Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold

  1. Tomoya Hasegawa
  2. Christopher J Hall
  3. Philip S Crosier
  4. Gembu Abe
  5. Koichi Kawakami
  6. Akira Kudo
  7. Atsushi Kawakami  Is a corresponding author
  1. Tokyo Institute of Technology, Japan
  2. University of Auckland, New Zealand
  3. Graduate School of Life Sciences, Tohoku University, Japan
  4. National Institute of Genetics, Japan

Abstract

Cellular responses to injury are recognized to be crucial for complete tissue regeneration, but their underlying processes remain incompletely elucidated. We have previously reported that myeloid-defective zebrafish mutants display apoptosis of regenerative cells during fin fold regeneration. Here, we found that the apoptosis phenotype is induced by the prolonged expression of interleukin 1 beta (il1b). Myeloid cells have been considered to be the principal source of Il1b, but we show that epithelial cells express il1b in response to tissue injury and initiate the inflammatory response, and that its resolution by macrophages is necessary for the survival of regenerative cells. We further show that Il1b also plays an essential role in normal fin fold regeneration by regulating the expression of regeneration-induced genes. Our study reveals that proper levels of Il1b signaling and tissue inflammation, which are tuned¬ by macrophages, play a crucial role in tissue regeneration.

Article and author information

Author details

  1. Tomoya Hasegawa

    School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher J Hall

    Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  3. Philip S Crosier

    Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  4. Gembu Abe

    Laboratory of Organ Morphogenesis, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Koichi Kawakami

    Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9993-1435
  6. Akira Kudo

    School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Atsushi Kawakami

    School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
    For correspondence
    atkawaka@bio.titech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9461-6372

Funding

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (C))

  • Atsushi Kawakami

Japan Agency for Medical Research and Development (National BioResource Project)

  • Koichi Kawakami

Royal Society of New Zealand (Marsden Fund)

  • Christopher J Hall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Act on Welfare and Management of Animals in Japan and the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the Animal Research Guidelines at Tokyo Institute of Technology. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Tokyo Institute of Technology. All surgery was performed under tricaine (3-aminobenzoic acid ethyl ester) anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, Hasegawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,610
    views
  • 1,186
    downloads
  • 115
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomoya Hasegawa
  2. Christopher J Hall
  3. Philip S Crosier
  4. Gembu Abe
  5. Koichi Kawakami
  6. Akira Kudo
  7. Atsushi Kawakami
(2017)
Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold
eLife 6:e22716.
https://doi.org/10.7554/eLife.22716

Share this article

https://doi.org/10.7554/eLife.22716

Further reading

    1. Stem Cells and Regenerative Medicine
    Sujeethkumar Prithiviraj, Alejandro Garcia Garcia ... Paul E Bourgine
    Research Article

    Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joshua G Medina-Feliciano, Griselle Valentín-Tirado ... José E Garcia-Arraras
    Research Article

    In holothurians, the regenerative process following evisceration involves the development of a ‘rudiment’ or ‘anlage’ at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.