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Abstract Ion channel models are the building blocks of computational neuron models. Their

biological fidelity is therefore crucial for the interpretation of simulations. However, the number of

published models, and the lack of standardization, make the comparison of ion channel models

with one another and with experimental data difficult. Here, we present a framework for the

automated large-scale classification of ion channel models. Using annotated metadata and

responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-

gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy)

web interface provides an interactive resource for the categorization of new and existing models

and experimental recordings. It enables quantitative comparisons of simulated and/or measured

ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained

modeling.

DOI: 10.7554/eLife.22152.001

Introduction
Ion channels play crucial roles in neuronal signal processing (Koch and Segev, 2000; Cai et al.,

2004; Goldberg et al., 2008) and plasticity (Sjöström and Nelson, 2002; Shah et al., 2010;

Debanne et al., 2003). Interactions among the many different ion channels expressed by a single

cell can lead to extraordinarily complex dynamics, whose dissection necessitates computational

modeling, as first demonstrated by Hodgkin and Huxley (1952a) for action potential generation.

Simulation environments like NEURON (Hines and Carnevale, 2001; Carnevale and Hines, 2006)

can be used to create biophysical neuron models with realistic morphologies, ionic currents, and

channel densities (Figure 1A), facilitating the integration of experimental data into models

(Mainen and Sejnowski, 1995; Stuart and Spruston, 1998; Migliore et al., 1999; Poirazi et al.,

2003; Destexhe and Paré, 1999; Traub et al., 2003). More than a thousand neuronal models, and

several thousand individual ion channel models, are archived in the online database ModelDB

(Hines et al., 2004), which enables other researchers to verify original claims, and to reuse and

extend existing neuron models in the light of new results.

Matching model and experiment is essential for biophysical neuron models, in which many com-

ponents have a direct biological counterpart (Brette et al., 2007). For example, pyramidal neuron

models have been shown to reproduce the recorded spiking activity of these cells accurately with a

particular set of ion channels (Traub et al., 2003; Figure 1B, gray traces; see Materials and meth-

ods). However, the dynamics can change, sometimes dramatically, when one of the modeled ion
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channel currents is exchanged for an identically-labeled model from a different publication on Mod-

elDB (Figure 1B, colored traces, Figure 1C). This example underscores the importance of selecting

ion channel models, yet there is currently no standardized experimental dataset against which to val-

idate them.

Furthermore, the increasingly large number of models on ModelDB (e.g., over 300 new ion chan-

nel models in 2014 alone; Shepherd Lab [2015]), with non-standardized labeling and a high degree

of redundancy, makes it difficult to understand how ion channel models relate to each other and to

biology. For example, a researcher looking to use an existing A-type potassium channel model will

find over 250 A-type models, spanning a range of behaviors (Figure 1C, blue). Instead of a thorough

and time-consuming fitting of appropriate ion channel dynamics, it is common for modelers to adapt

previously published ion channel models for their own purposes. However, this may introduce exper-

imentally unverified systematic changes or even errors into later generations of models and may

have dramatic effects on the biological interpretation of the results.

To facilitate informed choices among this bewildering variety of ion channel models, we catego-

rized 2378 published voltage- and calcium-dependent ion channel models in NEURON that are avail-

able on ModelDB. We cataloged all relevant information about each ion channel model from the

associated literature, including its pedigree relations: whether a given ion channel model is based on

previous models, and, if so, which ones. Additionally, we compared the kinetics of each ion channel

model in standardized voltage-clamp protocols. The resulting maps of ion channel behavior show

model variability and diversity, and point to the computational and experimental sources that were
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Figure 1. The choice of ion channel model influences the behavior of a simulated neuron. (A) Biophysical neuron models are composed of a detailed

multicompartmental morphology, several active ion channel conductances, and a density of each conductance that depends on the specific

compartment. (B) Simulation of a detailed layer 2/3 pyramidal neuron model, adapted from Traub et al. (2003) (see Materials and methods for details).

The neuron model was stimulated with a 1.5 nA current step beginning at 50 ms, while recording the membrane potential in the apical dendrite (top)

and soma (bottom). Simulations were first run using the original conductances from Traub et al. (‘default’, gray). Left: the default A-type potassium

model (gKA) was replaced with two other A-type models (gKA1: dark blue, Hay et al. [2011], ModelDB ID no. 139653; gKA2: light blue, Traub et al.

[2005], ModelDB ID no. 45539). Middle: the default delayed rectifier potassium model (gKDR) was replaced with two other delayed rectifier models

(gKDR1: red, Zhou and Hablitz [1996], ModelDB ID no. 3660; gKDR2: orange, Durstewitz et al. [2000], ModelDB ID no. 82849). Right: both A-type and

delayed rectifier models were replaced with other models (gKA1 + gKDR1, purple; gKA1 + gKDR2, magenta). (C) Model from B was simulated for 1000 ms

with a 1.5 nA current step. Firstly, the default A-type current model was replaced with each of the 243 A-type-labeled model on ModelDB (blue).

Secondly, the default delayed rectified current was replaced with each of the 188 delayed rectifier models on ModelDB (red). Finally, the default A-type

and delayed rectifier currents were replaced with a random sample of approximately 1% of all possible combinations of A-type and delayed rectifier

models on ModelDB (purple). Summary measures are shown for total number of spikes, total number of calcium spikes, mean inter-spike interval (ISI)

and coefficient of variation (CV) of ISI during the 1000 ms period. Black arrows represent the simulation results for the default model.

DOI: 10.7554/eLife.22152.002
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used to fit each model. Our efforts have grouped 2378 ion channel models into 211 clusters, dramat-

ically simplifying the search for an appropriate ion channel model.

We present our findings in an annotated, interactive web-interface with a short video manual

(ICGenealogy, 2016; https://icg.neurotheory.ox.ac.uk/), that allows filtered search of individual ion

channel models by metadata and relational information, and the comparison of channel model kinet-

ics. The underlying database is freely and programmatically accessible via a web application pro-

gramming interface (API). In an effort to make our resource compatible with experimental data and

new ion channel models, we offer the possibility to upload and assess the similarity of experimentally

recorded current traces (as well as new models and model traces) in the same topology. We show

an example of the use of this comparison through the analysis of an unclassified ion channel model,

as well as an experimentally recorded voltage-dependent potassium current from Drosophila mela-

nogaster. In summary, we provide a framework for the direct and automated comparison of models

and experiments to facilitate experimentally constrained modeling and quantitative characterization

of ion channel behavior.

Results

Categorizing ion channel models by metadata and ancestor-descendant
relationships
To build a map of ion channel model function, we categorized and analyzed a widely-used subset of

2378 voltage- and calcium-dependent ion channel models (’.mod’ files) in the NEURON simulation

environment (Hines and Carnevale, 2001; Carnevale and Hines, 2006). A set of ‘metadata’ was

extracted manually from the associated journal articles for each ion channel model file (Figure 2A,

top): reference information (Ref. Info, including author(s) of the model code), ion channel information

(I.C. Info: ion selectivity, gating mode, subtype), system information (Sys. Info: brain area, neuron

type, neuron region, animal model), as well as additional comments (Other: e.g. temperature con-

straints, see Materials and methods).

