

Functional Mapping of Yeast Genomes by Saturated Transposition

Agnès H. Michel¹, Riko Hatakeyama², Philipp Kimmig¹, Meret Arter¹,
Matthias Peter¹, Joao Matos¹, Claudio De Virgilio² and Benoît Kornmann^{1*}

¹Institute of Biochemistry
ETH Zurich
8093 Zürich – Switzerland

²Department of Biology
University of Fribourg
1700 Fribourg – Switzerland.

*Correspondence to benoit.kornmann@bc.biol.ethz.ch

Yeast is a powerful model for systems genetics. We present a versatile, time- and labor-efficient method to functionally explore the *Saccharomyces cerevisiae* genome using saturated transposon mutagenesis coupled to high-throughput sequencing. SATurated Transposon Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can insert without disrupting essential functions. SATAY is particularly suited to discover loci important for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential genes, but also essential protein domains, (4) generates both null and other informative alleles. In a SATAY screen for rapamycin-resistant mutants, we identify Pib2 (Phospholnositide-Binding 2) as a master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting activities located

30 on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome at
31 unprecedented resolution and throughput.

32

33 Introduction

34 *Saccharomyces cerevisiae* is an invaluable model for cell biology (Weissman, 2010). Despite the
35 simplicity of its genome, its inner working mechanisms are similar to that of higher eukaryotes.
36 Furthermore, its ease of handling allows large-scale screenings. Yeast genetic screens have classically
37 been performed by random mutagenesis, followed by a selection process that identifies interesting
38 mutants. However elegant the “tricks” implemented to expose the sought-after mutants, this
39 selection phase remains a tedious process of finding a needle-in-a-haystack (Weissman, 2010). The
40 selection phase can limit the throughput and the saturation of classical yeast genetic screens.

41 To circumvent these problems, a second-generation genetic screening procedure has been developed.
42 Ordered deletion libraries for every non-essential gene have been generated (Giaever et al., 2002).
43 The growth of each individual deletion strain can be assessed, either by robot-mediated arraying, or
44 by competitive growth of pooled deletion strains, followed by detection of “barcodes” that identify
45 each deletion strain. These second-generation approaches also have limitations. First, ordered
46 libraries of complete deletions only cover non-essential genes. Second, deletion strains are prone to
47 accumulate suppressor mutations (Teng et al., 2013). To alleviate these problems, deletion libraries
48 can be propagated in a diploid-heterozygous form. Additional steps are then required to make them
49 haploid. In addition, while single genetic traits can be crossed into a pre-existing library, allowing for
50 instance pairwise genetic-interaction analysis (Costanzo et al., 2010), introducing multiple and/or
51 sophisticated genetic perturbations becomes problematic, since crossing requires a selection marker
52 for each important trait. Typically, deletion libraries are missing in most biotechnology-relevant

53 backgrounds. Finally, manipulating ordered libraries requires non-standard equipment, such as
54 arraying robots, limiting the pervasiveness of these approaches.

55 Recently, an innovative approach called Transposon sequencing (Tn-seq) was developed in several
56 bacterial models, and allows *en masse* analysis of a pool of transposon mutants using next-generation
57 sequencing (Christen et al., 2011; Grgis et al., 2007; van Opijnen et al., 2009). This approach
58 alleviates the limitations of previous genetic screens, but is restricted to prokaryotes.

59 Here, we describe an adaptation of the Tn-seq strategy for eukaryotic genomes, that combines the
60 advantages of both first and second generation screens, while alleviating their limitations. The
61 method is based on the generation of libraries of millions of different clones by random transposon
62 insertion (Figure 1A). Transposons inserted in genes that are important for growth kill their hosts and
63 are not subsequently detected. These genes therefore constitute transposon-free areas on the
64 genomic map. Transposon-based libraries can be grown in any condition to reveal condition-specific
65 genetic requirements. Unlike ordered deletion libraries, transposon-based libraries can easily be
66 generated *de novo* from different strain backgrounds, are not limited to coding sequences and do not
67 require the usage of robots.

68 This method can successfully uncover sets of genes essential in given conditions, genome-wide
69 genetic interactions and drug-targets. Transposon insertions can generate loss- and gain-of-function
70 variants. Finally, our approach not only shows which protein is important for growth, but also which
71 part of the protein is essential for function, allowing genome-wide mapping of structural protein
72 domains and screening of phenotypes at a sub-gene resolution.

