wild-type young adults (YA) were prepared by growing synchronized L1s in liquid culture using stan-

dard S-basal medium with HB101 E. coli for 60 hr at 20˚C. Adults were sucrose floated, washed in

PBS, and flash frozen in liquid nitrogen. Extract preparation and chromatin immunoprecipitation

were performed as in Kolasinska-Zwierz et al. (2009) with the following modifications: tissue was

fixed for 10 min in 1.5 mM EGS (Pierce 21565) then formaldehyde added to 1% for a further 10 min

before quenching with 0.125M glycine and washing 2X with PBS plus protease inhibitors. Pellets

were washed once in FA buffer, then resuspended in 1 ml FA buffer per 1 mL of ground worm pow-

der and the extract sonicated to an average size of 250 base pairs with a Diagenode Bioruptor or

Bioruptor Pico for 28 pulses of 30 s followed by 30 s pause. Antibodies used for ChIP are given in

Supplementary file 3. Following ChIP and DNA purification, libraries were prepared using the Illu-

mina TruSeq kit. Fragments in the 250–300 base pair range were selected using Agencourt AMPure

XP beads. Two biological replicate ChIPs were conducted for each factor.
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RNA-seq
Synchronized, starved L1 stage worms were grown on NGM plates under one of two conditions.

Condition 1 (hpl-2, let-418, lin-61, met-2 set-25, and N2): growth was at 20˚C until the L4 stage and

then worms were shifted to 25˚C for 15–18 hr until they reached young adult stage. Condition 2 (lin-

13, prg-1, nrde-2, nrde-2; let-418, and N2): growth was at 15˚C until the L4 stage and then worms

were shifted to 25˚C for 15–18 hr until they reached young adult stage. Worms were then harvested,

flash frozen in liquid nitrogen, and stored at �80˚C until use. RNA was extracted from frozen worms

using TriPure (Roche). RNA was purified with Zymo Research RNA Clean and Concentrator-5 (Cam-

bridge Bioscience) following DNAse I digestion. Ribosomal RNA was depleted using Ribo-Zero

rRNA Removal Kit (Human/Mouse/Rat) (Illumina). Libraries were prepared using the NEBNext Ultra

Directional RNA Library Prep Kit for Illumina (New England Biolabs). Two biological replicates were

prepared for each strain.

Data processing
ChIP-seq and RNA-seq libraries were sequenced using Illumina HiSeq. Reads were aligned to the

WS220/ce10 assembly of the C. elegans genome using BWA v. 0.7.7 ( Li and Durbin, 2010) with

default settings (BWA-backtrack algorithm). The SAMtools v. 0.1.19 ‘view’ utility was used to convert

the alignments to BAM format. To be able to investigate binding and expression at repetitive ele-

ments, we used all aligned reads (mapq0) to generate pileup and normalised tracks. Normalized

ChIP-seq coverage tracks were generated using the BEADS algorithm (Cheung et al., 2011) without

the mappability correction step. ChIP-seq and RNA-seq library read numbers and alignment statis-

tics are given in Figure 2—source data 3.

Peak calls
Broad and sharp ChIP-seq peaks were generated as follows. Initial ChIP-seq peaks were called using

MACS v. 2.1.1 (Feng et al., 2012) with a permissive 0.7 q-value cutoff and fragment size of 150 bp

against a summed ChIP-seq input. These were used in conjunction with a modified IDR procedure to

generate broad peak calls ([Li et al., 2011]; https://www.encodeproject.org/software/idr/) with an

IDR threshold of 0.05 to combine replicates. These broad peaks are termed ‘IDR peaks’ (Figure 2—

source data 1). The pipeline for generating IDR peaks is available here: https://github.com/Przemol/

biokludge/blob/master/macs2_idr/macs2_idr.ipy. To generate sharp peak calls, the IDR calls were

further refined using an adhoc post-processing step, as visually distinct peaks close to each other

were often contained within single broad peaks. We identified concave regions within the IDR peaks

using the smoothed second derivative of the mapq0 pileup coverage signal with 250 bp kernel