Based on ion selectivity and gating mode, the majority of all ion channel models (~75%) fell into

five classes (Figure 2B): voltage-dependent potassium (Kv), voltage-dependent sodium (Nav), volt-

age- dependent calcium (Cav), calcium-dependent potassium (KCa) and hyperpolarization-activated

cation (Ih) channel models. We recorded 74 different subtype labels across all classes (Kv: 32, Nav:

19, Cav: 20, KCa: 11, Ih: 5; Figure 2B, cf. Figure 2—source data 1). Prominent modeled neuron

types were pyramidal, interneuron, granule cell, and basket cell (Figure 2C), and prominent brain

areas included hippocampus, and cortex (Figure 2D). Other metadata also showed a broad variety

across ion channel models (ICGenealogy, 2016).

To denote family relations (Figure 2A, bottom), ion channel model A was labeled as a ‘descen-

dant’ of an older ‘ancestor’ ion channel model B if the publication reporting A cited the publication

for B as the source or starting-point of its channel dynamics, or if the code of models A and B were

sufficiently similar (Materials and methods). By establishing a citation relationship between different

models, we effectively create a genealogy of neuronal ion channel models, which describes their

lineage (not to be confused with the actual genetic ancestry of different types of ion channels). Visu-

alizing family relationships makes it apparent that many ion channel models form large families,

often with a highly-cited hub model that has many descendants (Figure 2E). On the other hand,

there are a large number of small families and model singletons that imply de novo ion channel

model creation, lack of appropriate citations, or translation from other simulators (noted in the meta-

datum comments). Subtype labeling mapped well onto families, but family identity did not guaran-

tee homogeneity of subtype or vice versa – all individual subtypes were found across several families

(see Figure 2E for Kv, and Figure 4—figure supplements 1 and 2A,F for other ion type classes).

Family relationships and metadata thus help to distinguish ion channel models, but the lack of

standardized annotations in a common nomenclature, as well as the sheer abundance of models

make it difficult to infer the degree of their functional diversity. Based on metadata alone, it is thus

difficult to choose an ion channel model for appropriation into one’s own work.
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Figure 2. Ion channel models can be categorized by metadata and ancestor-descendant relationships. (A)

Metadata were manually extracted from ModelDB and associated journal articles (top). Ancestor-descendant

relationship (bottom) was established between different models (see main text for description). (B) Models were

divided into five classes based on ion type: voltage-dependent potassium (Kv), voltage-dependent sodium (Nav),

voltage-dependent calcium (Cav), calcium-dependent potassium (KCa), and hyperpolarization-activated cation (Ih).

Each class is divided into subtypes, ordered from left to right according to group size. Uncommon subtypes are

grouped together (other). (C, D) Histogram of cell types and brain areas for each ion type, ordered from top to

bottom by the number of models. Colors as in B. (E) Pedigree graph displaying families of the Kv class, sorted by

family size. Each node represents one model, colored by subtype, and edges represent ancestral relations

between models (panel A, bottom). Note that unconnected models (181 total) are not shown. A: A-type, dr:

delayed rectifier, HH: Hodgkin-Huxley, m: m-type, n.s.: not specified, IR: inward rectifier, HVA: high-voltage

activating, N: N-type, R: R-type, P: P-type, l.t.: low threshold, LVA: low-voltage activating, AHP: after-

hyperpolarization, BK: big conductance, SK: small conductance, HCN: Hyperpolarization-activated cyclic

nucleotide-gated, pyr.: pyramidal, IN: interneuron, TCR: thalamocortical relay, RS: regular spiking, HIPP: hilar

perforant-path associated, h.m.: hilar mossy, IB: intrinsic bursting, hipp: hippocampus, bas. gan.: basal ganglia,

cerebell.: cerebellum, SCX: somatosensory cortex, DG: dentate gyrus, GC: granule cell.

Figure 2 continued on next page

Podlaski et al. eLife 2017;6:e22152. DOI: 10.7554/eLife.22152 4 of 22

Tools and resources Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.22152


Defining functional groups of models through voltage clamp protocols
and clustering
To quantify the functional relationships between ion channel models, we used a set of voltage-clamp

simulation protocols, in kind with those developed for the experimental characterization of ion chan-

nels and model fitting (Hodgkin and Huxley, 1952b; Willms et al., 1999; Ranjan et al., 2011). We

chose this procedure to assess the spectrum of possible dynamics in a model-free manner, that is,

without explicitly taking into account the underlying equations. This allows for the comparison of ion

channel models strictly based on their behavior, and, as we discuss later, the direct comparison with

experimental data.

Using the NEURON simulation environment (Hines and Carnevale, 2001; Carnevale and Hines,

2006), each ion channel model was placed individually into a model soma and its current responses

to five voltage-clamp protocols were recorded (Figure 3A, left; see Materials and methods, Fig-

ure 3—figure supplement 1 and Table 2 for full description). The protocols were designed to probe

the gating characteristics of ion channels, that is, activation, deactivation and inactivation, as well as

temporal dynamics during voltage ramping and repeated action potentials. Protocol parameters

were adjusted for each of the five ion classes separately. Current responses were normalized to

remove the dependence on the maximum conductance, and subsampled at particular regions of

interest (Figure 3A, dashed areas) to obtain a trace of characteristic data points for each protocol

(Figure 3B, Figure 3—figure supplement 1F). Using principal component analysis (PCA) across all

traces of a particular ion channel type, we obtained a final D-dimensional score for each ion channel

model, accounting for at least 99% of the variance across all channel models in each class. The

dimensionality D varied between 16 and 29 dimensions for the five classes (Kv: 16, Nav: 21, Cav: 29,

KCa: 16, Ih: 16). The Euclidean distance between any two given model scores was termed their ‘simi-

larity’ (Figure 3C, top). Finally, we used Ward’s clustering method (Ward, 1963) on the model

scores to establish an agglomerative hierarchy of ion channel model clusters (Figure 3C, bottom).

A suitable number of clusters was obtained through a variety of published cluster indexes (see

Materials and methods, Figure 3—figure supplements 2 and 3). For the Kv class, this resulted in 60

clusters with distinct responses (Figure 4) and small intra-cluster variability (Figure 3—figure supple-

ment 4). The other classes divided similarly into 38, 43, 44, and 26 clusters for Nav, Cav, KCa, and

Ih, respectively (see Figure 4—figure supplements 1 and 2). We named clusters according to the

most common label of their members and we denoted the ion channel model closest to the mean

score coordinate of each cluster as its reference model. While many clusters are relatively homoge-

neous in terms of subtype label, there are several that feature a mix of different subtypes (see the

section on variability below). Therefore, the subtype label of clusters should be used as a guide for

data exploration rather than as a strict classifier.