73 Results

74 Library generation

75 The detailed procedure can be found in the Methods section. The method utilizes the Maize Ac/Ds
76 transposase /transposon system in yeast (Lazarow et al., 2012; Weil and Kunze, 2000). Briefly, cells in
77 which the *ADE2* gene is interrupted by the MiniDs transposon are induced to express the transposase
78 Ac, on galactose-containing adenine-lacking synthetic defined medium (SD +galactose -adenine).
79 Transposase-induced MiniDs excision is followed by repair of the *ADE2* gene. Cells with repaired *ADE2*
80 will be able to form colonies. The excised transposon then re-inserts at random genomic locations
81 with a frequency of ~60% (Lazarow et al., 2012).

82 We have generated seven libraries, displayed together in all figures to illustrate the reproducibility of
83 the approach. All libraries were generated in *ade2Δ* strains derived from BY4741 and BY4742
84 backgrounds. Additional mutations (*dpl1Δ*, *dpl1Δ psd2Δ*, *VPS13(D716H)*, *mmm1Δ VPS13(D716H)*,
85 *YEN1^{on}*, Table 1) will be described in the following sections. The complete dataset is available
86 (Supplementary File 1) and searchable here:

87 [http://genome-euro.ucsc.edu/cgi-
88 bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=benjou&hgS_otherUserSessionName
89 e=23bDePuYrk](http://genome-euro.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=benjou&hgS_otherUserSessionName=e=23bDePuYrk)

90 Detection of transposon insertion sites

91 Typically 7,000-10,000 colonies with a narrow size distribution (Figure 1 – figure supplement 1) can
92 be generated on a 8.4 cm-Ø petri dish. In the case of wild-type library 1, 240 plates yielded ~1.6E6
93 clones (Table 1). To detect transposon insertion sites, transposed cells were scraped off the 240 plates
94 and pooled (Figure 1A). This pool was used to reinoculate SD medium lacking adenine (SD +Dextrose
95 -Adenine), and the culture was grown to saturation. This step was used to dilute non-transposed *ade-*
96 cells still present on the petri dishes. The culture was then harvested by centrifugation. Genomic DNA
97 was extracted and digested with frequent-cutting restriction enzymes, followed by ligase-mediated

98 intramolecular circularization. Circular DNA was PCR-amplified using transposon-specific outwards-
99 facing primers. PCR products were then sequenced on a MiSeq machine (Figure 1A).

100 **Analysis of transposon insertion sites**

101 We aligned the sequencing reads of the wild-type library (Table 1) to the reference yeast genome and
102 counted the number of mapped transposons. To account for the fact that Illumina sequencing is
103 imperfectly accurate, we considered that two reads of the same orientation mapping within two bp of
104 each other originated from the same transposon (see MatLab Script 1). In this analysis, 284,162
105 independent transposons could be mapped onto the genome, representing an average density of one
106 transposon every 42 bp, and a median number of 22 reads per transposon. No large area of the
107 genome was devoid of transposon (Figure 1B). Consistent with analyses in Maize (Vollbrecht et al.,
108 2010), no strong sequence preference was detected in the insertion sites (Figure 1 – figure
109 supplement 2A).

110 In many instances, though, insertion frequency was modulated along the genome with a periodicity
111 of ~160 bp. Superimposing nucleosome occupancy data (Lee et al., 2007) showed that this was due
112 to favored transposon insertion in inter-nucleosomal DNA (Figure 1 – figure supplement 2B). This
113 effect can be appreciated at the genome-scale. Indeed, an autocorrelation analysis unraveled a ~160
114 bp periodic signal in the genome-wide transposon density (measured using a 40 bp moving average,
115 Figure 1 – figure supplement 2C). This periodicity was comparable to that of the nucleosomal density
116 data (Lee et al., 2007). Finally, while no large region was devoid of transposon, some regions were
117 actually preferentially targeted by transposons. These were the pericentromeric regions (Figure 1B,
118 top), which were specifically enriched by ~20% of the transposon insertions (Figure 1 – figure
119 supplement 2D). The explanation for this phenomenon may pertain to nuclear architecture and to the
120 propensity of our transposon to insert close to its excision site (Lazarow et al., 2012). Because the

121 transposon is initially excised from a centromeric plasmid, and because centromeres cluster in the
122 nuclear periphery (Jin et al., 2000), the transposon might tend to reinsert in the pericentromeric
123 regions of other chromosomes. We confirmed this assumption by sequencing a small-scale library
124 (~30 000 insertions mapped) in which the MiniDS transposon was originally at the endogenous *ADE2*
125 locus, rather than on a centromeric plasmid. In this library, preferential targeting was not observed at
126 pericentromeric regions, but rather in the vicinity of *ADE2*, confirming our assumption (Figure 1B,
127 bottom).

