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Abstract Histone H3 lysine 36 methylation (H3K36me) is thought to participate in a host of co-
transcriptional regulatory events. To study the function of this residue independent from the
enzymes that modify it, we used a 'histone replacement’ system in Drosophila to generate a non-
modifiable H3K36 lysine-to-arginine (H3K36R) mutant. We observed global dysregulation of mRNA
levels in H3K36R animals that correlates with the incidence of H3K36me3. Similar to previous
studies, we found that mutation of H3K36 also resulted in H4 hyperacetylation. However, neither
cryptic transcription initiation, nor alternative pre-mRNA splicing, contributed to the observed
changes in expression, in contrast with previously reported roles for H3K36me. Interestingly,
knockdown of the RNA surveillance nuclease, Xrn1, and members of the CCR4-Not deadenylase
complex, restored mRNA levels for a class of downregulated, H3K36éme3-rich genes. We propose a
post-transcriptional role for modification of replication-dependent H3K36 in the control of
metazoan gene expression.

DOI: 10.7554/eLife.23249.001

Introduction

Eukaryotic genomes function within the context of chromatin fibers composed of nucleosome units,
each of which contains roughly 147 bp of DNA wrapped around a single histone octamer composed
of two pairs of heterodimers (histone H2A-H2B, and H3-H4) (Luger et al., 1997). Histones are deco-
rated with an array of covalent post-translational modifications (PTMs) that have been proposed to
demarcate distinct chromatin domains in the genome (Kharchenko et al., 2011; Rice et al., 2003,
Schneider et al., 2004; Sullivan and Karpen, 2004). The 'histone code’ hypothesis posits that PTMs
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elLife digest In a single human cell there is enough DNA to stretch over a meter if laid end to
end. To fit this DNA inside the cell — which is less than 20 micrometers in diameter — the DNA is
tightly wrapped around millions of proteins known as histones, which look like “beads” along a
“string” of DNA. These histones can prevent other proteins from binding to DNA and activating
specific genes. Therefore, cells use enzymes to chemically modify histones to allow particular
stretches of DNA to be unwrapped at specific times.

Proteins are made up of building blocks called amino acids. A specific amino acid on histones
known as H3K36 is modified in certain sections of DNA that suggest it affects the activities of many
genes. However, the precise role of this amino acid remains unclear. Previous studies have tried to
investigate this by removing the enzymes that modify it, but these enzymes can also modify many
other proteins, making it difficult to know what exactly causes the changes in gene activity.

Fruit flies are often used in experiments as models of how genetic processes work in humans and
other animals. Like us, fruit flies also package their DNA using histones. To investigate the role of
H3K36, Meers et al. generated a mutant fruit fly that has a version of the amino acid that cannot be
chemically modified by the normal enzymes. Unexpectedly, the experiments suggest that some
changes in gene activity that have been previously reported to be caused by modifying H3K36
might actually be due to other factors. Meers et al. found that H3K36 modifications may instead
“mark” certain genes to be more active than they otherwise would be.

These findings provide a starting point for understanding exactly how H3K36 regulates gene
activity. The next challenge is to refine our understanding of how H3K36 modification affects genes
in cancer and other diseases, which may aid the development of new therapies to treat these
conditions.

DOI: 10.7554/elife.23249.002

play crucial roles in controlling gene expression by adapting the local chromatin packaging environ-
ment and recruiting structural or catalytic binding partners to confer or deny access to transcriptional
machinery (Bannister and Kouzarides, 2011; Jenuwein and Allis, 2001, Rothbart and Strahl,
2014; Strahl and Allis, 2000; Taverna et al., 2007). Partly on the basis of this model, PTMs have
been considered strong candidates for primary carriers of epigenetic information that contribute to
cell fate specification during development (Margueron and Reinberg, 2010). This concept has been
extended to suggest PTM dysregulation as a likely contributor to diseases characterized by altered
gene expression and cell identity (Chi et al., 2010; Lewis et al., 2013).

In multicellular eukaryotes, support for the histone code hypothesis is largely based on pheno-
types observed from studies in which the ‘writer’ enzymes responsible for catalyzing histone PTMs
were inhibited or ablated. However, such experiments cannot rule out the possibility that these
enzymes have other non-histone substrates, or play other non-catalytic (e.g., structural) roles, that
confound analysis and assignment of observed phenotypes to the PTMs themselves. Several recent
studies have employed a direct replacement of the endogenous, replication-dependent histone
gene cluster in Drosophila melanogaster with transgenic clusters encoding non-modifiable mutant
histones (Graves et al., 2016; Giinesdogan et al., 2010, Hédl and Basler, 2012; McKay et al.,
2015; Pengelly et al., 2013; Penke et al., 2016). This approach has enabled the deconvolution of
phenotypes specific to histone PTMs from those specific to their writers. These studies have eluci-
dated the relationship between PTMs and their writers, both confirming (Pengelly et al., 2013) and
refuting (McKay et al., 2015) previously reported roles for certain residues on the basis of their cor-
responding writer mutant phenotypes. The approach also affords an opportunity to directly interro-
gate the function of other well-characterized histone PTMs for which a variety of functional roles
have been described.

In contrast with many PTMs whose spatial distribution is skewed towards promoters and the 5’
regions of genes, H3K36 di- and tri-methylation (H3K36me2/3) are enriched in coding regions and
toward the 3’ end of actively transcribed genes (Bannister et al., 2005). These marks are also prefer-
entially enriched over exons as opposed to introns (Kolasinska-Zwierz et al., 2009). This distribution
pattern suggests that H3K36me interfaces with RNA polymerase and contributes to transcription
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elongation and/or RNA processing, rather than affecting gene expression via chromatin packaging
at promoters. Indeed, H3K36me2/3 is known to suppress cryptic transcription initiation from coding
regions in Saccharomyces cerevisiae by recruiting a repressive Rpd3 deacetylase complex to sites of
active elongation (Carrozza et al., 2005; Keogh et al., 2005). It is also implicated in suppressing
active incorporation of acetylated histones via histone exchange (Venkatesh et al., 2012). In cul-
tured cells, ablation of human SETD2, which catalyzes H3K36 trimethylation, is suggested to alter a
number of exon inclusion events by recruiting RNA binding proteins (Luco et al., 2010;
Pradeepa et al., 2012). Conversely, H3K36me3 distribution across gene bodies is itself sensitive to
perturbations in splicing (de Almeida et al., 2011; Kim et al., 2011). In addition to its role in tran-
scription and RNA processing, a range of other activities have been attributed to H3K36me, includ-
ing X-chromosome dosage compensation (Larschan et al., 2007), DNA damage response (Jha and
Strahl, 2014; Li et al., 2013; Pai et al., 2014; Pfister et al., 2014), and three dimensional chromo-
some organization (Evans et al., 2016; Smith et al., 2013; Ulianov et al., 2016). However, to date,
none of these putative roles for H3K36me have been evaluated directly in an H3K36 mutant animal.