We found that most ancestor-descendant families fell within one cluster, indicating consistency

between the family relations collected from the papers and ion channel model behavior (Figure 4A–

B, Figure 4—figure supplements 1 and 2B,C and G,H). However, a common subtype label did not

guarantee a common cluster identity (Figure 4B, Figure 4—figure supplements 1 and 2C,H). Many

models with the same subtype fell into different clusters. For example, the ~250 A-type-labeled Kv

ion channel models fell into 14 clusters (although only five clusters comprised over 90% of them,

Figure 4B). These clusters contained few other subtype labels, suggesting that A-type is generally a

consistent label for at least five similar, yet distinct kinetic behaviors. Moreover, the similarity

between these clusters was generally high (and thus they were plotted within the same vicinity on

the wheel of the ‘Circos’ plot, Figure 4D; see also Materials and methods). Other subtype labels

across all ion channel types showed similar results (Figure 4—figure supplements 1 and 2C,

H). Interestingly, for four of the five ion type classes (KCa being the exception), most isolated single-

model clusters corresponded to genealogical singletons, supporting the idea that these ion channel

models are indeed unique, and do not appear isolated simply due to missing ancestor-descendant

Figure 2 continued

DOI: 10.7554/eLife.22152.003

The following source data is available for figure 2:

Source data 1. Table of subtypes for each ion type class.

DOI: 10.7554/eLife.22152.004
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links. However, this was not true for all genealogical singletons, many of which were kinetically

aligned to larger families and consequently fell into the same clusters. In conclusion, clustering

allowed us to identify 211 distinct groups of ion channel models that share similar behavior, regard-

less of publication context or subtype labeling.

Ion channel model groups defined by common metadata show
variability in behavior
The variability in the behavior of identically-labeled ion channel models in different clusters may

stem from various sources. There is substantial evidence that individual neurons of any given type

display heterogeneity in ion channel expression and regulation (Marder and Goaillard, 2006;

Schulz et al., 2008). Furthermore, characterizing an ionic current using the average response across

a population may not be sufficient to capture the appropriate behavior at the neuronal level

(Golowasch et al., 2002), as there may be several distinct ‘solutions’ (Prinz et al., 2004). Diversity

and variation in ionic currents even within a single cell type may arise from such mechanisms as splice
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Figure 3. Voltage-clamp protocols for the quantitative analysis of ion channel models. (A) Left: five voltage clamp protocols were used to characterize

ion channel responses recorded in single compartment somata simulated in NEURON (see Figure 3—figure supplement 1 and Tables 1 and 2 for full

description). Multiple lines indicate a series of increasing voltage steps with the same time sequence. Right: current response traces are shown for an

example model. Dashed regions indicate response times used for data analysis. (B) Current responses were subsampled and appended, then

dimensionality-reduced by principal component analysis (PCA) to form a condition score vector for each protocol. These score vectors were further

normalized and dimensionality-reduced to form a total score vector. (C) The first three principal components of the score vector are shown for Kv ion

channel models (top). Scores were clustered using an agglomerative hierarchical clustering technique (bottom). Distinct clusters (noted by colors) form

when a cutoff (dashed line) is introduced in the distance between hierarchical groupings, chosen based on several cluster indexes (see Figure 3—

figure supplements 2 and 3). Cluster representative models (bold squares with arrows) are selected as reference models for each cluster (see Materials

and methods).

DOI: 10.7554/eLife.22152.005

The following source data and figure supplements are available for figure 3:

Source data 1. Table of omitted files.

DOI: 10.7554/eLife.22152.006

Figure supplement 1. Graphical description of the five voltage-clamp protocols used for ion channel model analysis.

DOI: 10.7554/eLife.22152.007

Figure supplement 2. Cluster indexes for Kv and Nav classes.

DOI: 10.7554/eLife.22152.008

Figure supplement 3. Cluster indexes for Cav, KCa and Ih classes.

DOI: 10.7554/eLife.22152.009

Figure supplement 4. Comparison of intra- and inter-subtype variability with intra- and inter-cluster variability.

DOI: 10.7554/eLife.22152.010
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variants, differential subunit combination, and post-translational modification like phosphorylation

(Schulz et al., 2008; Li et al., 2007; Campiglio and Flucher, 2015; Levitan, 1994; Misonou et al.,

2004).

This biologically variability may also contribute to the diversity in ion channel models that we

observe in our database. Consistent with this notion, the behavior of groups of ion channel models

Figure 4. Quantitative analysis of Kv ion channel models: functional map and clusters of common behavior. (A) Pedigree graph of the Kv class (cf.

Figure 2E), colored by membership in the 11 largest clusters in the class (named by most prevalent subtype, bottom). Membership to other clusters is

indicated by gray color. Cluster ID is given in parentheses for easy comparison with website. (B) ‘Sankey’ diagram for the Kv ion type class, showing the

relation between subtype, cluster identification and family identification, each ordered from top to bottom by increasing group size. The 11 most

common subtypes are shown in color, with all others grouped together in gray. Small families (size 1 to 6 members) are grouped together. (C) Plot of

Kv models in the first two principal components of score space. Colors indicate membership in one of the 11 largest clusters in the class, with

membership to other clusters colored in gray. Clusters are named by their most common subtype, with the proportion of that subtype specified in the

legend. Points lying very close to each other have been distributed around the original coordinate for visualization. (D) ‘Circos’ diagram of the Kv ion

type class. All unique ion channel models are displayed on a ring, organized by cluster identification. From outside to inside, each segment specifies:

cluster reference model (only displayed for large clusters), cluster subtype(s) (all subtype labels that contribute at least 30%), number of citations,

runtime, number of duplicates, model subtype, as well as a dendrogram of cluster connections (black) and family relations (gray). A: A-type, dr: delayed

rectifier, HH: Hodgkin-Huxley, m: m-type, n.s.: not specified, IR: inward rectifier. See Figure 4—figure supplements 1 and 2 for other ion type classes.

DOI: 10.7554/eLife.22152.011

The following figure supplements are available for figure 4:

Figure supplement 1. Nav and Cav class genealogy and clustering.

DOI: 10.7554/eLife.22152.012

Figure supplement 2. KCa and Ih class genealogy and clustering.

DOI: 10.7554/eLife.22152.013
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defined by common subtype, neuron type and brain area (Figure 5A, plotted data points) is often

more diverse than that of models defined by a common cluster (Figure 5A, dashed line). More spe-

cifically, we find no clear correspondence of any given cluster with categories such as brain area and

neuron type (Figure 5B). Nearly every cluster contains ion channel models that have been used in

pyramidal cells (Figure 5B, left, blue) of both cortex and hippocampus (Figure 5B, right, blue and

green). In the same vein, e.g., A-type-labeled models that have been used in pyramidal cells of the

hippocampus (117 models) are found in nine clusters (cf. ICGenealogy, 2016).

A portion of the variability may also stem from non-biological sources, such as differences in

the experimental setup, as well as model fitting, and idiosyncratic changes to individual ion channel

model implementations. Consistently, we find that models defined by common families (connected

directly or indirectly through ancestor-descendant relationships) can occasionally fall into different

clusters (Figure 4A).

It is not possible to disentangle how much of the variability in ion channel kinetics is due to each

of these components. While our resource provides, for the first time, a catalogue of all models cre-

ated for each system, and how they relate to one another, we remain agnostic about the sources of

variability seen in the models that we analyze (cf. Discussion).