(https://github.com/Przemol/biokludge/blob/master/macs2_idr/concave_regions.py). We empirically

found the minimum of the second derivative within a concave region to be a good indicator of a

visually compelling peak, and used concave regions (within IDR peaks) with a threshold of lower than

�500 curvature index. Next, we discarded peaks with MASC2 score lower than 100 and peak width

lower than 100 bp. The resulting peaks were filtered against combined ENCODE (http://www.broad-

institute.org/~anshul/projects/worm/blacklist/ce10-blacklist.bed.gz) and in-house blacklist (https://

gist.github.com/przemol/8a712a2e840f95237f4a4f322f65bee1) to generate our final sharp peak

calls, described as ‘concave peaks.’ We created a summary peak call super set by creating a union of

the five heterochromatin factor concave peak calls. We termed this set ‘Any5’ (n = 33301; Figure 2—

source data 1). Each Any5 region was then annotated for overlap with each factor. Venn diagrams

were plotted using VennDiagram R package (Chen and Boutros, 2011), and UpSet plots were gen-

erated as described in Lex et al. (2014). For determination of factors bound to repeats, we used

broad IDR peak calls since repeats usually display a pattern of broad factor binding. Broad IDR

peaks were used in Figure 3—figure supplement 2.

Differential expression analyses of genes
We built an exon model based on Ensembl Gene 77 (Nov 2014) database gene annotation lifted

over to ce10/WS220. Tag counts for each gene were extracted from BAM alignment files using

HTSeq method working in union mode and implemented in R. These values were used to build an

expression matrix. Differential gene expression between N2 and mutant backgrounds was tested

using DESeq2; mutants were compared to their temperature matched control N2 replicates
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(Love et al., 2014). Reads per kilobase of exon model per million mapped reads (RPKM) normalized

expression values were generated using the median ratio method (Equation 5 in Anders and Huber,

2010). RPKM values, maximum posterior estimates of log2 FC (LFC) and statistical significance esti-

mates for each gene is in Figure 3—source data 3. We used a false discovery rate (FDR) < 0.01 and

LFC > 1 to call genes up-regulated, and FDR < 0.01 and LFC < �1 to call genes down-regulated. To

avoid small differences in developmental stages from contributing to apparent gene expression dif-

ferences, we also excluded genes whose wild-type expression oscillates repeatedly during develop-

ment (Supplemental Table S7 in [Latorre et al., 2015]).

Differential expression analyses of repeats
We built a repeat element model based on Dfam 2.0 ([Hubley et al., 2016], downloaded Sept 2015

from http://dfam.org/). The model contained 62331 individual repeats divided into 184 families.

Since individual repeats did not had unique identifiers (UID), we named them based on genomic

position in ‘chromosome:start-end’ convention, e.g. ‘chrI:10773–11032’. Tag counts for each repeat

were extracted from BAM alignment files using HTSeq method working in union mode and imple-

mented in R. These values were used to build expression matrixes. Differential repeat expression

between N2 and mutant backgrounds was tested using DESeq2 as described above for genes. A

table containing RPKM values, maximum posterior estimates of log2 FC (LFC) and statistical signifi-

cance estimates for each repeat is available in Figure 3—source data 1. Upregulated repeats were

defined as those with a false discovery rate (FDR) < 0.01, and LFC > 0. In addition, repeats that over-

lapped a gene upregulated in the matched mutant background were filtered out. For purpose of fil-

tering, differentially expressed genes were defined with more permissive cutoffs: FDR < 0.05 and

LFC > 0.

To assess expression of individual repeats scored as upregulated above, we counted uniquely

mapping reads, defined as having a BWA mapping quality over 10. Elements with >10 unique reads

and fold-change >1.5 were considered upregulated, which applied to 61 of 71 elements upregu-

lated in any of the heterochromatin factor mutant strains. The remaining 10 elements had insufficient

uniquely mapping reads for assessment.