Here, we report a comprehensive analysis of H3K36 function, focused on differential gene expres-
sion, transcription initiation, and chromatin accessibility phenotypes in transgenic Drosophila whose
entire complement of replication-dependent H3 genes has been mutated to arginine at lysine 36
(H3K36R). Arginine approximates the charge and steric conformation of lysine, but cannot be tar-
geted by lysine methyltransferases, and therefore represents an appropriate mutation with which to
study the PTM-specific functions of H3K36. Although arginine is a conservative amino acid change, it
also enables hydrogen bonding modalities that are distinct from those of lysine. In principle, in addi-
tion to phenotypes resulting from loss of H3K36 methylation, such a change could also result in
other hypomorphic (partial loss of function) or neomorphic (gain of function) phenotypes.

In H3K36R mutants, we observed a decrease in the steady-state levels of highly expressed RNAs
concomitant with increased transcription and productive expression from a variety of low-usage pro-
moters. Though mutants exhibited bulk increases in histone acetylation, chromatin accessibility did
not appreciably change at promoters. Surprisingly, we found that previously reported roles for
H3K36 methylation, including suppression of transcription initiation in coding regions and regulation
of alternative splicing, are not supported in Drosophila by transcription start-site (TSS) and poly-A
RNA-seq analyses, respectively. Intriguingly, we found that certain genes are downregulated in
H3K36R mutants but are rescued to wild-type levels by depletion of the Xrn1 exonuclease pacman,
or the CCR4-Not deadenylase subunits, twin and Pop2. We posit a model whereby H3K36 methyla-
tion contributes to transcript fitness in order to maintain global transcriptome fidelity.

Results

H3K36R mutation causes widespread dysregulation of the
transcriptome

We utilized a bacterial artificial chromosome (BAC)-based histone gene replacement platform
(McKay et al., 2015) to generate Drosophila bearing a K36R substitution mutation in each of its rep-
lication-dependent histone H3 genes. Using this system, the endogenous histone gene cluster was
deleted and complemented by a transgenic array of 12 copies of the native 5 kb histone gene
repeat (Figure 1). As previously reported, H3K36R (K36R) mutants pupate at significantly reduced
frequency compared to histone wild type (HWT) control animals, and fail to eclose into adults with
100% penetrance, despite exhibiting no obvious cell proliferation defects (McKay et al., 2015).
Given the postulated role for H3K36 modification in co-transcriptional gene regulation, we sought to
comprehensively compare the transcriptomic landscapes of HWT and K36R animals. We sequenced
poly-A selected RNA, rRNA-depleted nuclear RNA, nucleosome depleted DNA (via ATAC-seq
[Buenrostro et al., 2013]), and short, nascent, capped RNAs (Henriques et al., 2013,
Nechaev et al., 2010) from third instar larvae. Collectively these methods interrogate the major
steps in mRNA biogenesis (Figure 1).

We hypothesized that the K36R mutation would conform to a ‘cis-acting,’ direct model, wherein
effects are confined primarily to genes containing high levels of H3K36me3. However, when we ana-
lyzed genome-wide differential expression from poly-A RNA and stratified genes by the chromatin
‘states’ in which they reside (as defined in Kharchenko et al., 2011), gene expression changes were
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Figure 1. Strategy for interrogating the transcriptomic life cycle of H3K36R animals. (A) Schematic of experimental high-throughput sequencing
methods applied to H3K36R animals. Twelve tandem copies of the histone repeat unit were cloned into a custom BAC vector and site-specifically
integrated into the D. melanogaster genome as described in McKay et al. (2015). Poly-A-selected RNA was sequenced from whole third instar larvae,
ATAC-seq and rRNA-depleted nuclear RNA-seq were carried out from nuclei isolated from third instar larvae, and short, nascent, capped RNAs were
selected from nuclei and subjected to ‘Start-seq’ (Henriques et al., 2013).

DOI: 10.7554/eLife.23249.003

not confined to states characterized by high levels of H3K36 methylation (Figure 2—figure supple-
ment 1A, states 1-4). Instead, when we stratified genes by H3K36me3 density (www.modencode.
org), the mark was anticorrelated with gene expression change across the entire spectrum of
H3K36me3 density, and largely uncorrelated with other methyl-states of H3K36 (Figure 2A,
Figure 2B). Genes with high H3K36me3 density tended to decrease expression in K36R animals,
whereas genes with low H3K36me3 density tended to increase expression in K36R animals. This find-
ing suggests a global role for H3K36me in regulating gene expression, but one that is not confined
to H3K36me3-rich loci, and therefore argues against an exclusively direct, local effect.

Because H3K36me3 is catalyzed co-transcriptionally (Kizer et al., 2005), and should therefore
track roughly with gene expression, we also took the alternate approach of determining whether
gene expression changes in K36R were correlated with the amount of expression normally observed
in HWT. When we plotted differential expression against a specific transcript’'s HWT level, we found
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Figure 2. Transcriptome dystregulation in H3K36R mutants is correlated with H3K36me3 ChiP-seq. (A) Metagene plot describing the density of
H3K36me3 (top), H3K36me2 (middle), and H3K36me1 (bottom) ChIP-seq across genes that are upregulated (purple), unchanged (blue), or
downregulated (yellow) in H3K36R mutants as compared with HWT controls. (B) Boxplot of differential expression of gene cohorts stratified by density
of H3K3éme3 signal in the 3" UTR (1=lowest density decile, 10=highest decile). (C) MA plot with accompanying LOESS regression line plotting log2 fold
change (y-axis) vs. HWT FPKM (x-axis) interpreted from poly-A RNA-seq data.