128 Identification of essential genes

129 The transposon map clearly showed that a fraction of the coding DNA sequences (CDS) were devoid of
130 insertions. These coincided almost exactly with genes annotated as essential (Figure 1C, green
131 arrowheads). The median number of transposon inserted in the CDSs of all genes was 18 per gene
132 (Figure 1D). This number raised to 21 for annotated non-essential genes, but dropped to 3 for
133 annotated essential genes (Figure 1E). This decrease was not due to a difference in the length
134 between essential and non-essential genes, since normalizing the number of transposon insertions to
135 the CDS length (transposon density) did not abrogate this effect (Figure 1 – figure supplement 3).
136 Thus our method distinguishes, in a single step, genes that are required for growth from those that
137 are not.

138 Several genes, although annotated as non-essential, harbored no or very few transposons
139 (Supplementary File 2). This can be attributed to the following reasons. (1) Because sequencing reads
140 mapping to repeated sequences were discarded during alignment, repeated genes appear as
141 transposon-free. (2) Several annotated dubious ORFs overlap with essential genes, and thus appear as
142 transposon-free. (3) Several genes are necessary for growth in particular conditions, and are therefore

143 not annotated as essential, yet are required in our growth conditions (SD +galactose -adenine). These
144 include genes involved, for instance, in galactose metabolism and adenine biosynthesis.

145 **Identification of protein domains**

146 It came as a surprise that some genes annotated as essential were tolerant to transposon insertion.
147 While some of these clearly corresponded to annotation inconsistencies, many reflected an
148 unanticipated outcome of our approach. We observed many instances of "essential" CDSs containing
149 transposon-permissive regions. A striking example is *GAL10* (Figure 2A). *GAL10* encodes a bifunctional
150 enzyme with an N-terminal epimerase, and a C-terminal mutarotase domain (Majumdar et al., 2004).
151 While the epimerase activity is indispensable in our conditions, the mutarotase activity is dispensable,
152 as cells were fed a mixture of α - and β -D-Galactose, thus not requiring the conversion of one into the
153 other. In accordance, the 3' end of *GAL10* was permissive for transposon insertion. The junction
154 between the permissive and non-permissive domains of *GAL10* corresponds exactly to the junction of
155 the two domains in the Gal10 protein. Several examples of essential genes with dispensable 3'-ends
156 are shown in Figure 2A. We confirmed the dispensability of the 3' end for two genes, *TAF3* and *PRP45*
157 (Figure 3).

158 *TAF3* encodes a 47-kDa central component of TFIID (Sanders et al., 2002). Our data show that only the
159 first 76 amino acids are necessary for growth. Using homologous recombination, we replaced all but
160 the sequence coding for the first 90 amino acids with an HA tag and a G418-resistance cassette
161 (*KanMX6*) in a diploid strain. Sporulation and progeny segregation confirmed that strains expressing
162 only the first 90 amino acids of Taf3 were viable (Figure 3A). By contrast, complete replacement of
163 *TAF3* gave rise to only two viable, G418-sensitive spores per meiosis, confirming that *TAF3* is essential
164 (Figure 3B). The essential region of Taf3 corresponds to a predicted histone-like bromo-associated
165 domain (Doerks et al., 2002).

166 *PRP45* encodes a central component of the spliceosome. From our data, only the first 140 amino-acids
167 of Prp45 are necessary for growth, which we confirmed using the same strategy as for *TAF3* (Figure
168 3C-D). Prp45 is predicted to be intrinsically disordered, thus no clear domain boundaries are available
169 to rationalize our data. However, a recent cryo-EM structure of the *S. cerevisiae* spliceosome offers

170 clues on the structure of Prp45 (Wan et al., 2016). Prp45 is centrally located within the spliceosome,
171 has an extended conformation and makes several contacts with various proteins and snRNAs. In
172 particular, the most conserved region of Prp45 is a loop that makes extensive contacts with U2 and U6
173 snRNAs close to the active site (Figure 3E-F, yellow). This loop belongs to the dispensable part of
174 Prp45, surprisingly suggesting that splicing can occur without it. Our method thus offers insights that
175 neither sequence conservation nor structural analysis could have predicted.