Automated comparison of new ion channel models and experimental
data
Our analysis framework, accessible through the web interface, enables the automated analysis of

new ion channel models as well as experimental data (Figure 6A). To illustrate this process, we

uploaded and tested a previously uncatalogued Kv model from a hippocampus CA1 pyramidal cell

model (kad.mod from Hsu et al. (2015); ModelDB ID no. 184054). We compared its scores and

response traces to the presently available 931 Kv models (Figure 6B) and determined its relation to

previous ion channel implementations. We found that the ion channel model fits well within a cluster

of mostly pyramidal A-type-labeled ion channel models used in simulations of rodent hippocampus,

thereby verifying the assumed characteristics of the model.

The framework can also be used for the comparison of experimental data and models. To illus-

trate, we uploaded and tested an experimental dataset of recordings from Kenyon cells in
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Figure 6. Automated analysis of new models and experimental data. (A) Flowchart of data processing steps involved in automated comparison. Source

code for model files written in NEURON can be uploaded to the website, and current responses are automatically generated. Current traces are

processed to compute scores, which are compared to all models in the resource (illustrated in B). Additionally, raw current traces obtained

experimentally (or from models in other languages) can be uploaded and analyzed directly (illustrated in C). (B) Example analysis and comparison of a

new ion channel model (kad.mod from Hsu et al. (2015); ModelDB ID no. 184054). Top: Segments of the current response traces (red) for activation

(voltage steps 10–60 mV) and ramp protocols (first half), along with the closest four clusters (other colors: mean currents, gray lines: individual currents).

Bottom: first two principal components of score space for activation and ramp protocols, as well as total score. (C) Example analysis of in vivo

recordings of a K+ current from Drosophila Kenyon cells (see Materials and methods for details and Figure 6—figure supplement 1 for full traces) and

comparison to ICG resource. Top: mean (n = 8 recordings, black) and individual recordings (green). Bottom: mean (black dot) and individual

experimental recordings (green dots) plotted in the first two principal components of score space (ellipsoid illustrates the variance across individual

recordings). Comparison is made to the nearest (in score space) ion channel model in the resource (magenta; Kv4_csi, ModelDB ID no. 145672). Gray

dots in B and C are scores of Kv channel models in the resource.

DOI: 10.7554/eLife.22152.015

The following figure supplement is available for figure 6:

Figure supplement 1. K+ current recordings from Drosophila Kenyon cells.

DOI: 10.7554/eLife.22152.016
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Drosophila melanogaster. Voltage-gated cationic currents across the membranes of these neurons

are thought to be dominated by A-type K+ channels, in particular Shal/Kv4 (Gasque et al., 2005).

This renders Kenyon cells a suitable neuronal cell type to test the biological relevance of our volt-

age-clamp protocols in an in vivo setting. Current responses were recorded in targeted whole-cell

patch clamp experiments in vivo (see Materials and methods). The recordings were performed using

our five standardized voltage-clamp protocols, allowing us to transform and compare the experi-

ments directly to ion channel models in the same ’score’ space (Figure 6C). The comparison

revealed a close match to an existing model from our resource, and thus characterizes the behavior

of the ion channel as similar to a mammalian Kv4 ion channel (Figure 6C; Fineberg et al. (2012);

Kv4_csi, ModelDB ID no. 145672).

Discussion
Neuroinformatics has become an increasingly important part of neuroscience research, as new tech-

nology and large-scale research projects push the field into the realm of big data (Akil et al., 2011;

Ferguson et al., 2014; Grillner, 2014; Tripathy et al., 2014). Importantly, the need for assessment

and aggregation of published knowledge extends beyond experimental data, and has recently

started encompassing computational models of neural function (Hines et al., 2004; Gleeson et al.,

2013). Here, we have performed a meta-analysis of voltage- and calcium-dependent ion channel

models coded in the NEURON programming language available in the database ModelDB

(Hines et al., 2004). Our approach of combining metadata extracted from publications with a kinet-

ics-based analysis allowed us to provide detailed information regarding the identity of each ion

channel model in the resource, filling in missing or ambiguous data, and validating the functional

properties of channel models against their sometimes ambiguous nomenclature. Furthermore, we

provide a framework for the large-scale comparison of models, both with each other and with

experiments using the same standardized protocols, thus paving the way towards a unified charac-

terization of ion channel function.

The voltage-clamp protocols used in this study were designed to efficiently probe the kinetics of

all ion channel types considered here (Hodgkin and Huxley, 1952b; Willms et al., 1999;

Ranjan et al., 2011). Measuring the kinetic responses of each channel model allowed us to compare

models regardless of their specific implementation. Notably, our method is amenable to the addition

of other protocols that may be better suited to separate certain models. However, there is evidence

that simple step and ramp current pulses are sufficient to probe the underlying kinetics of neurons

(Druckmann et al., 2011), similar to the voltage-clamp protocols that we use here. Additionally, the

simplicity of our protocols makes experimental comparison easier.

Additionally, our study can be extended beyond the selection of ion channel models considered

here. We limited our analysis to voltage-dependent and calcium-dependent ion channel models

coded in the NEURON language, but, given the appropriate protocols, other types of ion-channels

can be included. The same protocols can also be used to integrate models written for other simula-

tors, or even simulator-independent formats, e.g., NeuroML (Cannon et al., 2014). We have taken

steps to integrate our resource and visualizations tightly with existing online resources, notably Mod-

elDB (Hines et al., 2004).

The end result of our work is a dramatically reduced group of candidate ion channel models to

test when looking for particular ion channel dynamics. Of the 2378 models in our resource, we could

identify 1132 models as unique, and further reduced this to 211 groups with substantially different

kinetics. However, this does not eliminate the task of finding the most appropriate ion channel

model current, and we stress that the partition of channel models into clusters of similar response

properties does not imply that models in the same cluster are necessarily redundant. Clustering is

not trivial, and while we have used several measures to determine an appropriate partition of mod-

els, we cannot escape a certain level of ambiguity. Intra-cluster differences may still be important

depending on the particular simulation at hand. Since the responses of different channels vary slowly

and continuously rather than in discrete steps along the dimensions of the manifold of scores (see

e.g. Figure 4B), the data may also be amenable to more sophisticated clustering and machine-learn-

ing approaches. To this end, the raw response data and scores have been made publicly available

(ICGenealogy, 2016).
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Furthermore, the variability in behavior of ionic currents seen here and elsewhere (Marder and

Goaillard, 2006) suggests that there is no clear answer to the question of which ion channel model

(and parameters) to use for a given neuronal simulation at hand. However, for modellers who would

like to be more diligent about the sources of ion channel models and the comparability across mod-

els of the same underlying biological phenomenon, our resource takes a step in this direction.

On a larger scope, it has been suggested previously that neuron model parameters should be

viewed as regions, rather than as individual representative points in parameter space

(Goldman et al., 2001). It may be possible that the variability seen at the level of individual ion chan-

nel models covers such regions, and organizes into a handful of distinct ‘solutions’ to particular

model behaviors on the neuronal scale (O’Leary et al., 2014). In this sense, our database would

lend itself to systematic analyses of the co-variability of sets of published ion channel models that

are able to elicit desired behaviors in conductance-based neuron models (see also Figure 1), in line

with previous work (Prinz et al., 2003).