DOI: 10.7554/elife.23249.004

The following figure supplement is available for figure 2:

Figure supplement 1. Gene expression changes in H3K36R mutants.
DOI: 10.7554/eLife.23249.005

that the effects of the K36R mutation were consistently anticorrelated with a gene’s HWT expression
level. That is, genes that were normally silent or lowly-expressed in HWT larvae experienced the larg-
est relative increases in expression in K36R mutants, and highly expressed genes were preferentially
reduced in K36R (Figure 2C, Figure 2—figure supplement 1B). RT-qPCR validation of select tran-
scripts confirmed this observation, arguing against the likelihood of bias due to normalized RNA
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input (Figure 2—figure supplement 1C). These results indicate that H3K36me-dependent expres-
sion changes could be caused by both direct (locus-specific) and indirect (locus-independent)
effects.

H3K36 mutants exhibit increased histone acetylation, but unchanged
global chromatin accessibility

H3K36 methylation status has the potential to affect other histone PTMs, most notably H4 acetyla-
tion (H4ac) (Carrozza et al., 2005; Keogh et al., 2005) and H3K27 trimethylation (H3K27me3)
(Lu et al., 2016; Yuan et al., 2011). This form of histone ‘crosstalk’ might contribute to the observed
gene expression phenotypes. To formally evaluate this possibility, we assayed bulk levels of H4ac
and H3K27me3 by western blotting. H3K27me3 levels were slightly reduced in H3K36 mutants
(Figure 3A, Figure 3—figure supplement 1A), however characteristic polycomb target genes were
largely unaffected (Figure 2—figure supplement 1A, Figure 3—figure supplement 1B). In contrast,
H4ac levels were robustly increased (Figure 3A, Figure 3—figure supplement 1A), confirming the
previously identified link between H3K36me and H4ac (Carrozza et al., 2005; Keogh et al., 2005).

To assay the spatial distribution of H4ac, we stained polytene chromosomes with an H4K12ac
antibody. In both HWT and K36R mutants, we found that H4K12ac intensity was anticorrelated with
DAPI bright bands (Figure 3—figure supplement 1C). The DAPI bright regions are thought to cor-
respond to more transcriptionally silent chromatin. Therefore, the observed hyperacetylation in
K36R mutants occurs in the more actively transcribed (DAPI dark) regions, consistent with previous
observations (Carrozza et al., 2005; Keogh et al., 2005). Given these findings, we initially hypothe-
sized that H4 hyperacetylation might contribute positively to chromatin accessibility in promoter
proximal regions of genes that are upregulated in H3K36 mutants. To investigate this possibility, we
carried out open chromatin profiling (ATAC-seq) and correlated these data with our differential
expression (RNA-seq) analysis. Wild-type H4 acetylation density was also calculated using H4K16ac
ChlIP-seq datasets obtained from the modEncode consortium. As shown in Figure 3—figure supple-
ment 1D, genes with the lowest levels of H4K16ac at their predicted promoters increased their
expression levels in K36R mutants.

To localize open chromatin changes specifically to bona-fide sites of transcription initiation, we
performed ‘Start-seq’, which precisely determines transcription initiation events by capturing nascent
RNAs associated with early elongation complexes (Henriques et al., 2013; Nechaev et al., 2010).
We adapted the protocol to isolate short, nascent, capped RNA from nuclei purified from third instar
larvae (see Materials and methods). As shown in Figure 3—figure supplement 2A-C, Start-seq sig-
nal maps faithfully and robustly, with base-pair resolution, to annotated (observed) transcription start
sites (0bsTSSs), and demarcates sites of high nuclear RNA-seq. ATAC-seq signal accumulates most
robustly in a window spanning roughly 150 nt upstream, and 50 nt downstream, of obsTSSs (Fig-
ure 3—figure supplement 2D). When we quantified HWT and K36R ATAC-seq signal from such a
window surrounding all obsTSSs, we found that global changes in open chromatin were minimal
between HWT and H3K36R animals (Figure 3B). Furthermore, changes in ATAC-seq at obsTSSs and
differential expression in their corresponding genes was largely uncorrelated, with a large proportion
of genes exhibiting differential expression changes independent of increased chromatin accessibility
(Figure 3C). These results indicate that chromatin remodeling at promoters is not a major contribu-
tor to the observed global gene expression changes.

Cryptic transcription initiation does not contribute to gene expression
changes in H3K36 mutants

Given that increases in H4 acetylation in response to loss of H3K36me were thought to promote
cryptic transcription in S. cerevisiae (Carrozza et al., 2005; Keogh et al., 2005), we evaluated
potential cryptic initiation phenotypes in Drosophila H3K36 mutants. The consistent accumulation of
Start-seq signal at bona-fide transcription initiation sites (Figure 3—figure supplement 2A) shows
that this method is particularly ideal for identifying novel initiation elsewhere in the genome. By
quantifying Start-seq signal at loci outside of annotated start-sites (obsTSSs), we identified thou-
sands of novel unannotated TSSs (nuTSSs) spread throughout the HWT genome, including a large
proportion located within H3K36me3-enriched exons (Figure 4A-B).
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Figure 3. H4 acetylation enrichment in mutants does not result in open-chromatin-dependent changes in gene expression. (A) Western blots
measuring enrichment of histone H3, H3K36me3, H3K27me3, and pan H4 acetylation (H4ac) in H3K36R mutants and HWT controls. Signal relative to
first lane is denoted below each band. (B) Scatterplot of ATAC-seq signal mapping in a 200 nt window (as denoted at top) around obsTSSs, with R
value indicated. (C) Scatterplot of log2 fold change of poly-A RNA-seq (x-axis) vs. that of ATAC-seq (y-axis) signal in a window around the
corresponding gene's transcription start site (as identified by start-seq). Genes with codirectional, statistically significant changes in both RNA-seq and
Figure 3 continued on next page
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The following figure supplements are available for figure 3:

Figure supplement 1. Histone crosstalk and gene expression changes in H3K36R animals.

DOI: 10.7554/elife.23249.007

Figure supplement 2. Metagene analysis of Start-seq reads at previously annotated (observed) transcription start sites, obsTSSs.