176 We also observed CDSs in which the 5' end is permissive for transposon insertion while the 3' end is
177 not (Figure 2B-C). Again, our data show a general good coincidence between indispensable regions
178 and annotated domains. It is surprising that transposons can be tolerated in the 5' of such genes,
179 since several stop codons in all frames of the transposon should interrupt translation and prevent the
180 production of the essential C-terminus. We speculate that the production of the C-terminus is enabled
181 by spurious transcription events. A remarkable example is *SEC9* (Figure 2C). *SEC9* encodes a SNARE
182 protein. The essential SNARE domain, located at the C-terminus (Brennwald et al., 1994), is devoid of
183 transposons. The N-terminus of the protein is known to be dispensable for growth (Brennwald et al.,
184 1994). We indeed observe several transposons inserted upstream of the SNARE domain. The extreme
185 5' of the gene constitutes another transposon-free region even though it encodes a dispensable part
186 of the protein (Brennwald et al., 1994). It is possible that transposon insertion in this 5' region
187 generates an unexpressed, unstable or toxic protein. Other examples of genes showing various
188 combinations of essential domains are shown in Figure 2C.

189 We devised an algorithm to score genes according to their likelihood of bearing transposon-tolerant
190 and -intolerant regions (MatLab Script 2). In short, we computed for each CDS the longest interval
191 between five adjacent transposons, multiplied it by the total number of transposons mapping in this
192 CDS, and divided the result by the CDS length. We additionally imposed the following criteria: the
193 interval must be at least 300 bp, must represent more than 10% and less than 90% of the CDS length,

194 and a minimum of 20 transposons must map anywhere within the CDS. ~1200 genes fulfilled these
195 requirements (Figure 2 – figure supplement 1), of which the 400 best-scoring ones showed clear
196 domain boundaries (Figure 2 – figure supplement 2-5). Essential subdomains are only expected in
197 essential genes and indeed, this gene set was overwhelmingly enriched for previously-annotated
198 essential genes (Figure 2 – figure supplement 1).

199 Thus, our method allows to identify not only genes, but also subdomains that are important for
200 growth, yielding valuable structure-function information about their cognate proteins.

201 Comparison of independent libraries reveals genetic interactions

202 Our approach can easily identify essential genes and essential protein domains. In addition, its ease
203 makes it a potential tool to uncover genes that are not essential in standard conditions but become
204 important in specific conditions. Indeed, our approach yields two measures—the number of
205 transposons mapping to a given gene, and the corresponding numbers of sequencing reads. Since in
206 most cases, transposon insertion obliterates the gene function, both measures may be used as a proxy
207 for fitness. We assessed the usefulness of these metrics in various genetics screens.

208 Synthetic genetic interaction screening is an extremely powerful approach to establish networks of
209 functional connections between genes and biological pathways, and to discover new protein
210 complexes (Costanzo et al., 2010; Schuldiner et al., 2005). We have recently identified single amino-
211 acid substitutions in the endosomal protein Vps13 that suppress the growth defect of mutants of the
212 ER-mitochondria encounter structure (ERMES) (Lang et al., 2015b). Suppression is dependent on the
213 proper function of the mitochondrial protein Mcp1 (Tan et al., 2013) and on the endosomal protein
214 Vam6/Vps39 (Elbaz-Alon et al., 2014; Hönscher et al., 2014). We generated a transposon library from
215 a strain bearing both the *VPS13* suppressor allele *VPS13(D716H)* and a deletion of the ERMES
216 component *MMM1*. In these conditions, we expected *VPS13*, *MCP1* and *VAM6/VPS39* to become

217 indispensable, while ERMES components (*MDM10*, *MDM12* and *MDM34*) should become dispensable.

218 Figure 4A shows, for each of the 6603 yeast CDSs, the number of transposon insertion sites mapped in
219 the wild-type (x-axis) and in the *mmm1Δ VPS13(D716H)* library (y-axis). Most CDSs fall on a diagonal,
220 meaning that they were equally transposon-tolerant in both libraries. Consistent with the ERMES
221 suppressor phenotype of the *VPS13(D716H)* mutation, ERMES components fell above the diagonal
222 (that is, they bore more transposons in the *mmm1Δ VPS13(D716H)* than in the wild-type library,
223 Figure 4A-B). By contrast, *VPS13*, *MCP1* and *VAM6/VPS39* fell under the diagonal, as expected (Lang
224 et al., 2015, Figure 4A, C). Many other genes known to display synthetic sick or lethal interaction with
225 *mmm1Δ* (Hoppins et al., 2011) were also found, including *TOM70*, *VPS41*, *YPT7*, *VMS1* and *YME1*
226 (Figure 4A, C).

