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Abstract Munc13–1 acts as a master regulator of neurotransmitter release, mediating docking-

priming of synaptic vesicles and diverse presynaptic plasticity processes. It is unclear how the

functions of the multiple domains of Munc13–1 are coordinated. The crystal structure of a Munc13–

1 fragment including its C1, C2B and MUN domains (C1C2BMUN) reveals a 19.5 nm-long multi-

helical structure with the C1 and C2B domains packed at one end. The similar orientations of the

respective diacyglycerol- and Ca2+-binding sites of the C1 and C2B domains suggest that the two

domains cooperate in plasma-membrane binding and that activation of Munc13–1 by Ca2+ and

diacylglycerol during short-term presynaptic plasticity are closely interrelated. Electrophysiological

experiments in mouse neurons support the functional importance of the domain interfaces

observed in C1C2BMUN. The structure imposes key constraints for models of neurotransmitter

release and suggests that Munc13–1 bridges the vesicle and plasma membranes from the

periphery of the membrane-membrane interface.

DOI: 10.7554/eLife.22567.001

Introduction
The release of neurotransmitters by synaptic vesicle exocytosis is critical for neuronal communica-

tion. This exquisitely regulated process involves several steps, including tethering of synaptic vesicles

to specialized sites of the presynaptic plasma membrane called active zones, a priming step(s) that

leaves the vesicles ready to release, and Ca2+-triggered membrane fusion (Südhof, 2013). Each of

these steps can be modulated in a variety of presynaptic plasticity processes that underlie multiple

forms of information processing in the brain (Regehr, 2012). The protein machinery that controls

release (Rizo and Xu, 2015; Jahn and Fasshauer, 2012; Südhof and Rothman, 2009) includes the

neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) synapto-

brevin, syntaxin-1 and SNAP-25, which play a key role in membrane fusion by forming a tight four-

Xu et al. eLife 2017;6:e22567. DOI: 10.7554/eLife.22567 1 of 27

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.22567.001
http://dx.doi.org/10.7554/eLife.22567
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


helix bundle (the SNARE complex) that brings the vesicle and plasma membranes into close proxim-

ity (Söllner et al., 1993; Hanson et al., 1997; Poirier et al., 1998; Sutton et al., 1998). This com-

plex is disassembled by N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment

proteins (SNAPs; no relation to SNAP-25) (Söllner et al., 1993) to recycle the SNAREs for another

round of fusion (Mayer et al., 1996; Banerjee et al., 1996). The Sec1/Munc18 protein Munc18–1

and the large (200 kDa) active zone proteins called Munc13s are also crucial for release. Munc18–1

binds to a self-inhibited ‘closed’ conformation of syntaxin-1 (Dulubova et al., 1999; Misura et al.,

2000) and orchestrates SNARE complex assembly in an NSF-SNAP-resistant manner together with

Munc13, which helps to open syntaxin-1 (Richmond et al., 2001; Ma et al., 2011, 2013).

Because of their multiple functions, Munc13s have emerged as particularly central regulators of

neurotransmitter release that link the core membrane fusion apparatus to diverse forms of presynap-

tic plasticity through their multidomain architecture (illustrated in Figure 1A for Munc13–1, the most

abundant mammalian isoform). Thus, neurotransmitter release is completely abrogated in the

absence of Munc13s (Augustin et al., 1999; Richmond et al., 1999; Aravamudan et al., 1999;

Varoqueaux et al., 2002). This phenotype most likely arises because Munc13s play key roles in

docking and priming (Varoqueaux et al., 2002; Weimer et al., 2006; Hammarlund et al., 2007;

Imig et al., 2014) that are associated at least in part to their activity in opening syntaxin-1 and thus

stimulating SNARE complex formation through their MUN domain (Richmond et al., 2001;

Basu et al., 2005; Yang et al., 2015). However, the C1-C2B region and the C-terminal C2C domain

are also critical for release, which may arise because these domains help bridge the vesicle and

plasma membranes (Liu et al., 2016). There is also evidence for a role of Munc13s in events down-

stream of priming [e.g. (Hammarlund et al., 2007; Shin et al., 2010; Liu et al., 2016). Moreover,

Munc13s are involved in multiple presynaptic plasticity processes, including isoform-specific depres-

sion and augmentation (Rosenmund et al., 2002), diacyglycerol (DAG)-phorbol ester-dependent

potentiation of release via the C1 domain (Rhee et al., 2002) and Ca2+-dependent short-term plas-

ticity through the C2B domain and a calmodulin-binding region (Shin et al., 2010; Junge et al.,

2004). Binding of the Munc13–1 C2A domain to RIMs also provides a connection to RIM-dependent

forms of short- and long-term presynaptic plasticity (Betz et al., 2001; Dulubova et al., 2005). The

crucial physiological importance of these modulatory processes was emphatically illustrated by the

eLife digest The human brain contains billions of cells called neurons that communicate with

each other using molecules called neurotransmitters. An electrical signal in one neuron triggers the

release of neurotransmitters from the cell, which then activate or inhibit electrical signals in

neighboring neurons. Inside the cell, neurotransmitters are stored in small bubble-like structures

called synaptic vesicles. The vesicles fuse with the membrane that surrounds the cell to release the

neurotransmitters. This process must be tightly controlled to ensure that neurotransmitters are

released rapidly and at the right time.

A protein called Munc13 is a key component of the machinery that regulates the fusion of

synaptic vesicles. It helps the synaptic vesicle to dock onto the cell membrane and get ready for

fusion. Munc13 is a large protein and contains several different regions, including three domains

called C1, C2B and MUN. These three domains control the release of neurotransmitters, but how

they do so is poorly understood.

Xu, Camacho et al. used a technique called X-ray crystallography to analyse the three-

dimensional shape of the part of Munc13 that contains the three domains. The experiments reveal

that the MUN domain forms a long rod-like shape with the C1 and C2B domains packed at one end.

Several mutations that reduce the ability of the domains to interact with each other altered the

release of neurotransmitters from mouse neurons to different extents.

These findings suggest that the overall architecture of the region containing the C1, C2B and

MUN domains is important for the normal activity of Munc13. The structure revealed by Xu,

Camacho et al. sets a framework for understanding how Munc13 controls neurotransmitter release,

and thus mediates diverse forms of information processing in the brain.

DOI: 10.7554/eLife.22567.002
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Figure 1. Crystal structure of Munc13–1 C1C2BMUN. (A) Domain diagram of rat Munc13–1, with A-D corresponding to the four subdomains of the MUN

domain. CaMb = calmodulin-binding sequence. (B) Ribbon representation of the structure of Munc13–1 C1C2BMUN color-coded as in the domain

diagram. Helices are numbered and labeled. The position of the NF sequence involved in opening syntaxin-1 is indicated. The Zn2+ ions bound to the

C1 domain are shown as yellow spheres. (C) Superimposition of the structures of the Munc13–1 isolated C1 domain (PDB code 1Y8F), Ca2+-bound C2B

domain (PDB code 3 KWU) and our refined structure of the almost complete MUN domain with the structures of these domains in the crystal structure

of C1C2BMUN [r.m.s.d. between equivalent Ca atoms are 1.15 (45 Ca atoms), 0.35 (85 Ca atoms) and 0.96 (465 Ca atoms), respectively]. Ca2+ ions of

the C2B domain structure are shown as green spheres. D-F. Interfaces of helix H1 with the linker helices and with the MUN domain (D), of the C1

domain with the C2B domain (E) and of the C2B domain with the MUN domain (F). Selected sides chains in the interfaces, including those that were

mutated, are indicated.

DOI: 10.7554/eLife.22567.003

The following figure supplements are available for figure 1:

Figure supplement 1. Zn2+ ions in the C1 domain of C1C2BMUN.

DOI: 10.7554/eLife.22567.004

Figure supplement 2. Comparison of chains A (green) and B (red) of C1C2BMUN.

DOI: 10.7554/eLife.22567.005

Figure 1 continued on next page
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finding that knock-in mice bearing a point mutation in the Munc13–1 C1 domain that disrupts phor-

bol-ester-dependent potentiation of release die 2–3 hr after birth even though the mutation causes

no impairment of evoked release (Rhee et al., 2002).

Despite these advances and the availability of three-dimensional structures for most of the

Munc13 domains except C2C and part of the MUN domain (Shen et al., 2005; Dulubova et al.,

2005; Rodrı́guez-Castañeda et al., 2010; Shin et al., 2010; Li et al., 2011; Yang et al., 2015), it is

still unclear how the functions of these domains are related and coordinated, in part because no

structure of a fragment containing multiple Munc13 domains has been described. Here, we report

the crystal structure of a Munc13–1 fragment spanning its C1, C2B and MUN domains (C1C2BMUN),

revealing a long, 195 Å rod formed by 26 a-helices that packs at one end against the C1 and C2B

domains. The DAG-binding region of the C1 domain and the Ca2+-binding region of the C2B domain

are near each other and point in the same direction, which is expected to facilitate cooperation

between the two domains in membrane binding and thus enable synergy between the effects of

DAG and Ca2+ in neurotransmitter release during repetitive stimulation. Electrophysiological experi-

ments show that mutations designed to disrupt interfaces between different domains of C1C2BMUN

impair evoked release and vesicle priming to different extents, and also have differential effects on

Ca2+-dependent short-term plasticity as well as phorbol ester-induced potentiation. These results

suggest that the highly elongated nature of C1C2BMUN and the relative disposition of its domains in

our crystal structure are critical for the normal functions of Munc13–1 in neurotransmitter release

and presynaptic plasticity, placing important structural constraints on possible models for the mech-

anisms of neurotransmitter release and presynaptic plasticity.