DOI: 10.7554/eLife.23249.008

We examined whether the position of a nuTSS relative to its closest annotated gene had any
bearing upon changes in nuTSS usage in K36R mutants. Because exons are characterized by higher
overall H3K36me3 signal than introns, they might be more sensitive to pervasive initiation. Further-
more, antisense initiation might also be more prevalent in the absence of H3K36me, as has been
observed in budding yeast (Carrozza et al., 2005; Keogh et al., 2005). To test these ideas, we
sorted nuTSSs by their position (exonic or intronic) and orientation (sense or antisense) relative to
the resident gene. Analysis of modEncode ChlIP-seq read density in 400 bp windows around each
nuTSS confirmed that exonic nuTSSs are enriched for H3K36me3 relative to intronic ones
(Figure 4B). Similarly, exonic nuTSSs are depleted of ATAC-seq open chromatin signal (Figure 4—
figure supplement 1A).

Contrary to expectation, exonic and antisense nuTSS usage was not dramatically increased in
K36R mutants (Figure 4B). Across all nuTSSs, we found that H3K36me3 density was anticorrelated
with change in nuTSS ‘usage,’ that is, nuTSSs with lower signal in K36R than in HWT tended to have
high H3K36me3 density, and vice-versa (Figure 4—figure supplement 1B-E). When we analyzed
sense and antisense Start-seq reads mapping to annotated coding regions as a proxy for cryptic
transcription in annotated genes, we found that antisense initiation did not globally accumulate in an
H3K36me3-dependent manner (Figure 4C). These results show that modification of replication-
dependent H3K36 is not required to suppress cryptic transcription in gene bodies. Instead, we found
that pervasive initiation in gene bodies is widespread throughout the Drosophila genome, even in
the presence of H3K36me.

We also studied the change in nuTSS usage relative to gene boundaries. When absolute change
in Start-seq signal at each nuTSS is scaled to gene length, increased nuTSS usage occurs almost
exclusively in intergenic regions (Figure 4D). Decreased usage is most prominent in the gene body,
proximal to the 3’ end (Figure 4D). Metagene analysis shows that these regions correlate with
H3K36me3 ChlIP-seq density (Figure 2A). Importantly, these findings do not support a role in Dro-
sophila for H3K36me in suppressing cryptic antisense transcription, as described in yeast.

H3K36 mutation does not affect alternative splicing

The H3K36me3 methyltransferase, SETD2, is reported to play a role in regulating alternative splice
site choice (Luco et al., 2010; Pradeepa et al., 2012). To determine whether changes in pre-mRNA
splicing contribute to gene expression differences between HWT and K36R, we used the MISO anal-
ysis package (Katz et al., 2010), which utilizes an annotated list of alternative splicing events, and
quantitates changes between RNA-seq datasets. We found that very few annotated exon skipping
events or retained intron events were significantly different between K36R and HWT, and there was
no discernable bias toward inclusion or exclusion (Figure 5A). Additionally, the majority of high-con-
fidence differential splicing events we detected were mild changes at best (APSI < 0.25), indicating
that a lack of K36 modification had little effect on alternative splicing regulation in K36R mutants
(Figure 5B).

Inappropriate intron retention is another class of splicing defect observed in SETD2 mutants
(Simon et al., 2014). To examine intron retention events, we quantitated junction (j) and non-junc-
tion (n) reads mapping to every exon-exon boundary represented in our RNA-seq dataset. As shown
in Figure 5C, we generated a retention ratio score (R) that measures the number of non-junction
reads as a proportion of total reads (j+n). For junctions meeting statistical power requirements (>20
total reads), we observed no changes in the retention ratio, meaning that splice junction usage was
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Figure 4. H3K36 modification does not suppress cryptic transcription initiation in coding regions. (A) Representative browser shot of gene containing
novel unannotated transcription start sites (nuTSSs, highlighted in red). Direction of transcription denoted by arrow, and read counts denoted on Y-axis.
(B) Boxplot describing the fold change in Start-seq signal for nuTSSs classified by their genomic localization and strand of origin relative to the resident
gene if applicable. Lower boxplot describes H3K36me3 ChIP-seq signal (ChIP/input) for the same gene cohorts. (C) Scatterplot of normalized nuclear
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Figure 4 continued

RNA-seq reads mapping antisense to genes in the dm3 reference gene model in HWT (x-axis) or K36R (y-axis). Genes containing or within 1 kb of a
local H3K36me3-ChlIP-seq peak are denoted by red dots. (D) Hex-plot heatmap plotting nuTSSs by their location relative to the gene boundaries of the
nearest gene, and the absolute change in their Start-seq signal (K36R — HWT).

DOI: 10.7554/elife.23249.009

The following figure supplement is available for figure 4:

Figure supplement 1. Metagene analysis of Start-seq reads at novel, unannotated (nu)TSSs in comparison to open chromatin, nucleosome positioning
and H3K36 trimethylation.

DOI: 10.7554/elife.23249.010

unchanged in K36R (Figure 5C). Taken together, these results support an H3K36me-dependent role
for transcriptome regulation that is independent of alternative splicing.
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Figure 5. H3K36 modification does not regulate alternative splicing. (A) Density plots reflecting the distributions of change in percent spliced in (APSI)
values for skipped exon (red) or retained intron (blue) alternative splicing events manually classified as significant based on MISO parameters (see
Materials and methods). (B) Volcano plots for skipped exon (left) and retained intron (right) events, with a local regression line (blue line) reflecting the
skew in APSI values (x-axis) based on Bayes factor (y-axis). (C) Global analysis of splice junction usage, where R denotes the ‘retention ratio’ in one
condition, and AR denotes the difference in R between K36R and HWT.
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A class of highly expressed genes is under-represented in poly-A vs.
nuclear RNA fractions due to sensitivity to exonuclease degradation
When comparing our poly-A and nuclear RNA-seq results, we identified a group of highly-expressed
genes whose transcripts were reduced in the mutant poly-A RNA fraction but not in the correspond-
ing nuclear RNA fraction (Figure 6A, see full RNA-seq results in Supplementary file 1). Transcripts
identified in the nuclear RNA-seq data represent populations of newly transcribed as well as nuclear-
retained RNAs, whereas poly-A selected RNA is thought to be comprised primarily of ‘'mature’
mRNAs. We deduced that the observed differences between the two sequencing datasets could
reflect a role for H3K36 in post-transcriptional, rather than co-transcriptional, mRNA maturation
steps (e.g. nuclear RNA surveillance and export). Therefore, we selected a handful of mRNAs with
large discrepancies between their nuclear and poly-A RNA-seq expression values (Figure 6B) for val-
idation and testing by RT-PCR. Fractionation of nuclear and cytoplasmic RNA from HWT and K36R
larvae prior to reverse transcription revealed no significant changes in subcellular localization of the
targets (Figure 6—figure supplement 1A), suggesting that a global block to mRNA export due to
H3K36R mutation is unlikely.