227 As a second proof-of-principle, we generated a library from a strain in which the dihydrosphingosine
228 phosphate lyase gene *DPL1* (Saba et al., 1997) was deleted, and another library from a strain in which
229 both *DPL1* and the phosphatidylserine decarboxylase 2 gene *PSD2* (Trotter and Voelker, 1995) were
230 deleted (Figure 4D, F). In this latter double-deleted strain, phosphatidylethanolamine can only be
231 generated via the mitochondrial phosphatidylserine decarboxylase Psd1, and thus any gene required
232 for lipid shuttling to and from mitochondria should become indispensable (Birner et al., 2001).

233 *LCB3*, which displays synthetic sick interaction with *DPL1* (Zhang et al., 2001), was less transposon-
234 tolerant in both the *dpl1Δ* and the *dpl1Δ psd2Δ* libraries (Figure 4D). By contrast *PSD1*, which displays
235 a synthetic lethality with *PSD2* on media lacking choline and ethanolamine (Birner et al., 2001), was
236 transposon-intolerant in the *dpl1Δ psd2Δ* library only (Figure 4F-G). Interestingly, we also found that
237 *VPS13* was less transposon-tolerant in the *dpl1Δ psd2Δ*, consistent with a role for Vps13 in
238 interorganelle lipid exchange (AhYoung et al., 2015; Kornmann et al., 2009; Lang et al., 2015a,
239 2015b).

240 Additionally, when comparing the *dpf1Δ* and wild-type libraries, one of the best hits was the histidine
241 permease *HIP1* (Figure 4D-E). This did not, however, reflect a genetic interaction between *HIP1* and
242 *DPL1*, but instead between *HIP1* and *HIS3*; during the construction of the strains, *ADE2* was replaced
243 by a *HIS3* cassette in the wild-type strain, while it was replaced by a NAT cassette in the *dpf1Δ* strain.
244 The histidine-auxotroph *dpf1Δ* strain, therefore required the Hip1 permease to import histidine.

245 Thus, synthetic genetic interactions are visible through pairwise comparison of the number of
246 transposons per genes. However, this metrics leads to a significant spread of the diagonal (Figure 4A,
247 D, F). This spread is due to the intrinsic noise of the experiment. Indeed, the number of transposons
248 per gene is expected, for each gene, to follow a binomial distribution. Sampling variability may thus
249 mask biologically relevant differences. To overcome this limitation, we reasoned that comparing sets
250 of one or more libraries against each other, rather than comparing two libraries in a pairwise fashion
251 (as in Figure 4), would greatly improve the signal-to-noise ratio. We thus calculated an average fold-
252 change of the number of transposons per gene between the experimental and reference sets, as well
253 as a *p*-value (based on a Student's t-test) associated with this change. The fold-change and *p*-values
254 were then plotted as a volcano plot (Figure 4 – figure supplement 1, Supplementary File 3). In volcano
255 plots, synthetic genes appeared well separated from the bulk of neutral genes, showing that parallel
256 library comparison is a robust way to increase the signal-to-noise ratio.

257 Synthetic lethality is one type of genetic interaction. Another type is rescue of lethal phenotype,
258 where a gene deletion is lethal in an otherwise wild-type strain but can be rescued by a suppressor
259 mutation. We describe two such phenomena observed in our libraries. The first concerns the septin
260 gene *CDC10*. Septin proteins are cytoskeletal GTPases that form a ring at the bud neck. This structure
261 is necessary for vegetative growth in *S. cerevisiae*, and all septin genes are essential with the
262 exception of *CDC10* (Bertin et al., 2008; McMurray et al., 2011). Indeed, at low temperature, *cdc10Δ*
263 cells are viable and able to assemble a septin ring. This Cdc10-less ring is based on a Cdc3-Cdc3