Results

Crystal structure of Munc13–1 C1C2BMUN
The work presented herein culminates 12 years of efforts dedicated to determine the three-dimen-

sional structures of fragments encompassing part of or the entire highly conserved C-terminal region

of Munc13–1, which includes the C1, C2B, MUN and C2C domains (Figure 1A). While crystals were

obtained for several of the fragments that we prepared, they tended to diffract poorly. Key for the

success in obtaining crystals of C1C2BMUN of sufficient quality to diffract in the 3–3.5 Å range were

the choice of N- and C-termini (residues 529 and 1531, respectively), as well as the removal of resi-

dues 1408–1452, which correspond to a long loop within the MUN domain that is poorly conserved

and is subject to alternative splicing (Brose et al., 1995). Removal of this loop generally increases

the solubility of C-terminal Munc13–1 fragments (Ma et al., 2011; Li et al., 2011). Even with the

best diffraction data obtained with C1C2BMUN, structure determination was hindered by low resolu-

tion, significant anisotropy, non-isomorphism and an inability to obtain selenomethionyl-derivatized

protein. These problems were overcome by the use of single wavelength anomalous dispersion

phases obtained from a dataset collected at the tantalum LIII edge on native crystals soaked with a

tantalum bromide cluster, coupled with molecular replacement phases obtained from the previously

determined structures of the C1 domain (Shen et al., 2005), the C2B domain (Shin et al., 2010) and

the nearly complete MUN domain of Munc13–1. For this purpose, it was necessary to first re-refine

the structure of the nearly complete MUN domain (Yang et al., 2015) using the deposited structure

factors (PDB code 4Y21) to reduce the level of side chain outliers and of steric clashes, as well as to

correct the sequence numbering (see Materials and methods). Placement of the C1 domains in the

cell of the C1C2BMUN crystals (Figure 1—figure supplement 1) was verified by an anomalous differ-

ence map calculated from data collected on native crystals at the zinc K-edge energy. Data

Figure 1 continued

Figure supplement 3. Lattice contacts for C1C2BMUN domains, C2 symmetry.

DOI: 10.7554/eLife.22567.006

Figure supplement 4. Plot of mean atomic displacement parameters (B-factors) versus residue number for the C1C2BMUN fragment.

DOI: 10.7554/eLife.22567.007

Figure supplement 5. Omit maps for domain interfaces where mutations were made.

DOI: 10.7554/eLife.22567.008
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collection and refinement statistics for the final structure of C1C2BMUN, as well as for the re-refined

structure of the nearly complete MUN domain, are described in Table 1.

The structures of the two molecules of C1C2BMUN present in the asymmetric unit of its crystals

are very similar (Figure 1—figure supplement 2). The structure of C1C2BMUN can be viewed as a

highly elongated rod spanning ca. 195 Å and is formed mostly of a-helical bundles, with a total of

26 helices; the C1 and C2B domains pack at the N-terminal end of the rod (Figure 1B). Much of the

long rod is formed by the MUN domain, which is homologous to subunits of complexes that mediate

tethering in diverse membrane compartments (Pei et al., 2009; Yu and Hughson, 2010) and was

previously shown to be formed by four subdomains of about five helices each (named A-D and col-

ored in blue, green, yellow and orange on Figure 1) (Li et al., 2011; Yang et al., 2015). Comparison

of our C1C2BMUN structure with the crystal structure of the almost complete MUN domain (with the

N-terminus at residue 933), which was described in Yang et al. (2015) and we re-refined, shows that

the MUN domain is very similar in both structures (Figure 1C), as expected because this structure

was used in crystallographic phase determination by the molecular replacement method. However,

the structure of C1C2BMUN shows that the MUN domain actually starts at residue 828 and contains

five additional helices (helices H6-H10), resulting in a total of seven helices for subdomain A

(Figure 1C). In addition, there are five more helices preceding the MUN domain (helices H1-H5;

Figure 1B). Four of these helices correspond to the linker sequence between the C1 and C2B

domains, whereas one helix (H1) is spanned by a sequence preceding the C1 domain (colored in

red).

These observations nicely explain a few findings made during our crystallization efforts. For

instance, Munc13–1 fragments starting right at the beginning of the C1 domain were unstable and

we were not able to express fragments containing only the C1 domain, the C2B domain and the

linker between them in soluble form. As the structure of C1C2BMUN now reveals, there are extensive

contacts between helix H1, the four helices of the linker, the MUN domain, the C1 domain and the

C2B domain (Figure 1B,D–F), and hence it is not surprising that elimination of some of these interfa-

ces impairs proper folding. We also note that the structures of the C1 and C2B domains in

C1C2BMUN are similar to those determined for the isolated domains (Shen et al., 2005; Shin et al.,

2010), although the Ca2+-binding loops are not visible in the C2B domain of C1C2BMUN

(Figure 1C). This correlates with the previous finding that these loops were observable in the crystal

structure of the C2B domain bound to Ca2+ but not in its crystal structure without Ca2+ (Shin et al.,

2010), as our C1C2BMUN structure was determined in the absence of Ca2+.

The architecture of C1C2BMUN has important implications to understand the functions of

Munc13–1 in docking and priming, as well as the regulatory roles of its various domains. First, the

elongated structure and the overall packing of the different domains at the N-terminal end of the

structure suggest that C1C2BMUN may function as a rigid or semi-rigid unit that bridges the synaptic

vesicle and plasma membranes. Note in this context that the similarity in the structures of the two

molecules from the asymmetric unit of the C1C2BMUN crystals (Figure 1—figure supplement 2)

and between these structures and that of the nearly complete MUN domain (Figure 1C) suggest

that the overall architecture of C1C2BMUN has limited flexibility. Second, a model of the structure of

C1C2BMUN incorporating the Ca2+-binding loops of the C2B domain, which mediate its interactions

with PIP2-containing membranes in a Ca2+-dependent manner (Shin et al., 2010), shows that these

loops are proximal to the DAG-phorbol ester-binding region of the C1 domain (Figure 2A,B). This

arrangement is expected to promote cooperation between the C1 and C2B domains in membrane

binding, thus suggesting a natural mechanism for synergy between increases in DAG and intracellu-

lar Ca2+ concentrations to enhance release probability upon repetitive stimulation. However, it is

noteworthy that there are abundant basic residues in the C1-C2B region (Figure 2A) that could

potentially mediate membrane binding in alternative orientations in the absence of DAG and Ca2+-

bound to the C2B domain (e.g. Figure 2C). These observations suggest that increased DAG and

intracellular Ca2+ concentrations may alter release probability by promoting a different orientation

of the Munc13–1 C-terminal region that is more efficient in promoting priming and/or fusion (see

Discussion and models described therein). Third, the finding that helix H1 is packed against the

MUN domain, with the N-terminus pointing toward the center of the long rod (Figure 1B), suggests

that N-terminal sequences of Munc13–1 not included in this structure could perform their regulatory

functions by influencing MUN domain activity. For instance, the calmodulin-binding region of

Munc13–1 might inhibit release by binding to the middle of the MUN domain, where an NF
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Table 1. Data collection and refinement statistics.

Data collection

Crystal Ta LIII-edge peak* Zn K-edge peak* MUN domain Native

Space group C2 C2 P21212 C2

Cell constants (Å,˚) 171.70 Å, 82.93 Å,
201.59 Å, 90.0˚,
115.32˚, 90.0˚

174.72 Å, 84.55 Å,
202.10 Å, 90.0˚,
115.11˚, 90.0˚

114.1 Å, 270.9 Å,
47.7 Å, 90.0˚, 90.0˚,
90.0˚

176.13 Å, 86.34 Å, 202.13 Å, 90.0˚, 115.54˚, 90.0˚

Wavelength (Å) 1.25489 1.28218 0.979 0.97931

Resolution range (Å) 42.73–4.50
(4.64–4.50)

49.81–4.00
(4.07–4.00)

39.02–2.90
(2.97–2.90)

45.60–3.35
(3.41–3.35)

Unique reflections 12,839 (620) 21,415 (961) 33,802 (2,770) 37,636 (1,363)

Multiplicity 3.6 (2.8) 3.8 (2.5) 5.4 (5.1) 3.9 (3.3)

Data completeness (%) 93.1 (64.4) 94.3 (86.4) 99.3 (98.7) 93.9 (68.9)

Rmerge (%)† 3.1 (40.0) 10.1 (100.0) 6.9 (63.4) 5.6 (69.2)

Rpim (%)‡ 1.8 (25.7) 5.7 (76.5) NA 3.1 (38.8)

CC1/2

(outermost resolution
shell)

0.974 0.490 NA 0.809

I/s(I) 25.0 (0.8) 30.0 (2.1) 27.3 (1.95) 20.7 (1.3)

Wilson B-value (Å2) 85.4 104.7

Wilson B-value,
sharpened (Å2)§

32.6 209.2 NA 49.6

Refinement statistics

Resolution range (Å) 39.02–2.90
(2.98–2.90)