In the absence of a transport block, we surmised that mRNA surveillance and degradation path-
ways might contribute to the reduced transcript levels observed in the poly-A fraction. We therefore
hypothesized that perturbation of RNA exonuclease activity might rescue target transcript levels by
preserving immature mRNAs that would otherwise be degraded. We analyzed the effect on target
mRNAs of depleting Rrpé and Xrn1/pacman (pcm in flies) by RNA interference (RNAI), utilizing the
Gal4-UAS expression system (Brand and Perrimon, 1993). Flies sourced from the Transgenic RNAI
Project (Ni et al., 2011) expressing short-hairpin (sh)RNA constructs and Gal4-drivers were crossed
into the HWT and K36R genetic backgrounds. Unfortunately, RNAi for Rrpé caused early larval
lethality and animals of the appropriate genotype could not be obtained. However, we were able to
introgress the Xrn1/pcm RNAI transgene into the HWT and K36R backgrounds and total RNA was
prepared from whole third instar larvae. As shown in Figure 6C, the observed expression differences
in poly-A RNA for a handful of highly expressed genes were restored to levels more similar to HWT
in the K36R background by RNAi-mediated depletion of pcm. These results suggest that H3K36 con-
tributes to post-transcriptional MRNA maturation in a manner that preserves target transcripts from
exonuclease-mediated degradation.

Defects in post-transcriptional processing contribute to gene
expression changes in K36R mutants

mRNA degradation by Xrn1/pcm is preceded by two major surveillance steps: deadenylation by the
CCR4-NOT complex, and decapping of the 7-methylguanosine (m7G) cap, primarily by the Dcp2
decapping enzyme (Sheth and Parker, 2003). We therefore carried out RNAi against CCR4/twin,
CNOT7/Pop2, and Dcp2 in comparison with Xrn1/pcm. Across a panel of K36R downregulated
genes, expression levels were rescued by depletion of pcm, twin, and Pop2 (Figure 6C), but not by
RNAI against Dcp2 (Figure 6—figure supplement 1B). Given the known redundancies in decapping
enzymes (e.g. see Chang et al., 2012), the negative results for the Dcp2 RNAI are inconclusive.
Indeed, previous studies in S2 cells showed that depletion of Dcp2 alone is insufficient to effectively
inhibit decapping (Eulalio et al., 2007). However, the positive results we obtained by depleting
deadenylase factors led us to focus on polyadenylation.

Changes in 3’ end formation and polyadenylation, which occur proximal to the H3K36me3-rich
chromatin at the 3’ ends of genes, might render mRNAs more sensitive to surveillance and degrada-
tion. To investigate this possibility, we analyzed poly-A tail length in the CCR4/twin RNAi back-
ground for a YFP reporter transgene using a modified LM-PAT assay (Sallés et al., 1999), as
illustrated in Figure 6—figure supplement 1C. It is important to note that expression of the UAS:
YFP transgene is directly tied to Gal4 expression and thus YFP is the only transcript that is guaran-
teed to be expressed in the same cells as the UAS:RNAI transgene. UAS:YFP is similarly sensitive to
pcm and twin as our cohort of endogenous genes (Figure 6—figure supplement 1D), making it an
ideal reporter. As shown in Figure 6D, we found that the YFP transcript displayed reduced poly-A
tail length in K36R mutants, indicative of a role for H3K36 methylation over terminal exons in recruit-
ment or functioning of the polyadenylation machinery. Importantly, the shorter poly-A tail in K36R
mutants was independent of deadenylation activity (Figure 6D), demonstrating that the defect is in
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Figure 6. A class of highly expressed genes is subject to exonuclease degradation and inefficient post-transcriptional processing in H3K36R mutants.
(A) LOESS regression lines generated from MA plots of either nuclear or poly-A RNA-seq, plotting gene log2 fold change (y-axis) vs. normalized read
counts in HWT (x-axis). (B) Log2 fold change values between K36R and HWT in nuclear (left) and poly-A (right) RNA-seq, plotted for genes selected for
further RT-PCR analysis. (C) RT-gPCR quantification of differential expression between HWT and K36R for select genes in a no RNAI, pacman RNAI, twin
RNAI, or Pop2 RNAI background, using the -AAC, method. (D) LM-PAT assay results for the YFP transcript in HWT and K36R, in a no RNAI, pcm RNAI,
twin RNAI, or Pop2 RNAI background. Sanger sequencing trace confirming the poly-A site (leftmost panel) and differential tail lengths (right two panels)
is shown below.

DOI: 10.7554/elife.23249.012

The following figure supplement is available for figure 6:

Figure é continued on next page

Meers et al. eLife 2017;6:e23249. DOI: 10.7554/eLife.23249 12 of 23


http://dx.doi.org/10.7554/eLife.23249.012
http://dx.doi.org/10.7554/eLife.23249

LIFE

Figure 6 continued

Genes and Chromosomes | Genomics and Evolutionary Biology

Figure supplement 1. RT-PCR controls, alternative polyadenylation analysis and schematic of assay for gene-specific poly A tail length assay (LM-PAT)

showing relative positions of primers.
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polyadenylation, not in the subsequent CCR4/twin- or CNOT7/Pop2-dependent deadenylation.
Additional experiments will be needed to determine the prevalence of poly-A tail length changes in
the K36R mutants transcriptome wide. Computational analysis of differential poly-A site usage dem-
onstrated no change (Figure 6—figure supplement 1E), indicating that poly-A site specification was
largely unaffected by mutation of H3K36. In summary, these data uncover a post-transcriptional role
for H3K36 in the regulation of metazoan gene expression.