Telomere enrichment
Telomere enrichment for ChIP-seq factors were determined by counting reads with the telomere

sequence ‘GCCTAA’. Reads were extracted from BAM files (including non- aligned reads) and

trimmed to 36 bp. Then the number of ‘GCCTAA’ motifs was counted for each read using Biostrings

R package. Telomeric reads were defined as those having 5 or 6 ‘GCCTAA’ motifs in 36 bp. To

assess the statistical significance of enrichment we used one sided Mann–Whitney U test (two repli-

cates for each factor vs. input background of 129 experiments) and reported the p-values.

Small RNA analyses
The following small RNA datasets from Ashe et al. (2012) were used: prg-1 (GSM708661), WT

matching prg-1 (GSM708660), hpl-2 (GSM950181), WT matching hpl-2 (GSM950180), nrde-2

(GSM950179), WT matching nrde-2 (GSM950178). Uniquely matching positions in each dataset were

determined and the smallest number (530039, in the prg-1 dataset) subsampled from each. piRNA

number was then determined by calculating the number matching the piRNAs annotated in

Batista et al. (2008) or Weick and Miska (2014) (n = 27884 piRNAs). piRNA targets were deter-

mined as in Lee et al. (2012), requiring a perfect match and no more than one G:U pair in the seed

region (nt 2–8), and allowing up to two mismatches and an additional G:U pair outside of the seed

region, excluding self hits (n = 391173). piRNA dependent 22Gs were also defined as in Lee et al.

(2012), as 22G RNAs that mapped in 100 bp windows centered at piRNA target sites, allowing zero

or one mismatch.

H3K9me3 levels in nrde mutants
The following H3K9me3 ChIP seq datasets were used: nrde-2 (GSM855086), nrde-3 (GSM932875),

nrde-4 (GSM932876), WT for nrde-2,–3, �4 (GSM855085), hrde-1 (GSM1399632), and WT for hrde-1

(GSM1399631) from [Gu et al. (2012), Buckley et al. (2012), Ni et al. (2014). Datasets were proc-

essed as described in the data processing section above. The average signal in each region of
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interest was calculated and the H3K9me3 fold change was calculated relative to the matched wild-

type dataset. Control repeats (n = 612) have >1.5 fold H3K9me3 levels relative to the genome aver-

age, have <1 fold signal for each of the five heterochromatin factors (HPL-2, LIN-13, LIN-61, LET-418

and MET-2) relative to the genome average, and are not upregulated in any of the five mutant

strains. A reduction of H3K9me3 at gene and repeat sets of interest was assessed by comparing to

all genes or all repeats using a single-sided Mann-Whitney U test.

Detection of phospho-CHK-1
N2 and hpl-2 adults grown at 25˚C were irradiated at 0, 20, and 100 Gy and recovered for one hour

at 25˚C. One hour post irradiation, gonads were dissected in 8 mL M9 on slides and freeze-cracked.

Gonads were fixed four minutes in 100% methanol followed by twenty minutes in 4% formaldehyde

in 1 X PBS. After fixation, gonads were washed two times for ten minutes in 1 X PBS + 0.2% Tween-

20 (PBST), blocked for one hour at room temperature in 1% milk in PBST, washed two times for ten

minutes in PBST, incubated overnight at 4˚C in primary antibody diluted in PBST (1:50 rabbit mono-

clonal a-phospho-CHK-1, Ser345, 133D, Cell Signalling Technologies, catalogue #2348), washed two

times for ten minutes in PBST, incubated 2 hr with secondary antibody (Molecular Probes) and DAPI.

Gonads were scored for the presence of phospho-CHK-1 staining using a Zeiss 510 Meta scanning-

laser confocal microscope. Counts from individual experiments were pooled to give overall totals,

and a two-tailed proportions Z test was used to determine whether there was a difference between

N2 and hpl-2 worms at a specific condition.