45.60–3.35
(3.46–3.35)

No. of reflections Rwork/
Rfree

33,801/1,712
(2,634/136)

29,935/1,490 (752/34)

Data completeness (%) 99.2 (98.0) 75.3 (22.0)

Atoms (non-H protein/
Zn2+/Cl�)

4286/NA/NA 13,597/4/2

Rwork (%) 22.8 (34.5) 25.4 (32.7)

Rfree (%) 25.3 (35.2) 29.0 (44.5)

R.m.s.d. bond length (Å) 0.002 0.003

R.m.s.d. bond angle (˚) 0.499 0.610

Mean B-value (Å2) (chain
A/chain B/ Zn2+/Cl�)

101.6/NA/NA 78.8/53.2/44.4/8.2

Ramachandran plot (%)
(favored/additional/
disallowed)#

95.3/3.9/0.8 92.1/6.7/1.2

Clashscore/Overall score# 2.57/1.37 3.51/1.62

Maximum likelihood
coordinate error

0.38 0.41

Missing residues 933–941, 1041–
1049, 1524–1531

A: 529–540, 704–707, 759–773, 801–807, 821–823, 923–
928, 1038–1052, 1191–1196, 1342–1352, 1404–1469, 1518–
1531.
B: 529–541, 626-630, 703–708, 743–745, 759–774, 802–
806, 820–824, 925–929, 1038–1050, 1338–1352, 1405–
1467, 1516–1531.

Data for the outermost shell are given in parentheses.

Xu et al. eLife 2017;6:e22567. DOI: 10.7554/eLife.22567 6 of 27

Research article Biophysics and Structural Biology Neuroscience

http://dx.doi.org/10.7554/eLife.22567


sequence (Figure 1B) is known to be critical for opening syntaxin-1 (Yang et al., 2015), and binding

of Ca2+-calmodulin to this region may enhance release by relieving this inhibition. Interactions of

homodimerized Munc13–1 C2A domain (Lu et al., 2006) with the MUN domain might also underlie

the inhibition caused by homodimerization, which is relieved by RIM binding (Deng et al., 2011).

*Bijvoet-pairs were kept separate for data processing.
†
Rmerge ¼ 100

P

h

P

i jIh;i � Ihh ij=
P

h

P

i
Ih;i


 �

, where the outer sum (h) is over the unique reflections and the inner sum (i) is over the set of independent

observations of each unique reflection.

‡
Rpim ¼ 100

P

h

P

i½1=ðnh � 1Þ1=2�jIh;i � Ihh ij=
P

h

P

i
Ih;i


 �

, where nh is the number of observations of reflections h.
§B-factor sharpening was performed in the autocorrection mode of HKL-3000 (Borek et al., 2013).
#As defined by the validation suite MolProbity (Chen et al., 2010).

DOI: 10.7554/eLife.22567.009
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Figure 2. Distribution of basic residues clusters in C1C2BMUN. (A) Ribbon diagram of C1C2BMUN where the C1 and C2B domains were replaced with

the structures of the isolated C1 domain (cyan; PDB code 1Y8F) and the isolated Ca2+-bound C2B domain (salmon; PDB code 3 KWU) (Shin et al.,

2010) to include basic residues that are not observed in the structure of C1C2BMUN, likely because they are disordered. Arginine and lysine side chains

are shown as blue spheres. The Zn2+ ions in the C1 domain are shown as yellow spheres and two Ca2+ ions bound to the C2B domain are shown as

green spheres. Note that the two Ca2+ ions are not observed in the C1C2BMUN structure, which was crystallized in the absence of Ca2+. (B) Close up of

the structure of C1C2BMUN as shown in A, but including a phorbol ester drawn as brown spheres. The position of the phorbol ester is based on

superimposing the C1 domain of C1C2BMUN with the phorbol-ester bound structure of the PKC-d C1B domain (PDB code 1PTR) (Zhang et al., 1995).

The dashed line indicates the expected approximate location of the plasma membrane bound to the C1 domain through DAG and to the Ca2+-bound

C2B domain through PIP2. (C) Close up of the same region of C1C2BMUN but shown in another orientation with a region containing multiple basic side

chains (most from the C1 and C2B domains) at the bottom. The Ca2+-binding sites of the C2B domain are shown in gray to symbolize that the sites are

not occupied. The dashed line indicates a potential localization of the plasma membrane resulting from binding of this basic face to PS, which is

sufficient for binding of C1C2BMUN to liposomes even in the absence of Ca2+, DAG and PIP2 (Liu et al., 2016).

DOI: 10.7554/eLife.22567.010
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Functional consequences caused by disruption of C1C2BMUN domain
interfaces
A key question that arises from the crystal structure of C1C2BMUN is whether the arrangement of

the different domains at the N-terminal end of the structure is caused by crystal packing or reflects

the native structure of Munc13–1 in neurons, and hence is important for its functions. To address this

question, we designed three mutations to strongly disrupt domain interfaces observed in the

C1C2BMUN structure: (i) a V549E,L554E double mutation designed to disrupt the hydrophobic pack-

ing of helix H1 against the linker region and against the MUN domain (Figure 1D); (ii) an R750E,

K752E double mutation to disrupt salt bridges formed between the C1 and C2B domains

(Figure 1E); and (iii) an N940W mutation designed to perturb the interface between the C2B and

MUN domains (Figure 1F). We tested the physiological consequences of these mutations by per-

forming rescue experiments in autaptic hippocampal neuronal cultures from Munc13-1/2 double KO

mice (Varoqueaux et al., 2002) that express WT or mutant Munc13–1s through a lentiviral vector.

To dissect which aspects of neurotransmitter release and its regulation might be affected by the

mutations, we evaluated spontaneous release, Ca2+-dependent release triggered by a single action

potential (AP), vesicle priming, high-frequency stimulation and PDBu-induced facilitation. Western

blot analyses showed that the WT and mutant proteins were detectable at comparable levels (Fig-

ure 3—figure supplement 1). Although we cannot completely rule out the possibility that the differ-

ences observed in our electrophysiological measurements arise in part from distinct expression

levels, this possibility is unlikely because no significant changes in synaptic properties are observed

in heterozygous Munc13–1 (+/-) neurons and WT neurons mildly overexpressing WT munc13–1 in a

Munc13–2 KO background (MC and CR, unpublished results).

We first assessed the effects on spontaneous release measuring the frequency and the amplitude

of miniature excitatory postsynaptic currents (mEPSCs). Only the V549E,L554E mutation in the N-ter-

minal H1 helix showed an increase in mEPSC frequency, whereas the mEPSC charge and amplitude

were unchanged (Figure 3). We next recorded excitatory postsynaptic currents (EPSCs) induced by

a single AP to characterize evoked release. Analysis of the EPSC amplitudes revealed that the

R750E,K752E mutation in the C1-C2B interface and the N940W mutation in the C2B-MUN interface

impaired Ca2+-triggered release (Figure 4A,B). However, expression of the V549E,L554E mutant

where helix H1 is perturbed fully rescued evoked release.

To dissect putative changes in the parameters that underlie evoked release, we first quantified

the size of the readily releasable pool (RRP) by measuring the responses induced by hypertonic solu-

tion (Rosenmund and Stevens, 1996). We found that the N940W mutation in the C2B-MUN inter-

face caused a decrease in RRP size of close to 40%, similar to the change seen in the evoked

response. The H1 helix mutation V549E,L554E decreased the RRP size by nearly 50% (Figure 4C,D),

which contrasts with the lack of an effect of this mutation on evoked release. Furthermore, the dis-

ruption of the C1-C2B interface by the R750E,K752E mutation led to normal vesicle priming despite

reducing the evoked response. These experiments demonstrate that all three mutations impact

Munc13–1 function but, interestingly, each mutation displays distinct effects on evoked release and

vesicle priming. This finding strongly suggests that the domain interfaces differentially regulate the

efficiency of the vesicle fusion process, which may lead to differences in vesicle release probability.

We calculated the vesicular release probability (Pvr) by dividing the EPSC charge by the charge of

the RRP. The V549E,L554E mutation in the H1 helix increased the vesicular release probability signifi-

cantly, as expected, while the small differences in Pvr observed for the R750E,K752E and N940W

mutants with respect to WT were not statistically significant (Figure 4E). The impact on release prob-

ability in these mutants was further corroborated by analyzing the degree of facilitation or depres-

sion quantified by the paired pulse ratio of two consecutive AP-induced EPSC amplitudes

(Figure 4F,G). Compared to WT, the V549E,L554E mutant showed more depression, in correlation

with our finding of enhanced release probability, while the other two mutants showed similar paired-

pulse behavior to WT rescues, in agreement with the conclusion that these mutations did not disrupt

basal release probability substantially.

