Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold

  1. Tomoya Hasegawa
  2. Christopher J Hall
  3. Philip S Crosier
  4. Gembu Abe
  5. Koichi Kawakami
  6. Akira Kudo
  7. Atsushi Kawakami  Is a corresponding author
  1. Tokyo Institute of Technology, Japan
  2. University of Auckland, New Zealand
  3. Graduate School of Life Sciences, Tohoku University, Japan
  4. National Institute of Genetics, Japan

Abstract

Cellular responses to injury are recognized to be crucial for complete tissue regeneration, but their underlying processes remain incompletely elucidated. We have previously reported that myeloid-defective zebrafish mutants display apoptosis of regenerative cells during fin fold regeneration. Here, we found that the apoptosis phenotype is induced by the prolonged expression of interleukin 1 beta (il1b). Myeloid cells have been considered to be the principal source of Il1b, but we show that epithelial cells express il1b in response to tissue injury and initiate the inflammatory response, and that its resolution by macrophages is necessary for the survival of regenerative cells. We further show that Il1b also plays an essential role in normal fin fold regeneration by regulating the expression of regeneration-induced genes. Our study reveals that proper levels of Il1b signaling and tissue inflammation, which are tuned¬ by macrophages, play a crucial role in tissue regeneration.

Article and author information

Author details

  1. Tomoya Hasegawa

    School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher J Hall

    Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  3. Philip S Crosier

    Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  4. Gembu Abe

    Laboratory of Organ Morphogenesis, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Koichi Kawakami

    Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9993-1435
  6. Akira Kudo

    School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Atsushi Kawakami

    School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
    For correspondence
    atkawaka@bio.titech.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9461-6372

Funding

Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (C))

  • Atsushi Kawakami

Japan Agency for Medical Research and Development (National BioResource Project)

  • Koichi Kawakami

Royal Society of New Zealand (Marsden Fund)

  • Christopher J Hall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Didier YR Stainier, Max Planck Institute for Heart and Lung Research, Germany

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Act on Welfare and Management of Animals in Japan and the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the Animal Research Guidelines at Tokyo Institute of Technology. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Tokyo Institute of Technology. All surgery was performed under tricaine (3-aminobenzoic acid ethyl ester) anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: October 26, 2016
  2. Accepted: February 13, 2017
  3. Accepted Manuscript published: February 23, 2017 (version 1)
  4. Version of Record published: March 21, 2017 (version 2)

Copyright

© 2017, Hasegawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,050
    views
  • 1,150
    downloads
  • 107
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomoya Hasegawa
  2. Christopher J Hall
  3. Philip S Crosier
  4. Gembu Abe
  5. Koichi Kawakami
  6. Akira Kudo
  7. Atsushi Kawakami
(2017)
Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold
eLife 6:e22716.
https://doi.org/10.7554/eLife.22716

Share this article

https://doi.org/10.7554/eLife.22716

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article Updated

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.