Oocyte chromatin fragmentation assay
L4 N2 and hpl-2(tm1489) grown at 20˚C were irradiated at 0, 50, and 100 Gy, recovered for 24 hr at

20˚C, then fixed in MeOH and DAPI stained. Slides were scored for the number of DAPI bodies in

diakinesis oocytes. Oocytes with six DAPI bodies, representing the six bivalent chromosomes, were

considered normal; oocytes with other numbers of DAPI bodies, representing chromosome fractur-

ing or clumping, were considered fractured. To determine whether the proportion of oocytes with

fractured chromosomes was different between N2 and hpl-2(tm1489) worms at a particular condi-

tion, a two-tailed proportions Z test was used. Two-tailed P values were calculated using a Z score

table.

Germ line apoptosis measurements
bcIs39 (Plim7::ced-1::GFP) expressed in gonadal sheath cells, was used to count engulfed germ line

corpses (Zhou et al., 2001). Strains containing bcIs39 in wild type and mutant backgrounds were

maintained at 20˚C. L4s of each genotype were picked and 48 hr later scored for the number of

engulfed apoptotic cells in the gonad. A minimum of 25 gonads per experiment were scored in

three independent experiments. The number of apoptotic cells in the germ line observed with the

ced-1::GFP is higher than the number stained by vital dye or visualized by Nomarski optics because

the reporter also marks cells at earlier stages of apoptosis than can be detected by other methods

(Lant and Derry, 2014; Lu et al., 2009). In lin-13, hpl-2, and met-2 set-25 strains, full or partial

silencing of the GFP transgene reporter occurred in some individuals. These animals were excluded

because it was not possible to count cell deaths. Statistical significance was scored using a Mann-

Whitney non-parametric test over all the datapoints combined.

Assessment of abnormal oogenesis
Strains were maintained at 20˚C and shifted to 25˚C at the L4 stage. Adult germlines were imaged

48 hr later by mounting animals on 3% agarose pads in 5 mM Tetramisole, using a Zeiss widefield

upright microscope using Nomarksi optics. Oogenesis was deemed ‘abnormal’ if oocytes appeared

small and rounded, if they were disorganized, or if their cytoplasm had taken on a pronounced cur-

dled texture. Germlines which had mostly or fully disintegrated, and lacked detectable oocytes,

were also quantified.

Sterility interaction tests
Fertility interactions among heterochromatin factors were tested as follows: N2, let-418(n3536), and

lin-13(n770) were maintained at 20˚C. Worms were fed at 20˚C from the L4 stage for the following
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RNAi clones from Kamath et al. (2003): hpl-2 (K01G5.2), met-2 (R05D3.11), and lin-61 (R06C7.7) or

from starved L1s for lin-13 (sjj2_C03B8.4). RNAi plates were prepared as in Ahringer, 2006. Progeny

of fed L4s or the fed L1were singled out onto fresh RNAi plates as L4s and total broods assessed by

transferring the worms to new plates every day until they stopped laying eggs. Two independent

experiments were conducted, with 3–8 total broods counted for each strain/RNAi combination.

Three double mutant combinations were also constructed and tested: lin-61(tm2649); lin-13(n770),

lin-61(tm2649); hpl-2(tm1489), and hpl-2(tm1489); let-418(n3536). Wild-type N2, single mutants, and

double mutant strains were maintained at 20˚C and total broods counted.

Fertility interactions between nrde-2 and let-418, hpl-2, or lin-61 were tested as follows. Wild-

type, single mutants, and double mutants were grown at 15˚C from starved L1 until the L3 stage,

then transferred to 25˚C. Total brood size per worm was determined for 12–24 worms per strain

across two independent experiments. Genotypes of strains are given in Supplementary file 2.