In general, vesicular release probability is also a major determinant for release during sustained

AP trains. Initial high vesicular release probability predicts more depression of synaptic responses

due to more prominent depletion of primed vesicles. However, structure function studies on

Munc13 have identified changes in sustained release that are not explained by the initial release
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probability, and this has been interpreted as Munc13 playing an additional role in synaptic augmen-

tation (Rosenmund et al., 2002) and in modifying vesicle replenishment through activity-dependent

vesicle re-priming (Shin et al., 2010). To test how disruption of the interfaces in Munc13–1 can affect

the activity-dependent vesicle re-priming, we monitored synaptic responses during 10 Hz AP trains

(Figure 5). We first defined the function of steady-state depression versus release probability in WT

neurons by applying AP trains at various external Ca2+ concentrations, and found as expected a

robust correlation between release probability and steady state depression (Figure 5B). Interest-

ingly, the V549E,L554E mutation in the H1 helix and the R750E,K752E mutation in the C1-C2B inter-

face caused more pronounced depression of sustained release than expected from the initial release

probability, while disrupting the C2B-MUN interface with the N940W mutation caused less depres-

sion than expected from the initial release probability (Figure 5B,C). These results suggest that each

one of the interfaces disrupted by the mutations plays a role in activity-dependent vesicle re-prim-

ing, and reinforce the notion that Munc13 exerts multiple functions in shaping release properties at

synapses.

The regulatory function of Munc13 can also be probed by applying phorbol esters that act as

exogenous agonists of the C1 domain and increase the vesicle release probability. To test how the

mutations in the domain interfaces of Munc13–1 alter the coupling of phorbol-ester binding to

changes in release probability, we examined the effects of acute application of 1 mM PDBu, which

causes a 60% increase in the evoked postsynaptic responses in WT neurons (Figure 6). The N940W

mutation in the C2B-MUN interface showed more pronounced potentiation than WT Munc13–1

(Figure 6B), which correlates with the reduction in steady-state depression during 10 Hz AP trains

observed for this mutant (Figure 5C) and indicates an easier transition for Munc13–1 to a potenti-

ated state. Conversely, the V549E,L554E in helix H1 led to reduced potentiation by PDBu compared

to WT, which likely arises because of the initial high vesicular release probability observed for this
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The following figure supplement is available for figure 3:

Figure supplement 1. Detection of protein expression from Munc13-1/2 DKO hippocampal neurons.

DOI: 10.7554/eLife.22567.012
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mutant (Figure 4E). Remarkably, the R750E,K752E mutation in the C1-C2B interface caused an even

more pronounced decrease in PDBu potentiation (Figure 6B), which contrasts with the limited effect

of this mutation on vesicular release probability (Figure 4E) but correlates with the strong depres-

sion observed in the 10 Hz AP trains (Figure 5C). These findings strongly support the notion that the

interactions between the C1 and C2B domain observed in our crystal structure are critical for the

interplay between the two domains in Ca2+- and DAG-dependent presynaptic plasticity.

Because we observed changes in basal release probability and/or RRP size in the three mutants,

we next examined how these release parameters are modulated during short-term plasticity induced

by action potential trains. We recorded EPSC and sucrose-evoked responses before and 2 s after a

10 Hz action potential train to determine which of those parameters are individually affected (Fig-

ure 7). For rescues with WT Munc13–1 and the three mutants, the RRP size after the train tended to

decrease compared to the RRP size before the train, but the difference was not significant

Figure 4 continued

DKO neurons rescued with the respective Munc13–1 WT and mutants indicated above. (D) Plot of RRP charge of Munc13–1 mutants normalized to

corresponding Munc13–1 WT data. (E) Plot of pvr for WT mutant Munc13–1s. (F) Plot showing the average paired-pulse ratios calculated from 2 AP-

evoked EPSC amplitudes with a interstimulus interval of 25 ms. (G) Correlation between pvr and paired-pulse ratios from DKO neurons rescued with

Munc13–1 WT and mutants. Numbers in plots are n values for each group. Error bars represent SEM. Significance and p values were determined by

comparison with the corresponding WT using the unpaired Student’s t test: Mann-Whitney. *p<0.05.

DOI: 10.7554/eLife.22567.013
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(Figure 7B). On the other hand, the EPSC amplitude increased for the WT rescue after the train

(Figure 7D,F), thus leading to an increased release probability with respect to the Pvr observed

before the train (Figure 7E). These results indicate that in the WT rescues the train does not have a

substantial effect on the RRP, but the efficiency of evoked release increases due to some alteration

(s) of the release machinery.

In rescues with the V549E,L554E mutation in helix H1, comparison of RRP size and release proba-

bility before and after a 10 Hz train showed a failure to potentiate the RRP size, as observed in the

WT rescue, but also a failure to increase the vesicular release probability (Figure 7B,E). These results

contrast with the impairment of vesicle priming and increment of vesicular release probability

observed for the V549E,L554E mutant in naive synapses (Figure 4D,E). Thus, the enhanced depres-

sion during the AP train observed for this mutant compared to WT Munc13–1 (Figure 5C) was due

to a failure to potentiate release probability and not due to a failure in vesicle replenishment. Similar

results were obtained for the rescue with Munc13–1 bearing the R750E,K752E mutation in the C1-

C2B interface (Figure 7B,D–F), which in naı̈ve synapses caused no impairment of RRP size and vesic-

ular release probability (Figure 4D,E), but an enhanced depression of EPSC responses during AP

trains (Figure 5C). Thus, this enhanced depression was not due to a failure in vesicle replenishment

but to a failure to potentiate release probability, as observed for the V549E,L554E mutant. Finally,

the N940W mutation in the C2B-MUN interface, which leads to a 40% reduction in RRP size

(Figure 4D) but no change in release probability (Figure 4E) in naive synapses, caused a selective

increase in vesicular release probability after the AP train, similar to what is seen in WT rescues but

with larger degree of potentiation (Figure 7B,D–F). Thus, the finding that this mutant exhibits much

less depression than WT during the AP train (Figure 5C) arises because this mutant is more likely to

potentiate release probability during AP trains than WT Munc13–1.

Overall, our electrophysiological data provide compelling evidence for functional and structural

interactions among the domains of the Munc13–1 C1C2BMUN fragment. These interactions play dis-

tinct roles in regulating vesicle priming, vesicle release probability and activity-dependent changes

in release probability, thus having different impact on the ability of synapses to dynamically respond

to incoming AP patterns.
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Effects of disruption of C1C2BMUN domain interfaces on reconstituted
liposome fusion assays
Our reconstitution experiments, which monitor fusion between synaptobrevin liposomes (V-lipo-

somes) and syntaxin-1-SNAP-25 liposomes (T-liposomes) in the presence of Munc18–1, NSF, aSNAP
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Figure 7. Effect of mutations that disrupt the C1C2BMUN domain interfaces on the potentiation of release caused by high-frequency stimulation. (A)

Schematic diagram illustrating experimental design and example traces of synaptic responses induced by 500 mM sucrose from Munc13-1/2 DKO

rescued with Munc13–1 N940W mutant before and after a 10 Hz action potential train. (B) Normalized summary plot of RRP charge of Munc13-1/2 DKO

neurons rescued with the respective Munc13–1 WT and mutants indicated below. The RRP charges from the different groups were normalized to

corresponding RRP charge recorded 1 min before the 10 Hz train (dashed red line). (C) Schematic diagram illustrating experimental design and

example traces of EPSCs from Munc13-1/2 DKO rescued with Munc13–1 N940W mutant before and after a 10 Hz action potential train. (D) Normalized

plot of AP-evoked EPSC amplitudes of Munc13-1/2 DKO neurons rescued with the respective Munc13–1 WT and mutants indicated below. The EPSC

amplitudes were normalized to the corresponding EPSC recorded before the 10 Hz train (doted red line). (E) Plot of the estimated Pvr of Munc13-1/2

DKO neurons rescued with the respective Munc13–1 WT and mutants indicated below normalized to the corresponding Pvr before high-frequency

stimulation (preHFS) (doted red line). (F) Normalized EPSC amplitudes of Munc13-1/2 DKO neurons rescued with the respective Munc13–1 WT and

mutants indicated in each graph, in response to a low-frequency stimulus train (0.2 Hz) that is interrupted by a 5 s 10 Hz stimulus train, as outlined in

panel (C). Numbers in plots are n values for each group. Error bars represent SEM.

DOI: 10.7554/eLife.22567.016
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and a Munc13–1 fragment spanning its C1, C2B, MUN and C2C domains (C1C2BMUNC2C), recapitu-

late multiple features of neurotransmitter release, in particular the absolute requirement of Munc18–

1 and Munc13–1 for membrane fusion (Liu et al., 2016). Hence, we used these experiments to

examine the effects of disrupting Munc13–1 domain interfaces on membrane fusion in vitro and

compare them to those observed in our electrophysiological studies. Unfortunately, multiple

attempts to express C1C2BMUNC2C bearing the V549E,L554E mutation failed to yield sufficient

amounts of soluble protein, and we were also unable to obtain C1C2BMUNC2C bearing a single

V549E or L554E mutation, suggesting that both substitutions strongly destabilize the fragment.

Since the V549E,L554E mutant was expressed at levels comparable to WT Munc13–1 in our rescue

experiments, it is plausible that this mutation is less destabilizing in the context of these experiments

because of interactions of that region with N-terminal sequences of Munc13–1, with other compo-

nents of the release machinery, or with molecular chaperones.