We provide an interactive browser (ICGenealogy, 2016), which acts as a complement to existing

resources such as ModelDB. It allows the comparison of channel models in five views: a similarity

view focusing on the channel’s response kinetic scores (Figure 7A), a hierarchical tree view focusing

on genealogical data (Figure 7B, top), an XY view to sort data by a given set of metadata dimen-

sions (Figure 7B, middle), and a circular cluster view (Figure 7B, bottom). All these views feed a cen-

tral comparison tool (Figure 7C), in which the metadata and traces for user-selected channel models

can be viewed side-by-side. For specific examples of how to utilize this browser and to search for

specific ion channel models, please refer to the instruction video (ICGenealogy, 2016) and manual

(Supplementary file 1).

Because our voltage-clamp protocols are inspired by experimental procedures, ion channel mod-

els can be compared directly to experiments in an automated fashion. We have taken the first steps

in this direction by showing a comparison of both a new model and an experimental dataset to the

resource here (Figure 6). While it is beyond the scope of the current study to integrate ion channel

information from the IUPAR/BPS Guide to Pharmacology (Pawson et al., 2014), Channelpedia
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of score space, colored by subtype (legend on left). Hovering over models brings up information tooltip (center), and clicking on a model displays
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(Ranjan et al., 2011) or other sources, these are important future steps which would help standard-

ize nomenclature. Beyond its usefulness for cataloguing ion channel model behavior and pedigree,

our resource will enable better experimentally-constrained modeling, and presents a first step

towards a unified functional map of ion channel dynamics in model and experiment.

Methods and materials

Pyramidal cell model (Figure 1)
A model of a layer 2/3 pyramidal cell was adapted from a previous study (Traub et al., 2003), Mod-

elDB ID no. 20756. It contained 68 soma-dendritic compartments and six axonal compartments, with

the following active conductances: leak (gL), transient (inactivating) Na+ (gNaF), persistent (noninacti-

vating) Na+ (gNaP), delayed rectifier K+ (gKDR), transient inactivating K+ (gKA), slowly activating and

inactivating K+ (gK2), muscarinic receptor-suppressed K+ (gKM ), fast voltage- and calcium-dependent

K+ (gKC), a slow calcium-dependent K+ (gKAHP), low-threshold inactivating Ca2+ (gCaT ), high-thresh-

old non-inactivating Ca2+ (gCaH ), hyperpolarization-activating cation conductance (gIh). We refer the

reader to Traub et al. (2003) for channel kinetics, distribution and other details of the model.

The neuron model was simulated in the NEURON simulation environment (Hines and Carnevale,

2001; Carnevale and Hines, 2006), with a current step input injected into the apical dendrite, fol-

lowing Figure 2 of Traub et al. (2003). The protocol was as follows: 400 ms at �0.15 nA, followed

by 1000 msec at 1.5 nA. A subset of this trace is shown in Figure 1B, comprising 50 ms at �0.15 nA

and the first 200 msec at 1.5 nA. The gray traces in Figure 1B show the default behavior of the neu-

ron model in response to injected input. The following four measures were computed for each spike

train: total number of spikes, total number of calcium spikes, mean inter-spike interval (ISI) and coef-

ficient of variation of ISI.

The stimulation paradigm was repeated in the presence of alternate ion channel models for gKA,

taken from ModelDB (243 models total). All other ionic conductances, parameters and distributions

remained the same. This was further done with alternate ion channel models for gKDR in a separate

simulation (188 models total), with gKA set back to the original model. Finally, this was done in the

case of replacing both gKA and gKDR currents. A random subset of approximately 1% (441 of the total

45684) of pairs of alternate ion channel models were run together.

The ModelDB database, NEURON language and nomenclature
The ModelDB database archives published neuron and network models (Hines et al., 2004). It con-

tains over 1000 entries, with thousands of ion channel models. At the time of analysis, 496 of the

entries were implemented in the NEURON language (Carnevale and Hines, 2006; Hines and Carne-

vale, 2001), making it the most used simulation environment on the database. Customizable ion

channel models are coded in NEURON in so-called .mod files (with suffix ‘.mod’) (Hines and Carne-

vale, 2000). Mod files for all NEURON entries were downloaded from the ModelDB website. Each

mod file was renamed by adding the ModelDB ID as a prefix to the file, in the following way:

ID_name.mod, where ID is the ModelDB ID, and name is the original name of the .mod file. 46 .mod

files contained more than one current of the same ion type, and were separated into distinct files for

each one. The suffix ‘icgXY’ was appended to the name, where X was the ion type, and Y was the

number of the current, beginning with 1 (e.g., 1234_kv_icgK2.mod for the second Kv current in file

1234_kv.mod). Furthermore, some ModelDB entries contained more than one file with the same

name. These files were added separately and given unique names by appending a version number

to the name – e.g. ‘_v2’ for the second file. The total number of files collected from the database

was 3495.

Collection of metadata
Metadata information was collected using all information in journal articles and files associated with

each ModelDB entry of interest (SOM). Each field is listed below and defined. Note that some chan-

nel models may have missing entries for information that was not stated explicitly in the journal

articles or ModelDB. Further, we stress that metadata items corresponding to the intended neuron

type, brain area and animal are strictly associated with the modeling context, and are not necessarily

representative of the experimental ion channels found in that particular neuron, brain area or animal.
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. ModelDB ID. Identification number associated with each entry on ModelDB. All channels from
the same entry have the same number.

. PubMed ID. The PubMed citation ID of journal articles associated with this channel’s ModelDB
entry; may contain multiple elements, and can be empty for a select few ModelDB entries for
which no articles were found on PubMed.

. ion type. The ion type, or permeability, of the channel model, as listed in the journal article
and .mod file. The following ion types were analyzed: potassium (K), sodium (Na), calcium (Ca),
nonspecific (NS). If models contained more than one current, all ion types were recorded sepa-
rately. Other ion types were registered but not included in the analysis.

. gating mode/mechanism. The dynamic simulation variable that modulates the kinetics of the
model, such as voltage (v), calcium (ca), voltage and calcium (v/ca), sodium (na), chloride (cl),
light (o), and g-protein coupled (g). Only v channel models were included in the analysis, with
the exception of ca and v/ca models exclusively for the K ion type.

. subtype. The listed ion channel type, as detailed in the journal article or the .mod file. Sub-
types were listed as mentioned without conformation to any naming convention, e.g.,
(Ashburner et al., 2000; Yu and Catterall, 2004). If no subtype was given, then the subtype
was recorded as not specified. A full list of all recorded subtypes is found in Figure 2—source
data 1.

. author. Listed author(s) of the .mod file (programmers). If authors were not specified in the .
mod file or on ModelDB, we recorded the field as not specified.

. animal. The animal model (and age, if specified) emulated in simulations, either stated explic-
itly, or inferred from the journal article.

. brain area/layer. The emulated brain area and layer of the simulation, as stated explicitly, or
inferred from the journal article.

. neuron type. The emulated neuron type of the simulation. May be several types, or listed as
general if no neuron type was specified.

. neuron region. The neuron region that the ion channel is found in, divided into dendrites,
soma, axon, axon hillock, or specific areas of dendrites or axon.

. comments. Comments from the .mod file itself and any other information about the channel
and model from the journal article, such as previous models or experimental data that were
used to constrain the model.