264 interaction, instead of the normal Cdc3-Cdc10 interaction (McMurray et al., 2011). Because the
265 propensity of Cdc3 to self-assemble is weak, low temperature is thought to be necessary to stabilize
266 the interaction. Since we grew all libraries at moderately high temperature (30°C), *CDC10* was, as
267 expected, essentially transposon-free in most libraries (Figure 5A). In the *dpl1Δ psd2Δ* library,
268 however, the number of transposons mapping within *CDC10* increased significantly, indicating that
269 the absence of Psd2 and Dpl1 suppressed the *cdc10Δ* phenotype (Figure 5A, Figure 4 – figure
270 supplement 1, bottom left). Genetic analysis revealed that the *dpl1Δ* allele alone allowed *cdc10Δ* cells
271 to grow at higher temperature, indicating that the Cdc10-less septin ring was stabilized in the
272 absence of Dpl1 (Figure 5B-C). Genetic analysis also demonstrated that the rescue of *cdc10Δ* by *dpl1Δ*
273 was independent of *PSD2*. It is unclear why the suppressive effect was detected in the *dpl1Δ psd2Δ*
274 library, but not in the *dpl1Δ* library. We speculate that differences in growth conditions between
275 experiments have obscured either the suppression in the *dpl1Δ* library or the involvement of Psd2 in
276 our tetrad analyses.

277 Dpl1 is an ER protein that does not contact any of the septin subunits; its destabilizing effect on the
278 septin ring must therefore be indirect. Since Dpl1 is a regulator of sphingolipid precursors (Saba et al.,
279 1997) and since the septin ring assembles in contact with the plasma membrane (Bertin et al., 2010),
280 it is most likely the changing properties of the membrane in *DPL1*-deficient cells that allow or restrict
281 the assembly of Cdc10-less septin rings. This hypothesis is particularly appealing because
282 temperature has a profound effect on membrane fluidity and composition (Ernst et al., 2016). Thus,
283 the stabilizing effect of low temperature on Cdc10-less septin rings might not only be the result of a
284 direct stabilization of Cdc3-Cdc3 interaction, but also of changes in plasma membrane properties,
285 which can be mimicked by *DPL1* ablation.

286 The second example of rescue of a lethal phenotype was observed in a library made from a strain
287 expressing a constitutively active version of the Holliday-junction resolvase Yen1, a member of the

288 Xeroderma Pigmentosum G (XPG) family of 5'-flap endonucleases (Ip et al., 2008). In wild-type
289 strains, Yen1 is kept inactive during the S-phase of the cell cycle via Cdk-mediated phosphorylation
290 (Matos et al., 2011). Rapid dephosphorylation at anaphase activates Yen1 for the last stages of
291 mitosis. When nine Cdk1 target sites are mutated to alanine, Yen1 becomes refractory to inhibitory
292 phosphorylation and active during S-phase (Yen1^{on}) (Blanco et al., 2014). To investigate the cellular
293 consequence of a constitutively active Yen1, we generated a library in a *YEN1^{on}* background. We
294 discovered that, under these conditions, the essential gene *DNA2* became tolerant to transposon
295 insertion (Figure 5D). Further genetic analyses confirmed that the presence of the *YEN1^{on}* allele led to
296 a rescue of the lethal phenotype of *dna2Δ* strains; spores bearing the *dna2* deletion failed to grow
297 unless they additionally bore the *YEN1^{on}* allele (Figure 5E). Moreover, at 25°C, the colony size of
298 *dna2Δ YEN1^{on}* spores was comparable to that of the *DNA2* counterparts (Figure 5E, right). However,
299 FACS analysis of DNA content revealed that *dna2Δ YEN1^{on}* cells accumulated in S- and G2-phases
300 (Figure 5F).

301 *DNA2* encodes a large protein with both helicase and endonuclease activities (Budd and Campbell,
302 1995). Interestingly, while the helicase activity can be disrupted without affecting yeast viability, the
303 nuclease activity is essential (Ölmezer et al., 2016), presumably due to its involvement in processing
304 long 5'-flaps of Okazaki fragments. Our genetic data now reveal that Yen1 is able to partially fulfill the
305 essential roles of *DNA2*, provided that its activity is unrestrained in S-phase. Since the spectrum of
306 Yen1 substrates includes 5'-flap structures (Ip et al., 2008), Yen1^{on} may be able to substitute the
307 essential function of Dna2 by providing 5'-flap nuclease activity in S-phase. This finding extends
308 previous work showing that Yen1 serves as a backup for the resolution of replication intermediates
309 that arise in helicase-defective mutants of DNA2 (Ölmezer et al., 2016).