In our reconstitution experiments, we use an assay that simultaneously measures lipid mixing and

content mixing (Zucchi and Zick, 2011; Liu et al., 2016) to ensure that true membrane fusion is

observed, as lipid mixing can occur without content mixing [e.g. (Chan et al., 2009; Zick and Wick-

ner, 2014)]. We start the experiments in the absence of Ca2+, and Ca2+ is added after 300 s to

examine its effect on liposome fusion. Under the standard conditions of our experiments, in which

we use 500 nM C1C2BMUNC2C and we include DAG and PIP2 in the T-liposomes, fusion is highly

efficient upon Ca2+ addition and the Ca2+ dependence arises from Ca2+ binding to the C2B domain

(Liu et al., 2016). In initial experiments, we observed only mild effects of the R750E,K752E and

N940W mutations in Munc13–1 C1C2BMUNC2C on fusion. To allow better discrimination, we low-

ered the C1C2BMUNC2C concentration to 100 nM, and we compared results obtained with T-lipo-

somes that contained DAG+PIP2, DAG only, or PIP2 only (Figure 8). WT C1C2BMUNC2C was still

highly active under all these conditions, supporting Ca2+-dependent membrane fusion that strictly

required Munc13–1 C1C2BMUNC2C and was optimal when the T-liposomes included both DAG and

PIP2 (Figure 8 and Figure 8—figure supplement 1). When the T-liposomes contained DAG and

PIP2, the N940W mutation in the C2B-MUN interface slightly impaired fusion while the R750E,K752E

mutation in the C1-C2B interface led to a considerably stronger impairment (Figure 8A,B; see Fig-

ure 8—figure supplement 2 for quantification). This impairment became more overt with T-lipo-

somes containing only DAG or only PIP2, while the effects of the N940W mutation remained mild

(Figure 8C–F).

To test whether the effects of the R750E,K752E mutation in these experiments are indeed due to

disruption of the C1-C2B interface, we made a ‘reversal’ quadruple mutant where we mutated two of

the acidic residues from the C1 domain in its interface with the C2B domain (Figure 1E) to basic resi-

dues (R750E,K752E,E582R,E584K). These two additional substitutions partially compensated for the

effects of the R750E,K752E mutation, as the quadruple mutation recovered some of the activity lost

in the R750E,K752E mutant (Figure 8). The recovery was modest, but this result is not unexpected

because the orientation of the mutated side chains in the quadruple mutant may not be as favorable

to form salt bridges as in the WT protein. Hence, the observed functional recovery in the quadruple

mutant supports the notion that the effects of the R750E,K752E mutation in the fusion assays are

due to disruption of C1-C2B interactions. We note that all these reconstitution experiments were per-

formed in the absence of synaptotagmin-1 because this Ca2+ sensor does not have a marked influ-

ence in the results obtained in these bulk assays under the conditions used, although it may cause

an acceleration of Ca2+-dependent fusion that can only be detected at faster time scales than those

used in our measurements (Liu et al., 2016). Correspondingly, the relative activities of the WT and

mutant C1C2BMUNC2C Munc13–1 fragments in reconstitution experiments that incorporated synap-

totagmin-1 into the V-liposomes yielded similar results (Figure 8—figure supplement 3) to those

obtained in the absence of synaptotagmin-1 (Figure 8A,B).

The impairment of fusion caused by the R750E,K752E in our reconstitution assays correlates with

the impairment of evoked release observed in the rescue experiments, as well as with the strong

depression observed for this mutation in the 10 Hz trains and the impairment of PDBu-induced aug-

mentation (Figures 4–6). Altogether, our results strongly support the notion that the C1-C2B inter-

face observed in the crystal structure of C1C2BMUN is important for evoked release and for

cooperation between the C1 and C2B domains in membrane binding during repetitive stimulation to

generate an activated state that is stabilized by binding of the C1 domain to DAG and of the C2B

domain to Ca2+-PIP2. Thus, as we noted previously (Liu et al., 2016), our reconstitutions including
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Figure 8. Effects of mutations that disrupt C1C2BMUN interfaces on membrane fusion in reconstitution assays. Lipid mixing (A,C,E) between V- and

T-liposomes was measured from the fluorescence de-quenching of Marina Blue-labeled lipids and content mixing (B,D,F) was monitored from the

development of FRET between PhycoE-Biotin trapped in the T-liposomes and Cy5-Streptavidin trapped in the V-liposomes. The assays were performed

in the presence of Munc18–1, NSF-aSNAP and WT or mutant Munc13–1 C1C2BMUNC2C fragments as indicated. Experiments were started in the

presence of 100 mM EGTA and 5 mM streptavidin, and Ca2+ (600 mM) was added after 300 s.

DOI: 10.7554/eLife.22567.017

The following figure supplements are available for figure 8:

Figure supplement 1. Dependence of liposome fusion on Munc13–1 C1C2BMUNC2C, DAG and PIP2.

DOI: 10.7554/eLife.22567.018

Figure supplement 2. Quantification of the lipid and content mixing experiments of Figure 8.

DOI: 10.7554/eLife.22567.019

Figure supplement 3. Effects of mutations that disrupt C1C2BMUN interfaces on membrane fusion in reconstitution assays including synaptotagmin-1.

DOI: 10.7554/eLife.22567.020
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DAG and PIP2 in the T-liposomes may recapitulate more closely this activated state than the normal

state that leads to release evoked by a single action potential. Interpreting the results of the N940W

mutation in the reconstitutions is hindered by the fact that this mutation impaired evoked and

sucrose-induced release but had less depression than WT in the 10 Hz trains and a slightly higher

potentiation by PDBu (Figures 4–6). The small impairment of fusion observed in the reconstitutions

for this mutant may reflect a balance between the inhibitory and stimulatory effects observed in the

rescue experiments but, overall, the mild nature of the effect on fusion appears to be more reminis-

cent of the small (albeit contrary) effects observed in the PDBu treatment, thus supporting also the

notion that the reconstitutions emulate an activated state of the release machinery.

Discussion
Munc13–1 acts as a master regulator of neurotransmitter release, playing a crucial role in release

itself and multiple functions in integrating the effects of diverse signals that alter release probability

during presynaptic plasticity. Thus, elucidating how the functions of the multiple domains of

Munc13–1 are coordinated to control release and plasticity constitutes a major, fundamental chal-

lenge in neuroscience. The crystal structure of Munc13–1 C1C2BMUN and the functional data pre-

sented here represent critical steps to meet this challenge, revealing a highly elongated structure

that is key to understanding how Munc13–1 bridges the vesicle and plasma membranes to control

SNARE complex formation, and how the C1 and C2B domains mediate presynaptic plasticity pro-

cesses that depend on Ca2+ and DAG.

Notable features of the structure of C1C2BMUN include its length, which is close to 20 nm and is

thus comparable to the radius of a synaptic vesicle, and the interfaces between its different domains.

The observation that the three mutations designed to disrupt domain interfaces observed in the

structure have distinct effects on evoked release, vesicle priming, vesicle release probability, high-

frequency stimulation and PDBu-induced facilitation demonstrates the functional relevance of the

overall structure and shows that the different domain interfaces perturbed by the mutations play dif-

ferential roles in release and short-term presynaptic plasticity. This conclusion is further supported

by the observation that each of the three mutations uniquely alters the normal relation between vesi-

cle release probability and steady-state EPSC amplitude in 10 Hz AP trains in neurons expressing

WT Munc13–1 (Figure 5B), a relation that arises from the natural increase in RRP depletion rate as

vesicle release probability increases. Similarly, the three mutations also change the normal inverse

relation between the extent of PDBu-induced facilitation and the vesicle release probability. This

finding is not surprising, as the effects of PDBu are likely to be at least partially related to those

observed in 10 Hz trains. Thus, phorbol ester activation of the Munc13 C1 domain is believed to

mimic the effects of increased DAG levels during repetitive stimulation, which result from accumula-

tion of intracellular Ca2+ and activation of PLCs (Rhee et al., 2002). Accumulation of Ca2+ also acti-

vates Munc13s by binding to the C2B domain (Shin et al., 2010).

The finding that the DAG/phorbol ester-binding region of the C1 domain and the Ca2+-binding

loops of the C2B domain are close to each other and point in the same direction in our C1C2BMUN

structure (Figure 2) suggest that Ca2+, DAG and PIP2 can cooperate in inducing binding of Munc13–

1 to the plasma membrane, indicating that these different forms of activation are closely interre-

lated. These conclusions are supported by the physiological effects of the R750E,K752E mutation in

the C1-C2B interface. This mutation leads to a modest impairment of evoked release and to no sig-

nificant change in the RRP, resulting also in no significant change in vesicular release probability (Fig-

ure 4). However, this mutation causes a considerably stronger depression during 10 Hz trains than

observed for WT Munc13–1 and to severe impairment of PDBu-dependent facilitation (Figures 5

and 6). These results suggest that the interaction between the C1 and C2B domains observed in our

crystal structure is important for evoked release but is particularly critical for activation of Munc13–1

by phorbol esters as well by Ca2+ and DAG during repetitive stimulation. Note also that this muta-

tion strongly disrupts the ability to increase the release probability after repetitive stimulation

observed for WT Munc13–1 (Figure 7E). Because the C1 and C2B domains pack at the N-terminal

end of the long helical structure, far from the middle region of the MUN domain that contains the

NF residues involved in opening syntaxin-1 (Yang et al., 2015) (Figure 1B), our structure does not

support models whereby the C1 and C2B domains impair the activity of the MUN domain by direct

intramolecular interactions, and binding to DAG or Ca2+ releases these inhibitory interactions [e.g.
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(Rizo and Rosenmund, 2008)]. Instead, our structure suggests that activation of Munc13–1 by PDBu

or by repetitive stimulation involves cooperative binding of the C1 and C2B domains to the plasma

membrane in a defined orientation that is promoted by increases in the levels of DAG and intracellu-

lar Ca2+; this activated state may be more effective in mediating priming and/or downstream events

leading to fusion than the state existing under resting conditions, which may involve a different ori-

entation of Munc13–1 with respect to the plasma membrane favored by Ca2+- and DAG-indepen-

dent interactions involving multiple basic residues of the C1 and C2B domains (Figure 2C; see also

Figure 9 and discussion below).