. runtime [ms]. Elapsed CPU time for running 10 repetitions of a single voltage-clamp protocol
(action-potential). In plots and on the web interface, we simplify model runtimes by assignment
to one of four quartiles of the distribution of runtimes of all models in each class.

. temperature. Details about the model’s temperature dependence, and also the temperature
at which simulations and/or experiments were performed as described in the journal article.

. citations. Estimated number of citations as available through Google Scholar, scraped monthly
to update the entries.

A total of 3495 .mod files were collected from ModelDB. 366 of these files were tools, full neuron

models, or other items that do not function as ion channel models. Out of the remaining 3150 files, .

mod files were placed into one of five groups: voltage-dependent potassium (Kv), voltage-depen-

dent sodium (Nav), voltage-dependent calcium (Cav), calcium-dependent potassium (KCa), and

hyperpolarization-activated cation (Ih). The calcium-dependent potassium group contained both ca

and v/ca channel models without any distinction. These five groups accounted for 2378 files, referen-

ces for which are available in Supplementary file 2. Mod files that did not fit this description were

omitted from the analysis. This included pumps and active dynamics (290), receptor models (370),

and models with other gating dependencies or ion types (68).

We note that the voltage-dependence of ion channels may stem from different underlying mecha-

nisms. This includes traditional voltage-gated ion channels that contain a voltage-sensitive domain

(Catterall, 1995), as well as dependence that occurs indirectly through interaction with other mole-

cules such as polyamines and magnesium (Nichols and Lopatin, 1997), or intracellular signalling cas-

cades (Kase and Imoto, 2012). The ion channel models considered here are often agnostic to the

biophysical mechanism, and different types of models can be used to model an arbitrary voltage-

conductance relationship (Destexhe and Huguenard, 2000). Therefore, voltage-dependence as dis-

cussed in this work refers to the functional relationship between voltage and channel conductance,

and does not generally depend on any particular biological mechanism.
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Ancestor-descendant relationships
The genealogy of ion channel models was defined by an ancestor-descendant relationship. Each

channel model was linked to previous models if a relationship was listed in the journal article. We

denoted the groups of models connected by these relations as ‘families’. This relation could be spe-

cific, along the lines of ‘the A channel model’s kinetics were adapted from the B channel model in a

previous journal article’. Other times, the description was vague, e.g., stating that the neuron model

was adapted from a previous one, with no explicit reference to ion channel kinetics. When no infor-

mation was listed about previous kinetics, both in the journal article and model files themselves, the

channels were assumed to have no ancestors and to have been created de novo. However, in many

situations obvious similarity in .mod file code as verified by a diff command was sufficient to link

models to previous ones. In these cases, relations were established even when they were not stated

in the journal articles. This task was done by hand, and as such is prone to mistakes. We repeated

the collection of metadata, including ancestry relations, a second time in order to correct for poten-

tial errors – we hope to correct any remaining missing or superfluous ancestral relations with the

help of user submissions (ICGenealogy, 2016).

We note that the use of the word genealogy in this work is used exclusively to describe the ances-

try of ion channel models. It does not refer to the genetic lineage of ion channels as found in biol-

ogy. Furthermore, this genealogy does not necessarily conform to a pedigree as defined by journal

article reference information, as sometimes ion channel models are combined from several papers,

or references may be missing.

Voltage-clamp protocol
Mod files were run individually in a NEURON simulation by generating a single soma compartment

of length and diameter equal to 20�m and cytoplasmic resistivity of 150
cm. A passive conductance

was set to 3:334 � 10�5S=cm2. The simulation temperature was set to 37
�C. Reversal potentials were

specified separately for each ion type. Some models (172 files) featured explicit calculation of the

reversal potential, so internal and external concentration values were added as extra variables to

make these equivalent. Parameter values for reversal potential and ion concentrations can be found

in Table 1.

A particular model was placed in the soma and a series of five voltage-clamp experiments were

run (Figure 3—figure supplements 1; Table 2), with the current output being recorded. Based on

the desired effect of each protocol, only particular sections of the protocols were used in comparing

the kinetics (Figure 3—figure supplement 1, dashed lines; also noted in Table 2). The activation

protocol featured a single voltage step level, meant to capture the activation kinetics of the model.

The inactivation protocol featured a varying voltage step for a long duration, followed by a second

fixed voltage step, measuring the inactivation due to the first step. The deactivation protocol fea-

tured a single voltage step at a high voltage, followed by a second voltage step of varying ampli-

tude, meant to measure the deactivation kinetics that occur as the voltage is changed from one level

to the other. The ramp protocol featured a series of four up and down ramping voltages, at different

slopes. Finally, the action potential protocol features voltage deflections as recorded from the soma

of a neuron exhibiting a regular spiking pattern. This was recorded from a L2/3 pyramidal neuron of

P14 rat somatosensory cortex (R Ranjan, unpublished). Each of the five ion type groups featured dif-

ferent voltage values and durations based on differences in time constants, reversal potentials, and

voltage ranges at which each ion channel class is known to be active – no quantitative comparisons

were made between classes. Additionally, calcium gated channel models were simulated at seven

different calcium concentrations based on known concentrations (Neher and Sakaba, 2008). Values

were expressed in concentration as 10
�xmM, with x taking the following values:

2:0; 2:5; 3:0; 3:5; 4:0; 4:5; 5:0. Voltage-clamp protocols are available for download from the ICG website

(ICGenealogy, 2016).

A substantial number of .mod files (952 files) had to be slightly modified to work with the proce-

dure, in one of the following ways: (1) reversal potential was renamed and made a global variable to

be accessed from .hoc file, (2) NONSPECIFIC CURRENT was changed to a USEION statement with

the correct ion type (3) extra functions and/or data were included through .inc files, data tables or

extra .mod files (4) max conductance was made nonzero (arbitrarily set to 1.0) (5) file was split into

multiple files for each current present (6) POINTER variables were removed (7) internal temperature
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initialization was removed, and temperature dependence was set to use the global variable ‘celsius’.

The changed files will be made available upon publication.

All ion channel models were taken from the ModelDB repository, as published, with small

changes as noted above. This included the assumption that model parameters as chosen by the

authors were set to reproduce a given, desired, dynamical behavior which matches experimental

data or other constraints. We did not consider changing the internal parameters of given models –

this would prevent any feasible comparison of the models, since most given models would be able

to generate a large variety of behaviors under changing parameter settings (data not shown).

A small number of .mod files were omitted from the analysis due to problems with running the

simulation protocols (44 files, Figure 3—source data 1). These included files that did not compile

for unknown reasons, and files that produced abnormal oscillations, or extreme values. The count of

these files was 16 for Kv, 20 for Nav, 5 for Cav, 2 for KCa, and 1 for Ih.