Discussion

In this study, we focus on the role of H3K36 in transcriptome fidelity, assayed at the levels of tran-
scription initiation, elongation, pre-mRNA splicing and maturation. Crucially, most of the studies on
the roles of H3K36me3 in animal cells deplete SETD2 or its orthologue, making it difficult to discern
the specific role of the histone residue itself. Enzymes that catalyze histone PTMs often have numer-
ous non-histone substrates or non-catalytic structural roles that can confound analysis (Biggar and
Li, 2015; Huang and Berger, 2008, Sims and Reinberg, 2008; Zhang et al., 2015). Notably, alpha-
tubulin was recently identified as a non-histone substrate of SETD2 (Park et al., 2016). Perhaps
more importantly, SETD2 catalyzes trimethylation of lysine 36 in both the ‘canonical’ replication-
dependent H3 and in the replication-independent histone variant, H3.3. H3.3 is thought to play a
particularly important role in transcriptionally active regions where H3K36 methylation is enriched
(Ahmad and Henikoff, 2002). Indeed, a protein with specific affinity for SETD2-catalyzed trimethyla-
tion of lysine 36 of the histone H3.3 variant was shown to serve as a regulator of RNA pol Il elonga-
tion (Wen et al., 2014) and to associate with components of spliceosomal snRNPs to regulate co-
transcriptional alternative mRNA splicing (Guo et al., 2014). Beyond its other substrates, SETD2's
prominent association with the C-terminal domain of RNA pol Il (Kizer et al., 2005) makes it likely
that ablating this protein will result in transcriptional consequences that are unrelated to its catalytic
activity. In view of these complications, the direct analysis of histone residue function enabled by our
BAC-based gene replacement system is particularly well suited to the study of H3K3éme in the con-
text of transcriptional regulation.

In budding yeast, H3K36me2/3 has been shown to negatively regulate histone acetylation within
actively transcribed genes, both by recruiting a repressive Rpd3S deacetylase complex
(Carrozza et al., 2005; Keogh et al., 2005) and by suppressing incorporation of acetylated nucleo-
somes at sites of RNA polymerase ll-initiated nucleosome displacement (Venkatesh et al., 2012).
However, a similar role has not yet been elucidated for H3K36me in animals, and studies that have
correlated cryptic transcription with H3K36 methylation in metazoan systems have done so only
through perturbation of the SETD2 writer enzyme (Carvalho et al., 2013; Xie et al., 2011). Further-
more, studies have implicated H3K36me3 in alternative splicing in human cell culture (Luco et al.,
2010; Pradeepa et al., 2012) and inefficient intron splicing in clear cell renal cell carcinomas
(Simon et al., 2014), again via SETD2 mutation. In this study, we used histone replacement to define
whether modification of canonical H3K36 is responsible for these functions.

We demonstrate that H3K36 is neither a significant contributor to the regulation of alternative
splice site choice, nor the efficiency of canonical intron removal. We also present evidence that
methylation of H3K36 does not suppress cryptic transcription in coding regions. Given the unprece-
dented depth of our Start-seq dataset (>200 M reads per genotype), even very rare events would
have been detected. To the contrary, we found evidence for pervasive initiation (both sense and
anti-sense) events that largely fail to appear in the steady-state RNA population under wild type con-
ditions. Interestingly, we confirm that H4 acetylation is strongly suppressed by H3K36 modification,
despite the fact that cryptic transcripts do not appear. This finding argues for an uncoupling of H4ac
levels from cryptic initiation in coding regions in metazoans, and suggests that the suppression of
cryptic transcription initiation in multicellular organisms may be more complex than previously
appreciated.
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One potential explanation for the discrepancy between our results and previous studies of SETD2
could be that modification of the aforementioned histone variant, H3.3, is the primary functional
contributor to the cryptic initiation or splicing phenotypes. Elucidating the effects of H3.3K36 meth-
ylation is outside the scope of this work, and thus phenotypes that have been reported in the litera-
ture as being sensitive to H3K36 methylation might plausibly respond specifically to H3.3K36
methylation. In fact, this serves as a useful feature of histone replacement in this context, since a
functional separation of H3 and H3.3 lysine 36 methylation cannot be otherwise achieved. However,
this possibility should be tempered by the fact that we observed very low levels of H3K36me3 signal
in both western blots from H3K36R mutant larvae (Figure 3A) and immunofluorescent staining of
salivary gland polytene chromosomes (McKay et al., 2015). Thus H3.3 is, at best, a minor contribu-
tor to total H3K36me3. Future experiments testing the transcriptional consequences of direct muta-
tion of H3.3K36, both on its own and in combination with mutation of replication-dependent H3K36,
will better define their contributions.

Finally, we present evidence that H3K36 is required for proper mRNA maturation, providing a
post-transcriptional benefit across a range of highly expressed genes. Additional studies will be
required in order to elucidate a detailed molecular mechanism for this process. Our genetic suppres-
sion data suggest that this mRNA ‘fitness’ benefit is somehow linked to the efficiency of 3’ end for-
mation or polyadenylation (Figure 6B-D). Interestingly, H3K36me3 depletion in SETD2-mutant renal
cell carcinoma has been correlated with defects in transcriptional termination and readthrough into
neighboring genes (Grosso et al., 2015), suggesting that H3K36 methylation might influence termi-
nation and polyadenylation. Indeed, the enrichment of H3K36me3 at the 3’ ends of genes makes it a
likely candidate to interface with these activities. Another possibility is that H3K36 modification
might recruit some type of RNA modifying enzyme. For example, Jaffrey and colleagues recently
showed that dimethylation (N6,2'-O-dimethy|adenosine, or m®A,,) of the nucleotide adjacent to the
m7G cap enhances transcript stability (Mauer et al., 2017). Moreover, H3K36 might contribute to
mRNA maturation across multiple processing steps, with the combined effect of protecting target
mRNAs from surveillance and eventual degradation.

The prevailing model for histone PTM modulation of gene expression, reinforced by recent direct
evidence (Hilton et al., 2015), suggests that it occurs directly proximal to the site of histone modifi-
cation. However, the fact that genomic regions largely lacking H3K36me exhibit differential expres-
sion in K36R mutants argues against this idea. For that reason, a model for H3K36 control of gene
expression should also consider indirect mechanisms. For example, it is possible that the rate of tran-
scribing polymerase through nucleosomes that are modified at H3K36 might change, and therefore
the capping, cleavage and polyadenylation machinery that associates with the C-terminal domain of
RNA polymerase Il (Ho et al., 1998; McCracken et al., 1997) might become improperly distributed
in K36R mutants. Alternatively, SETD2 could have additional (unknown) substrates that function in
these processes. Finally, H3K3éme's previously reported role in three-dimensional genome organiza-
tion (Evans et al., 2016; Smith et al., 2013; Ulianov et al., 2016) might extend to the concentration
of factors related to mRNA maturation at sites of active transcription, which would be impaired
upon H3K36 mutation. Future studies using alternative genetic approaches, including specific abla-
tion of the catalytic activity of ‘writers’ to cross-reference our observations, should be instructive in
this regard.