The V549E,L554E mutation designed to disrupt the packing of helix H1 against the linker

sequence and the MUN domain decreases the RRP but not the amplitude of the EPSCs induced by

a single action potential, resulting in an increased vesicle release probability (Figure 4) that mirrors

an enhancement in spontaneous release (Figure 3). Correspondingly, this mutant exhibits more

depression during 10 Hz trains than WT neurons, but the depression is stronger than expected from

the observed vesicle release probability (Figure 5B). The V549E,L554E mutation also leads to a

strong impairment in PDBu-induced facilitation (Figure 6) that likely arises from the increased Pvr.

Overall, the effects of this mutation resemble those caused by the H567K mutation that is expected

to unfold the C1 domain (Rhee et al., 2002; Basu et al., 2007). The decreases in the RRP observed

for both the V549E,L554E and the H567K mutants may result from disruption of coupling between

the C-terminal region and the N-terminus containing the C2A domain, which contributes to the

docking-priming activity of Munc13–1 (MC and CR, unpublished results). The increased release prob-

ability observed for both mutants suggests that the disruptive structural effects of the two mutations

may mimic to some extent the changes involved in activating Munc13–1 during repetitive stimula-

tion, which may involve in part the release of inhibitory effects caused by N-terminal sequences.

However, note that the V549E,L554E mutation prevented the increase in Pvr observed after repeti-

tive stimulation for WT Munc13–1 (Figure 7E), indicating that different features govern this increase

in Pvr and the release probability in naı̈ve synapses.

The N940W mutation in the C2B-MUN interface impairs evoked release and decreases the RRP,

leading to a release probability similar to that of WT Munc13–1 (Figure 4). However, this mutant

exhibits smaller depression during 10 Hz trains than WT Munc13–1 and a slightly larger PDBu-

induced facilitation (Figures 5 and 6). These results suggest that the packing of the C2B-MUN inter-

face observed in our structure is important for normal vesicle priming and release caused by a single

action potential, but the alteration of this interface caused by the N940W mutation favors the acti-

vated state that is generated during repetitive stimulation. This view is reinforced by the finding that

the N940W mutation causes a larger increase in release probability after repetitive stimulation than

that observed with WT Munc13–1 (Figure 7E).

The neurotransmitter release machinery is highly complex, including several large proteins of hun-

dreds of kDa that form the active zone in addition to the SNARES, Munc18–1, Munc13–1, NSF,

aSNAP, synaptotagmin-1 and multiple additional components (Südhof, 2013). Without knowing

how Munc13–1 interacts with other proteins, interpretation of the structure of Munc13–1 C1C2BMUN

in terms of specific models of neurotransmitter release is necessarily speculative. Nevertheless, the

structure poses critical constraints on working models of release and its regulation. For instance, the

model of Figure 9A is based on the finding that the Munc13–1 C1C2BMUNC2C fragment bridges

V-liposomes to T-liposomes in the absence of Ca2+ (Liu et al., 2016). Such bridging might facilitate

the activity of the MUN domain in opening syntaxin-1 to initiate SNARE complex formation and may

involve interactions of the polybasic face of the C1-C2B region (Figure 2C) with the T-liposomes and

of C2C with the V-liposomes. Binding of the C1 domain to DAG and of the C2B domain to Ca2+ dur-

ing repetitive stimulation could change the orientation of Munc13–1 with respect to the plasma

membrane (Figure 2B) in such a way that the two membranes are brought into closer proximity

(Figure 9A) and the SNARE complex is formed more efficiently. Importantly, if Munc13–1 is located

between the two membranes, progress toward complete SNARE complex assembly and fusion

would require release of Munc13–1 from the fusion complex because otherwise its large size would

hinder further membrane proximity. In this scenario, Munc13–1 could not underlie changes in release

probability directly, but its enhanced activity could lead to an increase in the number of preassem-

bled SNARE complexes that might underlie the increases in release probability caused by up-regula-

tion of DAG, by PDBu treatment or by the K630W mutation in a Ca2+ binding loop of the Munc13–2

C2B domain (Rhee et al., 2002; Shin et al., 2010). However, it is difficult to explain with this type of
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Figure 9. Models of neurotransmitter release inspired by the structure of C1C2BMUN and our functional data. (A) C1C2BMUNC2C is represented by the

structure of C1C2BMUN, with the C2B domain replaced by the structure of the isolated Ca2+-bound C2B domain (colored in salmon), and by a blue

ellipse corresponding to the C2C domain. C1C2BMUNC2C is shown bridging the two membranes through interactions of the vesicle membrane with the

C2C domain and the plasma membrane with the basic surface formed by the C1 and C2B domains (left panel) or with the DAG-binding region of the C1

domain and the Ca2+-binding region of the C2B domain (right panel) (see Liu et al., 2016). Arginine and lysine side chains are shown as blue spheres.

The C1 domain ribbon is in cyan and Zn2+ ions are shown as yellow spheres. The two Ca2+ ions bound to the C2B domain are shown as green spheres

on the right; on the left, they are shown as gray spheres to represent that the sites are not occupied. The NF sequence involved in opening syntaxin-1

(Yang et al., 2015) is represented by orange spheres. The closed syntaxin-1-Munc18–1 complex (PDB code 3C98) is shown to scale to allow

comparison of its size with that of C1C2BMUN. The C-terminus of the syntaxin-1 SNARE motif and the cytoplasmic region of synaptobrevin are shown

as dashed curved lines, and their transmembrane regions are represented by cylinders. B. C1C2BMUNC2C is represented as in A but, instead of being

located between the two membranes, is bridging the two membranes from a peripheral location. The model must be visualized in three dimensions,

such that the C2C domain is bound to the outer surface of the vesicle membrane rather than inserted into the vesicle lumen. On the right side, the C2C

domain is in the front, whereas in the left side the C2C domain is in the back of the vesicle, which is represented by a semitransparent gray surface. In

both panels, C1C2BMUNC2C is shown in the orientation proposed for the activated state induced during repetitive stimulation, where binding to the

Figure 9 continued on next page
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model why the H567K mutation in the C1 domain does not alter the vesicle refilling rate under rest-

ing conditions while increasing the Pvr (Rhee et al., 2002), and why PDBu changes the vesicle

release probability without altering the RRP (Basu et al., 2007).

The distinct effects of Munc13 mutations on evoked release, RRP, vesicular release probability,

synaptic responses to repetitive stimulation and PDBu-dependent facilitation [Figures 3–7 and

(Rhee et al., 2002; Basu et al., 2007; Shin et al., 2010) are more readily explained by models pos-

tulating that Munc13–1 remains bound to the SNARE complex and/or other components of the

release apparatus after SNARE complex assembly, forming part of the fusion complex. Such models

predict at least two major actions for Munc13s, one in docking-priming (i.e. orchestrating SNARE

complex assembly) and another in fusion. The length of the C1C2BMUN structure suggests that the

Munc13–1 C-terminal region cannot remain in the central space between two membranes (as in

Figure 9A) after the SNARE complex is even partially assembled. However, the activities of

Munc13–1 in bridging the two membranes and mediating SNARE complex assembly, as well as

potential downstream functions, could be performed with Munc13–1 located in the periphery of the

membrane-membrane interface, with an arrangement where the large size of Munc13–1 does not

hinder completion of SNARE complex assembly and membrane fusion (e.g. Figure 9B). With such

an arrangement, reorientation of Munc13–1 upon binding to DAG and Ca2+-PIP2 could still underlie

an increased activity in facilitating SNARE complex formation, but such reorientation could also lead

to an optimization of the primed state that can lead more readily to membrane fusion upon Ca2+

influx than that observed without Munc13–1 activation. This separation of the roles of Munc13–1

into at least two steps can easily explain the differential effects of the V549E,L554E, R750E,K752E

and N940W mutations in the different functional assays, including the finding that N940W impairs

priming and evoked release, but enhances Munc13–1 function during 10 Hz trains or PDBu treat-

ment (Figures 4–7).

Clearly, the primed fusion complex depicted in Figure 9B (top) might contain additional compo-

nents such as Munc18–1, aSNAP, NSF, synaptotagmin-1 and complexins, among others. An attrac-

tive feature of this model is that it places the SNAREs on the periphery of the membrane-membrane

interface rather than between the membranes, consistent with electron microscopy images of

SNARE-mediated liposome fusion intermediates (Hernandez et al., 2012) and of presynaptic termi-

nals showing practically direct contact between docked-primed vesicles and the plasma membrane

[e.g. (Harlow et al., 2001)]. With this architecture, the SNARE complex could not induce fusion by

bringing the vesicle and plasma membranes into proximity, as they are already in contact before

Ca2+ influx, but could pull the two membranes radially outwards as assembly of the SNARE complex

is completed (Figure 9B). In this case, fusion would result from the tension created in both mem-

branes, which would favor transient formation of non-bilayer intermediates that might or might not

resemble a stalk. Components of the fusion complex that are bound to the SNARE complex and

bridge the membranes (e.g. Munc13–1 in Figure 9B) would play an important role to establish sup-

port points from which the SNAREs can exert their force on the membranes more efficiently.