Data extraction and processing
The most recent version at the time of writing, version 7.3, of the NEURON language

(Carnevale and Hines, 2014) was used to run the simulation protocols. All simulations were run in

Ubuntu 12.04.5 on a single core of a Intel Core i7 @ 2.67 GHz with 24 Gigabytes of RAM. NEURON

models were injected with the five different voltage clamp protocols described above and inte-

grated at a timestep of dt ¼ 5e�2ms. The resulting current traces were processed in the following

manner. First, inward currents (represented as negative deflections from baseline) were flipped by

multiplying the entire trace by �1. Next, all current traces were normalized by dividing by the maxi-

mum trace value in order to make the result invariant to the max conductance parameter (e.g., �g in

Hodgkin-Huxley sodium current INa ¼ �gm3hðVm � ENaÞ). We reasoned that the maximum current

amplitude depends on the number of channel models in a particular area and was thus not related

to the kinetic behavior of the channels. The traces were then subsampled at a resolution of 512 data

points within the regions of interest stated above. Finally, for protocols containing graded steps

(activation, inactivation, deactivation) the subsampled responses across all c graded voltage steps

were appended into one representative vector of length L ¼ 512 � c. For calcium gated channels, we

performed a similar procedure for each of the k calcium concentrations separately, and then

appended them into one representative vector of length L ¼ 512 � k � c. See Figure 3—figure sup-

plement 1F for a schematic of this process.

Similarity measure
To remove the time dependence of current response waveforms, we performed discrete principal

component analysis (PCA)(Ramsay and Silverman, 2005) across the temporal dimension, similar to

approaches in spike sorting (Lewicki, 1998). To this end, the subsampled and appended current

responses for each protocol across all N channels in a family yielded a NxL dimensional data matrix,

in which we normalized each column by Z-scoring: we subtracted its mean and then divided by its

standard deviation. This matrix was then dimensionality reduced by PCA across the L temporal

entries, where we chose the reduced dimensionality to capture 99% of the variability. To normalize

the range of scores across conditions while keeping the covariance structure, we divided the score

vector of each protocol by the standard deviation of all score entries of this protocol. These normal-

ized scores (denoted by condition scores) were then combined into a final score vector. Further

Table 1. Parameters for reversal potential and inside and outside concentrations used in simulation

protocols for five ion type classes. Ionic concentrations were not used for Ih currents.

Erev (mV) ½ion�in (mM) ½ion�out (mM)

Kv �86.7 85.0 3.3152396

Nav 50.0 21.0 136.3753955

Cav 135.0 8.1929e-5 2.0

KCa �86.7 85.0 3.3152396

Ih �45.0 � �

DOI: 10.7554/eLife.22152.018
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correlations across protocols were removed by again dimensionality-reducing by PCA (99% variance

criterion) to yield a final score vector for each model. Since response traces were relatively noise-

free, a high PCA dimensionality can be chosen to capture current response dimensions that are rare

across the population of models. The precise value of the variance criterion in both PCA steps,

although slightly changing the resulting scores, did not affect the clustering results reported above.

The similarity between two channel models was then defined as the Euclidean distance of their

dimensionality reduced scores.

In summary, the principal components calculated in the first step represented response curves

along which the current traces were projected to yield intermediate scores. The second transforma-

tion was a linear mixing matrix, which combined these intermediate scores. Final scores had between

16 and 29 dimensions depending on the family analyzed, which additionally allowed the efficient

storage of the characteristics of the thus compressed response properties in our resource. The linear

PCA transformations, once calculated, can be applied to additional channel models and their current

Table 2. Voltage-clamp protocol parameters for the five ion type classes. Times are stated in units of ms, voltages in units of mV. See

Figure 3—figure supplement 1 for graphical description. Items T�
A and T�

B represent the starting and ending times, respectively, of

the regions used for analysis (dashed areas in Figure 3 of the main text, as well as Figure 3—figure supplement 1).

Act

Ion type V0 V1 V2 DV T1 T2 T3 T�
A T�

B

Kv �80 �80 70 10 100 500 100 100 700

Nav �80 �80 70 10 20 50 30 18 100

Cav �80 �80 70 10 100 500 100 98 700

KCa �80 �80 70 10 100 500 100 95 605

Ih �40 �150 0 10 100 2000 100 95 2105

Inact Ion Type V0 V1 V2 V3 DV T1 T2 T3 T4 T�
A T�

B

Kv �80 �40 70 30 10 100 1500 50 100 1600 1700

Nav �80 �40 70 30 10 100 1500 50 100 1580 1750

Cav �80 �40 70 30 10 100 1500 50 100 1580 1750

KCa �80 �40 70 30 10 100 1500 50 100 1595 1700

Ih �40 �150 �40 �120 10 100 1000 300 100 1095 1405

Deact Ion Type V0 V1 V2 V3 DV T1 T2 T3 T4 T�
A T�

B

Kv �80 70 �100 40 10 100 300 200 100 400 600

Nav �80 70 �100 40 10 20 10 30 20 29 80

Cav �80 70 �100 40 10 100 300 200 100 380 700

KCa �80 70 �100 40 10 100 300 200 100 395 605

Ih �40 �140 �110 0 10 100 1500 500 400 1595 2105

Ramp Ion Type V0 V1 T1 T2 T3 T4 T5 T6 T7 T8 T9 T�
A T�

B

Kv �80 70 100 800 400 400 400 200 400 100 100 100 2800

Nav �80 70 100 800 400 400 400 200 400 100 100 98 2800

Cav �80 70 100 800 400 400 400 200 400 100 100 98 2800

KCa �80 70 100 800 400 400 400 200 400 100 100 100 2800

Ih �80 70 100 800 400 400 400 200 400 100 100 100 2800

AP Ion Type T1 T�
A T�

B

Kv 1800 100 1800

Nav 1800 98 1800

Cav 1800 98 1800

KCa 1800 95 1655

Ih 1800 95 1655

DOI: 10.7554/eLife.22152.019
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responses and allow us to efficiently score new channels and easily evaluate them against all other

channels in the resource (ICGenealogy, 2016).

Clustering
For clustering of channel scores, we used Ward’s minimal variance linkage (Ward, 1963) for hierar-

chical clustering, as implemented in the MATLAB Statistics Toolbox (R2015A, The MathWorks Inc.,

Natick, MA). This method can be used to produce a division of the set of all channel models into an

arbitrary number of ‘similar’ clusters, the number of which has to be constrained by internal criteria

(we assumed no a-priori existence of classes in this dataset) (Halkidi et al., 2001). To this end we

employed a range of internal clustering evaluation measures, which indicate the emergence of an

appropriate number of clusters. Although the evaluation of these measures requires some heuristics,

they have been well established and can guide the decision as to which number of clusters to

choose. Concretely, these are: the Silhouette criterion (Rousseeuw, 1987), the Dunn index

(Dunn, 1973), the Davies-Bouldin index (Davies and Bouldin, 1979), and the Calinski-Harabasz mea-

sure (Calinski and Harabasz, 1974), also implemented in the MATLAB Statistics Toolbox (R2015A,

The MathWorks Inc., Natick, MA). For the Dunn index, the Silhouette index and the Calinksi-Hara-

basz measure, high values indicate mostly compact and well-separated clusters. The Davies-Bouldin

index also indicates compactness and separation, however for low values. For details and reviews on

these clustering indexes see e.g., Milligan and Cooper (1985) and Halkidi et al. (2001).