310 Thus, our method can be used to screen for negative and positive genetic interactions in a rapid,

311 labor-efficient and genome-wide manner, in strains bearing single and multiple mutations

312 **Chemical Genetics Approach**

313 To assess our method's ability to uncover drug targets, we used the well-characterized immune-
314 suppressive macrolide rapamycin. Rapamycin blocks cell proliferation by inhibiting the target of
315 rapamycin complex I (TORC1), through binding to the Fk506-sensitive Proline Rotamase Fpr1
316 (Heitman et al., 1991). The TORC1 complex integrates nutrient-sensing pathways and regulates
317 cellular growth accordingly. Rapamycin treatment therefore elicits a starvation response, which stops
318 proliferation. We generated and harvested a wild-type library, then grew it in medium containing
319 rapamycin at low concentration. To compare it to an untreated wild-type library, we counted the
320 number of sequencing reads mapping to each of the 6603 yeast CDSs in both conditions (Figure 6A).
321 Most genes fell on a diagonal, as they do not influence growth on rapamycin. By contrast, a few genes
322 were robustly covered by sequencing reads in the rapamycin-treated library, indicating that their
323 interruption conferred rapamycin resistance. Expectedly, the best hit was *FPR1*, encoding the receptor
324 for rapamycin (Hall, 1996). Other hits included *RRD1* (Rapamycin-Resistant Deletion 1), *TIP41*, *GLN3*,
325 *SAP190*, *PSP2*, *CCS1*, *ESL2* and members of the PP2A phosphatase *PPH21* and *PPM1* (Figure 6A). These
326 genes are either directly involved in rapamycin signaling or known to confer rapamycin resistance
327 upon deletion (Xie et al., 2005).

328 Finding the TORC1 regulator *PIB2* (Kim and Cunningham, 2015) was however unexpected, because
329 *PIB2* deletion confers sensitivity, not resistance, to rapamycin (Kim and Cunningham, 2015; Parsons et
330 al., 2004). To solve this conundrum, we looked at the distribution of transposons on the *PIB2* coding
331 sequence. All the insertions selected by rapamycin treatment mapped to the 5'-end of the gene
332 (Figure 6B). On the contrary, the rest of *PIB2* was less covered in the rapamycin-treated than in non-
333 rapamycin-treated libraries (Figure 6 – figure supplement 1A). Insertions in the 5' end of *PIB2*

334 therefore conferred rapamycin resistance, while insertions elsewhere, like complete deletion of *PIB2*,
335 conferred rapamycin sensitivity.

336 To confirm this result, we engineered N-terminal truncations of Pib2, guided by the transposon map.
337 Strains expressing Pib2 variants that were truncated from the first until up to amino acid 304 were
338 hyperresistant to rapamycin (Figure 6C, top). We also confirmed that, by contrast, complete *PIB2*
339 deletion caused rapamycin hypersensitivity. A larger N-terminal truncation extending beyond the
340 mapped territory of rapamycin resistance-conferring transposons, did not mediate hyperresistance to
341 rapamycin (Figure 6G, Pib2⁴²⁶⁻⁶³⁵).

342 To assess whether rapamycin-hyperresistant *PIB2* truncations behaved as gain-of-function alleles,
343 we co-expressed Pib2¹⁶⁵⁻⁶³⁵ and full-length Pib2. In these conditions, the rapamycin hyperresistance
344 was mitigated, indicating that the effect of the truncated Pib2 protein was semi-dominant (Figure 6C,
345 bottom). Expressing the truncation from a high-copy (2 μ) vector did not further increase resistance to
346 rapamycin, indicating that higher expression levels did not change the semi-dominance of the *PIB2*
347 truncation allele.

348 Thus, Pib2 truncation leads to a gain-of-function that translates into semi-dominant rapamycin
349 hyperresistance. Because gain-of-function alleles of *PIB2* lead to rapamycin resistance, while loss-of-
350 function alleles lead to sensitivity, our data suggest that Pib2 positively regulates TORC1 function. To
351 test this idea further, we investigated the effects of full-length and various truncations of Pib2 on
352 TORC1 signaling. Switching yeast cells from a poor nitrogen source (proline) to a rich one (glutamine)
353 triggers a fast activation of TORC1 (Stracka et al., 2014), leading to a transient surge in the
354 phosphorylation of Sch9, a key target of TORC1 in yeast (Urban et al., 2007). We cultured cells on
355 proline-containing medium and studied TORC1 activation 2 minutes following addition of 3 mM
356 glutamine by determining the phosphorylation levels of Sch9-Thr⁷³⁷. Pib2 deficiency severely blunted
357 TORC1 activation in these conditions (Figure 6D, top). In a control experiment, a strain lacking *GTR1* –