Materials and methods

RNA library preparation for sequencing

RNA-seq libraries were prepared using the lllumina TruSeq stranded library preparation kit from
RNA prepared with TRIzol reagent (Thermo Fisher) from either whole third instar larvae (poly-A) or
nuclei isolated from third instar larvae (nuclear) (adapted from [Nechaev et al., 2010]). Start-seq
libraries were prepared as previously described (Henriques et al., 2013; Nechaev et al., 2010).
Sequencing was carried out on a HiSeq2000 (ATAC-seq, poly-A and nuclear RNA-seq) or Next-
Seg500 (Start-seq) (lllumina). For all assays, at least three biological replicates were prepared (four in
the case of Start-seq and nuclear RNA-seq).
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Start-seq

Total nuclear RNA from whole third instar larvae was used as input to each Start-seq library. For
each RNA replicate used as input for a Start-seq library, 80 whole third instar larvae were collected.
Five whole third instar larvae were selected for genomic DNA recovery via phenol chloroform extrac-
tion and ethanol precipitation in order to normalize Start-seq RNA spike-in controls to DNA content.
The remaining (75) larvae were washed 3x with ice cold 1x ENIB buffer (15 mM Hepes pH7.6; 10 mM
KCI; 3 mM CaCly; 2 mM MgCly; 0.1% Triton X-100; 1 mM DTT; 1 mM PMSF), and were then com-
bined with 1 vol 0.3 M ENIB (1x ENIB +0.3 M Sucrose). Larvae were homogenized in a 1 mL dounce
with 10 strokes with a type A pestle. Each replicate required douncing in three separate aliquots so
as to avoid oversaturation of the dounce with larval cuticle, and homogenate was immediately trans-
ferred to ice once completed. Dounce was washed with 1 vol 0.3 M ENIB, combined with homoge-
nate, and mixture was homogenized with 10 strokes with a type B pestle. Resulting homogenate
was filtered through 40 uM Nitex mesh into a 50 mL conical tube on ice. For each 150 pL of filtered
homogenate produced, a sucrose cushion was made by layering 400 uL 1.7 M ENIB followed by 400
uL 0.8 M ENIB in a 1.5 mL Eppendorf tube. 150 L filtered homogenate was pipetted onto cushion,
and spun at 20,000xg for 15 min at 4°C. After spinning, lipid residue was carefully removed from the
walls of the tube with a micropippetor, and then the remainder of the supernatant was removed.
The nuclear pellet was homogenized in 100 uL 0.3 M ENIB, and 10 pL was removed, stained with
Trypan Blue, and observed under a microscope to confirm efficient nuclear isolation. Total RNA was
extracted from the remaining homogenate with Trizol reagent using standard manufacturer’s proto-
cols. Start-seq libraries were prepared from nuclear RNA as previously described (Henriques et al.,
2013; Nechaev et al., 2010). Libraries were sequenced on a NextSeq500 generating paired-end, 26
nt reads.

Poly-A-selected RNA-seq

For each replicate, total RNA from 25 whole third instar larvae was isolated using Trizol reagent
according to manufacturer’s protocols. RNA-seq libraries were generated with the Tru-seq Stranded
Poly-A RNA-seq library preparation kit (Illumina). Libraries were sequenced on a HiSeq2000 generat-
ing paired-end, 100 nt reads (lllumina).

Nuclear RNA-seq

Nuclei from whole third instar larvae were isolated as described above for Start-seq, and RNA was
extracted using Trizol reagent. Total nuclear RNA was used as input to Ribo-zero Stranded RNA-seq
library preparation (lllumina). Libraries were sequenced on a HiSeq2000 generating paired-end, 50nt
reads (lllumina).

ATAC-seq library preparation

For each replicate, nuclei from 10 whole third instar larvae were isolated as per Start-seq and nuclear
pellets were gently homogenized with wide-bore pipette tips in 50 AuL ATAC-seq lysis buffer (10
mM Tris-Cl, pH 7.4, 10 mM NaCl, 3 mM MgCIz, 0.1% (v/v) Igepal CA-630), and homogenate was
directly used as input to the Nextera DNA library preparation kit (NEB) for tagmentation of chroma-
tinized DNA, as described in Buenrostro et al. (2013). Libraries were sequenced on a HiSeq2000
generating single-end, 100 nt reads (lllumina).

Bioinformatic analysis

Sequencing reads were mapped to the dm3 reference genome using Bowtie2 (Langmead and Salz-
berg, 2012) (ATAC-seq, Start-seq) or Tophat (Trapnell et al., 2012) (RNA-seq) default parameters.
We used DESeq2 (Love et al., 2014) for differential expression analysis and Cufflinks
(Trapnell et al., 2012) for novel transcript detection. We used the MISO package (Katz et al., 2010)
to analyze annotated alternative splicing events, and custom scripts (Source code 2) to analyze
global splice junction usage. Start-seq and ATAC-seq reads were mapped using Bowtie2
(Langmead and Salzberg, 2012), and Poly-A and nuclear RNA-seq reads were mapped using the
Tophat gapped read aligner (Trapnell et al., 2012). Boxplots and Start-seq plots scaled to gene
length were generated using ggplot2 in R (www.r-project.org).
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For Start-seq, reads were quantified at base-pair resolution using a custom script (Source code
1), and nucleotide-specific raw read counts were normalized based on reads mapping to RNA spike-
in controls. Exonic, intronic, and intergenic locations were determined using the dm3 gene model.