As discussed in the results section, the strong effect of the R750E,K752E mutation in our fusion

assays (Figure 8) suggests that our reconstitutions recapitulate better the mechanism of release dur-

ing repetitive stimulation than release evoked by a single action potential. This proposal is sup-

ported by the findings that the tight Ca2+ dependence of membrane fusion in our reconstitution

assays (Figure 8) arises largely from Ca2+ binding to the Munc13–1 C2B domain (Liu et al., 2016),

and that disrupting the Ca2+-binding sites of the Munc13–2 C2B domain did not impair evoked

release in rescue experiments but did impair release during repetitive stimulation (Shin et al., 2010).

However, it is plausible that functional redundancy with other proteins and/or compensatory effects

may have masked an actual role for the Munc13–2 C2B domain in Ca2+ sensing during evoked

Figure 9 continued

plasma membrane is mediated by the DAG-binding region of the C1 domain and the Ca2+-binding region of the C2B domain. The SNARE complex

(PDB code 1N7S) (Ernst and Brunger, 2003), with the SNARE motifs in green for SNAP-25, in red for synaptobrevin and in yellow for syntaxin-1, is

shown partially assembled at the top and fully assembled at the bottom. The arrows in the top panel are meant to illustrate that complete assembly of

the C-terminus of the SNARE complex might pull the membranes radially outwards, which could create strong membrane tension to trigger membrane

fusion. See text for further details.

DOI: 10.7554/eLife.22567.021
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release, in cooperation with synaptotagmin-1. A primed state that contains Munc13 as key compo-

nent bodes well for such a Ca2+-sensing role of the C2B domain, which is also suggested by the

increased release probability caused by a K630W mutation in the Ca2+-binding loops of the

Munc13–2 C2B domain (Shin et al., 2010) and may be reflected in the tight Ca2+-dependence of our

fusion assays.

Clearly, further research is needed to test all these ideas, and it will be particularly critical to

assess whether Munc13–1 is indeed part of the primed fusion complex and, if this is the case, how

Munc13–1 binds to the SNAREs and other potential components of the complex. Regardless of

these possibilities, the structure of C1C2BMUN presented here provides a fundamental framework

to design and interpret future studies.

Materials and methods

Plasmids and recombinant proteins
To express rat Munc13–1 fragments encoding the C1C2BMUN and C1C2BMUNC2C regions (residues

529–1531 and 529–1735, respectively; both constructs have residues 1408–1452 from a flexible loop

deleted), the corresponding DNA sequences were originated from full-length rat Munc13–1

(NM_022861, L756W, D1415–1437, D1533–1551, E1666G). C1C2BMUN was cloned into pFAST-

BacHTb (EcoRI, HindIII); C1C2BMUNC2C was cloned into pFASTBac(EcoRI, HindIII), which was modi-

fied by adding a GST tag and a TEV cleavage site in front of the EcoRI cloning site. The constructs

were used to generate a baculovirus using the Bac-to-Bac system (Invitrogen; Waltham, MA). Insect

cells (sf9) were infected with the baculovirus, harvested about 72–96 hr post-infection, and re-sus-

pended in lysis buffers C1C2BMUN (50 mM Tris pH8.0, 250 mM NaCl, 10 mM imidazole);

C1C2BMUNC2C (50 mM Tris pH8.0, 250 mM NaCl, 1 mM TCEP). Cells were lysed and centrifuged at

18,000 rpm for 45 min. The clear supernatant of C1C2BMUN was incubated with Ni-NTA resin at 4˚C
for 2 hr, then the beads were washed with: (i) lysis buffer; (ii) lysis buffer containing 1% Triton X-100;

(iii) lysis buffer containing 1M NaCl; and (iv) lysis buffer. The protein was eluted in lysis buffer with

150 mM imidazole, incubated with TEV to remove the His-tag, and purified by ion exchange chroma-

tography. The clear supernatant of C1C2BMUNC2C was incubated with GST agarose at room tem-

perature for 2 hr. The beads were washed with: (i) lysis buffer; (ii) lysis buffer containing 1% Triton

X-100; (iii) lysis buffer containing 1M NaCl; and (iv) lysis buffer. The protein was treated with TEV

protease on the GST agarose at 22˚C for 2 hr. Both C1C2BMUN and C1C2BMUNC2C were further

purified via gel filtration chromatography and were concentrated to 3–4 mg/ml for storage in 10

mM Tris buffer (pH 8.0) containing 10% glycerol, 5 mM TCEP and 250 mM NaCl. The

C1C2BMUNC2C mutants were generated by site-directed mutagenesis, and purified as the WT frag-

ment. The finding that the mutants eluted at the same volumes as WT C1C2BMUNC2C in gel filtra-

tion and did not exhibit a higher tendency to degradation strongly suggest that the mutations do

not cause folding problems.

Crystallization and X-ray diffraction data collection
Rat Munc13–1 C1C2BMUN (529-1407, 1453-1531) in 0.01 M Tris (pH 8.0), 0.25 M NaCl, 10% (v/v)

glycerol and 5 mM TCEP was concentrated to 4–6 mg/ml for crystallization using the sitting drop

vapor diffusion method. Drops in a ratio of 1 ml protein to 1 ml well solution were equilibrated

against 200 ml 0.1 M Tris (pH 8.0–8.5), 0.2 M LiCl, 12% (v/v) PEG 10,000 at 20˚C. Multiple crystals

appeared spontaneously in 3 days and were used for dilution microseeding. Drops in a ratio of 1 ml

protein to 1–2 ml well solution premixed with crystal seeds were equilibrated against 200 ml 0.1 M

Tris (pH 8.0–8.5), 0.2 M LiCl, 10–12% (v/v) PEG 10,000 at 20˚C, and crystals were harvested within 10

days. Tantalum derivatized crystals were obtained by overnight incubation with solid Na2Ta6Br12 in

mother liquor drops that contained pre-grown single C1C2BMUN crystals. Crystals were cryopro-

tected by successive transfer in increasing steps of 5% ethylene glycol to a final solution of 20–25%

(v/v) ethylene glycol, 0.1 M Tris (pH 8.0), 0.2 M LiCl, 0.15 M NaCl, 10%(v/v) glycerol, 5 mM TCEP

and flash-cooled in liquid nitrogen.

Native C1C2BMUN crystals exhibited the symmetry of space group C2 with unit-cell parameters

of a = 176.1 Å, b = 86.4 Å, c = 202.1 Å and b = 115.5˚ and contained two molecules of C1C2BMUN

per asymmetric unit. C1C2BMUN crystals displayed strong anisotropy and were highly non-
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isomorphous. Native C1C2BMUN crystals diffracted to a dmin of 3.35 Å when exposed to synchrotron

radiation. All diffraction data were collected at beamline 19-ID (SBC-CAT) at the Advanced Photon

Source (Argonne National Laboratory, Argonne, IL, USA) and processed with HKL3000 (Minor et al.,

2006), with applied corrections for effects resulting from absorption in a crystal and for radiation

damage (Borek et al., 2003; Otwinowski et al., 2003), the calculation of an optimal error model,

and corrections to compensate the phasing signal for a radiation-induced increase of non-isomor-

phism within the crystal (Borek et al., 2010, 2013). These corrections were crucial for successful

phasing. Initial phases for C1C2BMUN were obtained by molecular replacement (MR) with Phaser

(McCoy et al., 2007) using the crystal structure of the N-terminally truncated MUN BCD domain

(PDB code: 4Y21) (Yang et al., 2015) with the coordinates for several loops and residues at the N-

and C-termini removed (residues 942–947, 1038–1041, 1193–1196, 1342–1353, 1404–1409, 1452–

1469, 1515–1523) as the search model. One C2B domain was located by MR using the crystal struc-

ture of the calcium-free C2B domain (PDB code: 3 KWT) as a search model (Shin et al., 2010). Phas-

ing using MR versus the native dataset stalled at this point, and an iterative MR-SAD/rigid body

refinement procedure was then adopted. MR-SAD phases calculated in Phaser from a tantalum bro-

mide dataset collected at the tantalum LIII edge revealed interpretable density for missing helices

H7-H9, which were modeled initially with a polyalanine sequence and rigid body refined in Phenix

(Adams et al., 2010). The updated model was placed in the native cell via MR in Phaser and rigid-

body refined in Phenix. Density modification using two-fold non-crystallographic symmetry was per-

formed in Parrot (Cowtan, 2010), and automated model rebuilding of only the newly added four

helices of each MUN domain was performed in Buccaneer (Cowtan, 2006). Multiple cycles of alter-

nating this procedure between the tantalum and native datasets allowed the modeling and

sequence assignment to helices H1-H9, and the placement of the second C2B domain by MR. Sub-

sequently, both C1 domains were located by MR using the NMR structure (PDB code: 1Y8F) as a

search model (Shen et al., 2005), and the locations were confirmed by an anomalous difference

map calculated from a dataset collected at the zinc K-edge (Figure 1—figure supplement 1). Itera-

tive model building and refinement were performed with COOT and Phenix, respectively

(Emsley and Cowtan, 2004).