Values for the indexes and heuristics applied to arrive at the cluster numbers of the main text are

given in Figure 3—figure supplements 1 and 2. Due to the natural partition of our dataset into five

conditions used to calculate the final score, we also included a measure of heterogeneity computed

directly on the traces of each condition, which we termed the ‘Inner distance’. For a given condition,

let sj 2 R
512*c be the appended (over all possible voltage steps c) subsampled current responses,

where j 2 1; . . . ; nchannelsf g runs over all channels. Let Ckjk 2 f1; . . . ; nclustersgf g be a clustering of all

channels – a collection of sets, such that each channel index j is contained in a single set. Let ck ¼

1

jCk j

P
j2Ck

sj be the mean response trace of each cluster. The inner distance is then calculated as the

scatter around the mean, averaged over all clusters:

dinner ¼
1

nclusters

X

k

1

jCkj

X

j2Ck

ksk � ckk: (1)

To make the measure comparable across different conditions, which might have different values

of c (the number of voltage steps), we define the norm as ksjk ¼
1

c�512

Pc�512
i¼1

jsjðiÞj.

A number of additional linkage methods (complete, single, average) and metrics (cityblock,

squared Euclidean) were also evaluated. While giving comparable performance on a synthetic test

set, they yield mostly inferior subsections of the full set of channels with very high numbers of single

elements being isolated as separate clusters.

Assessment of protocols
To qualitatively assess the necessity of the voltage-clamp protocols for separation of labeled sub-

types, the condition scores of all channel models of a particular subtype were compared with those

of other subtypes (Figure 3—figure supplement 4). We show that certain protocols are more

important for differentiating particular subtypes: for example, Kv models of the m-type show a large

distinction from A-type, dr and HH subtypes in the condition scores of the action potential protocol,

whereas A-type channel models show distinct condition scores in the activation, inactivation and

deactivation protocols. The protocols chosen here thus exploit a necessary range of response kinet-

ics; the general method of deriving a final score from each of the conditions, however, is amenable

to straight-forward extension by further protocols or second-order features extracted from the

response traces, as for example peak response values and time-scales (Lewicki, 1998;

Druckmann et al., 2013). Each of these could be incorporated in the analysis as additional condition

scores.

An alternative for the characterization of ion channel dynamics would be given by a model-based

approach: by fitting the parameters of a single super-model to closely approximate the dynamics of

all other channel models on hand, one could characterize channel models by the resulting parameter
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values. However, we could not assume that such a single super-model would capture the full dynam-

ical diversity we were presented with in our dataset. Similarly, the diverse kinetics of biological ion

channels measured in experiments might not be captured adequately by a single super-model. We

thus chose a standardized ‘model-free’ approach, which can be extended (see above) should the

need for more detailed discrimination of channel kinetics (from model and experiment alike) arise.

Generation of circos plots
‘Circos’ plots displaying the clustering results together with genealogical links were generated using

the Circos visualization tool (Krzywinski et al., 2009), combined with TreeDyn (Chevenet et al.,

2006) to create circular dendrograms (Figure 4D).

The Circos plot is a visualization technique that enables the comparison of functional similarity to

metadata information for each cluster separately. All unique models of a given class are arranged in

a circle (numbers of duplicate models are shown in the gray histogram along the circle). Plot rings:

For each model, the following information is shown (from inside to outside; refer to legend): cluster-

ing dendrogram, subtype label, histogram count of duplicate models, model runtime information,

number of citations of the accompanying paper, and most common subtype label(s) of each cluster

(all subtypes that contribute 30% or more). Location along the circle corresponds to functional (clus-

tering) information, whereas color corresponds to metadata information, such as subtype label.

Location: position along the circle was established by the circular dendrogram at the center. This

dendrogram was created with an agglomerative hierarchical clustering algorithm as defined above,

and arranges models in such a way that similar models are in adjacency, and all models in the same

cluster appear in one continuous group. The outer ring of the plot denotes the extent of each indi-

vidual cluster. Groups of models defined by cluster were visually displaced from others by adding a

small white space between clusters. Color: Three color legends accompanying the graph define the

color relationships plotted. The two large rings on the inside and outside are colored by subtype

label (of individual models and of clusters, respectively), of which the 11 most common are dis-

played, with all others in gray. Two smaller rings just inside of the outer ring, denoting the number

of citations and runtime, are colored on a red-blue scale.

Generation of genealogy figures
Pedigree plots were generated using Gephi (Bastian et al., 2009), and then manipulated and

ordered manually for visualization (Figure 2E, Figure 4A). Coloring was chosen according to sub-

type label as well as cluster identity. ‘Sankey’ diagrams (Sankey, 1898; Schmidt, 2008) were gener-

ated in Javascript and D3.js (Bostock et al., 2011) (Figure 4B, Figure 5B). Subtype coloring was

chosen as for the pedigree plots. Subtype labels, clusters and families were arranged from top to

bottom by size.

All other figures were generated using MATLAB (R2015A, The MathWorks Inc., Natick, MA) and

Python 2.7 with matplotlib 1.4.2.

Relational database, API and web interface
All collected metadata, as well as final scores and clustering results were organized in a relational

MYSQL database, which is openly queryable through a web API. Details about database structure

and the implementations of the web-application and API will be made available on the website

(ICGenealogy, 2016). The graphical channel browser frontend was developed in Javascript and D3.

js (Bostock et al., 2011) by Phyramid Ltd, Bucharest, Romania.

Code availability
Code for the generation of current response traces in NEURON as well as for the analysis of current

traces will be made available on the website (ICGenealogy, 2016).

Electrophysiology
K+ currents were recorded from Drosophila Kenyon cells in targeted in vivo whole-cell voltage clamp

experiments as previously described (Murthy and Turner, 2013). Male NP7175-GAL4;UAS-mCD8-

GFP flies were immobilized and fixed to a perfusion chamber using wax. Cuticle, adipose tissue, tra-

chea and perineural sheath were removed in a window large enough to expose the posterior brain.
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The preparation was continuously superfused with extracellular solution containing (in mM) 103

NaCl, 3 KCl, 26 NaHCO3, 1 NaH2PO4, 1.5 CaCl2, 4 MgCl2, 5 TES, eight trehalose, 10 glucose and

seven sucrose (pH 7.3 when equilibrated with 5% CO2 and 95% O2). Tetrodotoxin was added at a

final concentration of 1�M. Borosilicate glass electrodes (14–16 M
) were filled with pipette solution

containing (in mM) 140 potassium aspartate, 1 KCl, 10 HEPES, 4 MgATP, 0.5 Na3GTP and 1 EGTA

(pH 7.3). All experiments were performed at room temperature (21� 23
�C). Signals were recorded

with a MultiClamp 700B Microelectrode Amplifier, lowpass-filtered at 10 and digitized at 50 kHz

using a Digidata 1440A digitizer controlled via the pCLAMP 10 software (all Molecular Devices).

Capacitive transients and linear leak currents were subtracted using a P/4 protocol and all traces

were corrected for the liquid junction potential (Neher, 1991). Voltage pulse protocols were applied

as indicated for Kv (Figure 3—figure supplement 1; Table 2) and data were analyzed in MATLAB.

Resulting current traces were processed analogously to model current traces, as specified in section

Data extraction and processing.
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