Statistical tests for the above genetic interactions were conducted as follows: Under the null

hypothesis that the two genes do not interact to affect fertility, the expected brood size of double

mutant (or RNAi knockdown in a single mutant background) is the product of those of the single

mutants (or that of the single mutant and the RNAi knockdown in a wild type background) divided

by the brood size of the wild-type (or of the wild-type strain grown on control (empty vector) RNAi

plates). Similar to (Baugh et al., 2005), a t-test was used to test if the observed brood size of double

mutants (or RNAi knockdown in a single mutant background) equals the expected brood size under

the null hypothesis.

Tests for suppression of sterility of hpl-2(tm1489), lin-13(n770), and let-418(n3536) mutants were

conducted mutants as follows. The three strains show temperature sensitive sterility. Strains were

maintained at 20˚C, a temperature at which they are fertile, and starved L1s prepared by bleaching

adults to collect embryos and hatching them in M9 buffer for 24 hr at 20˚C. Starved L1s were spot-

ted onto RNAi plates prepared as in Ahringer, 2006. They were then grown under conditions at

which the mutant strain is nearly sterile: hpl-2 was incubated at 24˚C or 25˚C, lin-13 was incubated at

24˚C, and let-418 was incubated for 7.5 hr at 20˚C, then shifted to 24˚C. After three days, the num-

ber of progeny produced by these L1s was counted. RNAi plates were prepared as in

Ahringer, 2006. The following RNAi clones were from Kamath et al. (2003): cep-1 (F52B5.5), spo-

11 (T05E11.4), mirage-A (K02E7.2 + K02E7.3), mirage-B (W03G1.3 + W03G1.4). For each combina-

tion of mutant strain and target gene to knockdown, a paired t-test was used to compare the aver-

age number of progeny per parent from gene-targeting RNAi plates and matched empty vector

plates incubated under the same condition.

Brood sizes of cep-1(lg12501); hpl-2(tm1489), cep-1(lg12501);let-418(n3536) and cep-1(lg12501);

lin-13(n770) double mutants were compared to wild-type and single mutants. Adults raised at 15˚C
were bleached to obtain embryos and left at 20˚C to hatch without food to obtain starved L1s. The

starved L1s were fed with OP50 bacteria and immediately shifted to 25˚C (for hpl-2 tests) or fed at

20˚C for 7.5 hr before shifting to 25˚C (for let-418 and lin-13 tests). Experiments were repeated at

least twice and total brood sizes were determined for 8 to 40 worms per strain. L1s prepared in the

same way were used for growth rate tests, counting the number of adults, L4s, or worms younger

than L4 (indicated <L4) after approximately 48 hr post feeding. A single sided t-test was used to test

whether the brood size of the cep-1 double mutant is larger than that of the single heterochromatin

mutant.

piRNA sensor expression
mjIs144 [mex-5p::HIS-58::GFP::piRNA(21UR-1)::tbb-2–3’UTR] was used to assess piRNA pathway

function (Ashe et al., 2012). Synchronized larvae containing mjIs144 in wild type or mutant back-

grounds were maintained at 20˚C, and scored for germ line expression 24 hr post-L4 stage. Four

experiments were conducted per strain, with a minimum of 25 worms per experiment. GFP was

scored using a Zeiss Axioplan two upright widefield microscope, where the level of GFP expression

was assessed (none, low, moderate). Moderate expression was scored when GFP was easily detecti-

ble in oocytes and pachytene nuclei. Low expression was scored when GFP was just visible in oocyte

and pachytene nuclei. In Figure 6, silenced represent gonads with no expression and Expressed -

GFP(+) represent moderate or low expression. In the case of met-2, all expression was in the low

category.
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RNA FISH
N2, hpl-2, lin-13, let-418, and prg-1 young adults were fixed and stained by RNA FISH as described

(Raj et al., 2008). Stellaris FISH probes targeting MIRAGE1 and sqv-1 (as an internal control) were

obtained from Bioresearch Technologies (Novato, CA). CAL Fluor Red610 was used for MIRAGE1

and Quasar 570 was used for sqv-1. From 11–22 individuals per strain were scored.

Datasets
Datasets generated in this paper are available at GEO accession GSE87524.
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