Restraints used in the initial cycles of model refinement included non-crystallographic symmetry,

secondary structure and reference models for the C1, C2B and MUN domains. As the coordinates

for the MUN domain deposited in the PDB (ID 4Y21) had incorrect sequence numbering and exhib-

ited a high level of side chain outliers, a high clashscore and high overall score in MolProbity

(Chen et al., 2010), the coordinates for the MUN domain were re-refined versus the deposited

structure factors and the sequence numbering was corrected prior to use as a reference model for

restrained refinement of the C1C2BMUN model. The reference model restraints were removed for

the final cycles of refinement. A superposition of chains A and B yield a root mean square deviation

(r.m.s.d.) of 1.51 Å for 809 aligned Ca carbons (Figure 1—figure supplement 2). The final model

for C1C2BMUN (Rwork = 25.4%, Rfree = 29.0%) contained 1685 residues in two monomers, 4 Zn2+

and 2 Cl- ions. The higher-than-average Rfree value is probably due to the relative dearth of lattice

contacts (Figure 1—figure supplement 3) for the CD subdomains of MUN chain A of C1C2BMUN,

as evidenced by weak electron density and high average thermal displacement factors (ADP) (151.2

Å2) for those subdomains (residues 1255–1517) (Figure 1—figure supplement 4). Due to the high

ADP values for the CD subdomain of chain A, the authors recommend that interpretation of the CD

subdomain should be performed on residues in chain B. The density for the remaining domains of

chain A as well as chain B of C1C2BMUN is strong and well connected; in fact, the average ADPs for

residues 541–950 are lower for chain A (41.0 Å2) than chain B (62.4 Å2). Omit maps for regions where

site directed mutations were made are shown in Figure 1—figure supplement 5. A Ramachandran

plot generated with MolProbity (Chen et al., 2010) indicated that 92.6% of all protein residues are

in the most favored regions and 1.2% in disallowed regions. The majority of the outliers in the Rama-

chandran plot are located in surface loops with weak electron density that connect domains or sec-

ondary structural elements. Data collection and structure refinement statistics are summarized in

Table 1. The coordinates of the C1C2BMUN structure and of the refined MUN domain structure

have been deposited in the Protein Data Bank with accession numbers 5UE8 and 5UF7, respectively.
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Lentiviral constructs
The cDNAs of Munc13–1 full length and Munc13–1 V549E,L554E, Munc13–1 R750E,K752E and

Munc13–1 N940W were generated from rat Munc13–1 (Basu et al., 2005) by PCR amplification. The

reverse primer harbors a 3xFLAG sequence (Sigma-Aldrich, Hamburg, Germany) to allow expression

analysis. The corresponding PCR products were fused to a P2A linker (Kim et al., 2011) after a

nuclear localized GFP sequence into the lentiviral shuttle vector, which allows a bicistronic expres-

sion of NLS-GFP and the Munc13–1-Flag protein under the control of a human synapsin-1 promotor.

Concentrated lentiviral particles were prepared as described (Lois et al., 2002).

Autaptic hippocampal neuronal cultures and lentiviral infection
Animal welfare committees of Charité Medical University and the Berlin state government Agency

for Health and Social Services approved all protocols for animal maintenance and experiments

(license no. T 0220/09). Hippocampi were dissected from embryonic day 18.5 Munc13 1/2 DKO

mouse and enzymatically treated with 25 units/ml of papain for 45 min at 37˚C. After enzyme diges-

tion, hippocampi were mechanically dissociated and the neuron suspension was plated onto astro-

cytes microislands at a final density of 300 cells cm�2. Neurons were infected 24 hr after plating with

the lentiviral rescue constructs and incubated at 37˚C and 5% CO2 for 13–16 days.

Electrophysiology
Whole-cell voltage clamp recordings were done at room temperature in 13–16 days in vitro (DIV)

autaptic hippocampal Munc13- 1/2 DKO neurons expressing Munc13–1 WT, Munc13–1 V549E,

L554E, Munc13–1 R750E,K752E or Munc13–1 N940W. Synaptic currents were monitored using a

Multiclamp 700B amplifier (Molecular Devices). The series resistance was compensated by 70% and

only cells with series resistances <10 MW were analyzed. Data were acquired using Clampex 10 soft-

ware (Molecular Devices, Sunnyvale, CA) at 10 kHz and filtered using a low-pass Bessel filter at 3

kHz. Borosilicate glass pipettes with a resistance between 2 and 3.5 MW were used. Pipettes were

filled with internal recording solution contained the following (in mM): 136 KCl, 17.8 HEPES, 1

EGTA, 4.6 MgCl2, 4 Na2ATP, 0.3 Na2GTP, 12 creatine phosphate, and 50 U/ml phosphocreatine

kinase; 300 mOsm; pH 7.4. During recordings, neurons were continuously perfused with standard

extracellular solution including the following (in mM): 140 NaCl, 2.4 KCl, 10 HEPES, 10 glucose, 2

CaCl2, 4 MgCl2; 300 mOsm; pH 7.4. Spontaneous release was measured by recording miniature

EPSCs for 30 s at �70 mV. To detect false-positive events 3 mM of kynurenic acid was applied for an

equal amount of time. Action potential-evoked EPSCs were triggered by 2 ms somatic depolariza-

tion from �70 to 0 mV. The size of the readily-releasable pool (RRP) was determined by the applica-

tion with a fast flow system of 500 mM sucrose added to the standard extracellular solution for 5 s.

Evoked sucrose responses are characterized by a transient inward current followed by a steady state

current. The steady state component represents refilling of primed vesicles and was used to define

the baseline. The area under the baseline in the transient curve component was quantified to deter-

mine the total charge released by the RRP (Rosenmund and Stevens, 1996). The vesicular release

probability (pvr) was calculated by dividing the EPSC charge by the RRP charge.

The paired-pulse stimulation protocol contained two inductions of an AP at an interval of 25 ms

(40 Hz). The paired-pulse ratio was calculated by dividing the amplitude of the second EPSC by the

amplitude of the first. To analyze release induced by a high frequency stimulation train, EPSCs were

evoked at a frequency of 10 Hz for 5 s. To define the quantitative relationship between Pvr and the

steady state EPSC amplitudes during a 10 Hz action potential train, we recorded EPSCs and sucrose

evoked responses from wildtype neurons. EPSCs and EPSC trains were recorded in external solu-

tions containing 0.5, 1, 2 and 4 mM calcium and 4 mM magnesium. The hypertonic sucrose solution

for all responses contained 2 mM calcium and 4 mM magnesium. The Pvr was computed and corre-

lated with the mean amplitude of the last 10 EPSCs of the 10 Hz AP train. Phorbol ester experiments

were monitored in the same cell, EPSC amplitudes were recorded at 0.2 Hz for 30 s in the absence

of 1 mM PDBu and the following 30 s in its presence. To dissect how an AP train modulates synaptic

output, we examined RRP and release probability separately by probing EPSC amplitude and RRP

size 2 s following the 10 Hz train. We then compared the relative changes in RRP and EPSC to the

corresponding EPSC and RRP values preceding the AP train. An approximately equal number of cells

were recorded from control and experimental groups per day from 3 to 4 consecutive days. The
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present dataset was acquired from three separate cultures. To minimize variability between cultures

the values of mEPSC, EPSC and RRP from each experimental groups of recording were normalized

to the mean value of the WT group for each culture. Data were analyzed offline using Axograph X

(Axograph Scientific, Sidney, Australia) and the values were normalized to the WT group. Data sum-

mation and statistical analyses were performed using Prism 7 (GraphPad). Significance and p values

were determined by comparison of each mutant group with the Munc13–1 WT using the unpaired

Student’s t test: Mann-Whitney.

Munc13–1 protein expression level quantification by Western blot
Hippocampal neurons from Munc13-1/2 DKO expressing Munc13–1 full length, Munc13–1 V549E,

L554E, Munc13–1 R750E,K752E and Munc13–1 N940W mutants were lysed after 15 DIV at 4˚C with

RIPA lysis buffer including protease inhibitor cocktail-complete mini (Roche Diagnostics, Berlin, Ger-

many). Equal amounts of proteins from the lysates of the four different groups were mixed with

Laemmli sample buffer containing 0.1 M DTT, and boiled 5 min at 99˚C. Protein lysates were sepa-

rated on SDS polyacrylamide gels (4–8%% SDS-PAGE) and transferred to a polyvinyl difluoride

(PVDF) membrane. Membranes were blocked for 1 hr with 5% skim milk in TBST and incubated at

4˚C over night with primary antibodies: anti-Flag M2 (F1804; Sigma-Aldrich), and anti-Living Colors

GFP (632375; Clontech, Mountain View, CA). Secondary antibodies were horseradish peroxidase-

conjugated (Jackson ImmunoResearch, West Grove, PA). The immunoreactive proteins were

detected by ECL Plus Western Blotting Detection Reagents (GE Healthcare

Biosciences, Pittsuburgh, PA) in a Fusion FX7 detection system (Vilber Lourmat, Eberhardzell, Ger-

many). Data were collected from three separate Munc13-1/2 DKO cultures and analyzed offline using

ImageJ.
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