For Poly-A and nuclear RNA-seq: to analyze annotated alternative splicing, we used MISO
(Katz et al., 2010), and considered splicing events with a) a Bayes score greater than 10 with all rep-
licates combined, b) and consistent directionality of APSI in each of the three individual replicates, as
significant. To analyze global splice junction usage, we used a custom script (Source code 2) to
quantify reads spanning the junction location that either map to it (‘junction’, i.e. containing an ‘N’
CIGAR designation that maps precisely to the junction in question) or through it ('non-junction’). To
analyze differential expression, we used DESeq2 (Love et al., 2014) to quantify log2 fold change in
normalized read counts between K36R and HWT. To analyze alternative polyadenylation, we used
DaPars (Xia et al., 2014).

All ChIP-seq data were downloaded from modEncode (www.modencode.org). In all cases, data
were derived from the third instar larval time point as determined by modEncode developmental
staging procedures. For ChIP-seq and ATAC-seq, metagene plots were generated using the Deep-
tools package (Ramirez et al., 2014).

Reverse transcription and PCR assays

RNA was isolated with TRIzol reagent as described above, and reverse transcription was performed
using random hexamers and Superscript lll (Invitrogen), according to the manufacturer’s protocols.
For semi-quantitative PCR analysis, products were run on a 2% agarose gel, and bands were quanti-
fied using ImageJ. For gPCR, Maxima SYBR Green/ROX gPCR Master Mix (Thermo Scientific) was
used. All gPCR analyses are based on three biological replicates, plotted with standard error.

For semi-quantitative PCR, PCR reactions were prepared in biological triplicate using 2x Red Mas-
ter Mix (Apex Bioscience), and targets were amplified for 35 cycles of PCR with a 95°C denaturation
step, a 60°C annealing step, and a 72°C elongation step. Reactions were run on a 2% agarose gel
with EtBr for 30 min at 90 V, and bands were imaged on a UV transilluminator (GE Healthcare) and
quantified using ImageJ. For RT-qPCR, reactions were prepared in biological triplicate using Maxima
SYBR Green/ROX gPCR Master Mix (Thermo Scientific), and fluorescence was monitored across 40
cycles in 96 well plate format.

For LM-PAT, 1 ug total RNA was incubated with 5 pmol preadenylated ImPAT anchor primer
(pPAPCAGCTGTAGCTATGCGCACCGAGTCAGATCAG) (adenylated using 5' DNA Adenylation Kit,
NEB), and ligated with T4 RNA Ligase 2, truncated K227Q (NEB) using manufacturers protocol.
Ligated RNA was reverse-transcribed with Superscript Ill (Life Technologies) using an ImPAT RT
primer (GACTCGGTGCGCATAGCTACAGCTG). Resulting first-strand cDNA was PCR-amplified
using gene-specific forward primers (see Supplementary file 2) paired with nested ImPAT RT pri-
mers that contain terminal thymidines (GTGCGCATAGCTACAGCTGTTTT). PCR conditions were as
follows: a preliminary round consisted of 12 cycles in which the annealing step was decreased by
one degree Celsius in each cycle from 71°C to 60°C (between 95°C and 72°C denaturation and elon-
gation steps, respectively), followed by 18 additional cycles with an annealing temperature at 60°C.
After completion of the first round, 2 uL PCR product was used as template for a second round of
PCR amplification with 25 cycles and an annealing temperature at 60°C. For ‘tail’ measurement, tem-
plate was amplified with a nested gene-specific forward primer and ImPAT nested RT reverse
primer. For ‘UTR’ measurement, template was amplified with a nested gene-specific forward primer
and a ‘TVN' primer anchored at the 3’ UTR terminus.

Western blotting

For each replicate, nuclei from 30 whole third instar larvae were isolated as per Start-seq and
homogenized in 50 uL Extraction Buffer (320 mM (NH4),SO,4, 200 mM Tris HCI (pH 8.0), 20 mM
EDTA, 10 mM EGTA, 5 mM MgCl,, 1 mM DTT, 1x Protease Inhibitor Cocktail (Roche)). Mixture was
spun at 15,000xg for 5 min at 4°C and supernatant was recovered and immediately used in polyacryl-
amide gel electrophoresis. Gel was transferred to PVDF membrane and incubated with rabbit anti-
H3 (Abcam, ab1791), rabbit anti-H3K36me3 (Abcam, ab?050), mouse anti-H3K27me3 (Abcam,
ab6002), or rabbit anti-H4ac (Active Motif, #39177) primary antibody overnight. We used ImageJ to
quantify western blot band intensities, and calculated ratios of K36R/HWT intensity for each target
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across two independent biological replicates. Student’s t-test was used to obtain p-values for ratio
comparisons between H3 and other targets.

Immunofluorescence

Salivary gland polytene chromosome squashes were performed on third instar larvae as previously
described (McKay et al., 2015), using rabbit anti-H4K12ac polyclonal primary antibody (Active
Motif, #39165) overnight, followed by AlexaFluor 594 goat anti-rabbit secondary antibody (Thermo-
Fisher) for two hours, then DAPI for 10 min.
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Additional files

Supplementary files

« Source code 1. Custom perl script used to extract base-specific TSS counts from a Start-seq read
SAM file. Briefly, an input SAM file is parsed for strand orientation and mate pair status, with second
mates thrown out, and the genomic coordinates of the first base in the first mate hashed with a run-
ning count of reads corresponding to that entry. An optional input removes TSSs whose accumulate
counts fail to reach a user-defined threshold.

DOI: 10.7554/¢elife.23249.014

* Source code 2. Custom perl script used to detect splice junctions de novo from an input RNA-seq
SAM file and quantify junction and non-junction read counts for each entry. Briefly, for each read
spanning a splice junction (i.e. containing an ‘N’ SAM flag), intron coordinates are defined and
hashed with a running count of reads corresponding to those coordinates, which are deposited in a
BED file. Non-junction reads are subsequently determined by intersecting output BED file with the
original SAM file using bedtools (Quinlan and Hall, 2010).

DOI: 10.7554/¢elife.23249.015

* Supplementary file 1. Excel file summarizing DESeq2 (Love et al., 2014) results from comparing
K36R to HWT from total nuclear or poly-A RNA-seq. For each gene, and each experiment (nuclear
and poly-A), there are listed values (from left to right) for mean counts, log2 fold change (K36R/
HWT), log2 fold change standard error, test statistic, p-value, and adjusted p-value.

DOI: 10.7554/elife.23249.016

» Supplementary file 2. List of primers used for gqPCR and LM-PAT assays (see methods).

DOI: 10.7554/¢elife.23249.017
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