358 a component of the TORC1-activating EGO (Exit from rapamycin-induced Growth arrest) complex,
359 which is orthologous to the mammalian Rag GTPase-Ragulator complex (Chantranupong et al., 2015;
360 Powis and De Virgilio, 2016) – showed a similarly blunted response with respect to TORC1 activation
361 following glutamine addition to proline-grown cells (Figure 6D, top). By contrast, glutamine-
362 mediated TORC1 activation appeared normal in a strain expressing an N-terminally truncated Pib2
363 variant (*pPIB2*¹⁶⁵⁻⁶³⁵, Figure 6D, bottom). Thus, like Gtr1, Pib2 is necessary to activate TORC1 in
364 response to amino acids. The N-terminus of Pib2 appears to be an inhibitory domain. The ablation of
365 this domain confers rapamycin resistance, yet is not sufficient to constitutively activate TORC1 (e.g. in
366 proline-grown cells).

367 Having identified an inhibitory activity at the N-terminus of Pib2, we proceeded to address the
368 function of other Pib2 domains. To this aim, we used a split-ubiquitin-based yeast-two-hybrid assay
369 to probe the interaction of Pib2 fragments with the TORC1 component Kog1, and studied the
370 rapamycin resistance of strains expressing various truncations of Pib2 (Figures 6E-F). We found that
371 Pib2 harbored at least two central Kog1-binding regions, since two mostly non-overlapping
372 fragments (Pib2¹⁻³¹² and Pib2³⁰⁴⁻⁶³⁵) showed robust interaction with Kog1 (Figure 6F and Figure 6 –
373 figure supplement 1B). Kog1 binding is, however, not essential for Pib2-mediated TORC1 activation,
374 since cells expressing a fragment without these Kog1-binding domains (Pib2⁴²⁶⁻⁶³⁵) were as
375 rapamycin-resistant as cells expressing full length Pib2 (FL, Figure 6G).

376 Pib2 harbors a phosphatidylinositol-3-phosphate (PI3P) -binding Fab1-YOTB-Vac1-EEA1 (FYVE)
377 domain (Figure 6E). Pib2 truncations lacking the FYVE domain are unable to bind PI3P, and hence to
378 properly localize to the vacuole (Kim and Cunningham, 2015). When cells expressed FYVE domain-
379 truncated Pib2 (Pib2^{Δ426-532}), their rapamycin resistance decreased, but not as severely as observed in
380 *pib2Δ* strains (Figure 6G). This indicates that FYVE-domain-mediated vacuolar recruitment is not
381 absolutely required for Pib2 to activate TORC1.

382 Strikingly, cells expressing Pib2 variants that were either truncated at the extreme C-terminus (*PIB2*¹⁻⁶²⁰) or carried a deletion within the C-terminus (*PIB2*^{Δ533-620}) were as sensitive to rapamycin as *pib2Δ* cells (Figure 6G). The C-terminus of Pib2 is therefore important to ensure proper TORC1 activation.

385 We conclude that Pib2 harbors the following functional domains: a large N-terminal Inhibitory
386 Domain (NID), and a C-terminal TORC1-Activating Domain (CAD); the central portion of the protein
387 harbors FYVE and Kog1-binding domains for proper targeting of Pib2 to the vacuole and TORC1,
388 respectively.

389 Could the NID act in an auto-inhibitory allosteric fashion by preventing the CAD from activating
390 TORC1? We reasoned that if this were the case, plasmid-encoded N-terminally truncated Pib2 should
391 confer similar levels of rapamycin resistance independently of whether a genomic wild-type *PIB2*
392 copy was present or not. However, wild-type cells expressing N-terminally truncated Pib2¹⁶⁵⁻⁶³⁵ from a
393 centromeric or a multi copy 2μ plasmid were less resistant to rapamycin than *pib2Δ* cells expressing
394 Pib2¹⁶⁵⁻⁶³⁵ from a centromeric plasmid (Figure 6C). Thus, the NID activity of the endogenously-
395 expressed wild-type Pib2 is able to mitigate the rapamycin resistance conferred by ectopic expression
396 (or overexpression) of the CAD. Therefore, our data suggest that the NID does not auto-inhibit the CAD
397 within Pib2, but rather, that the NID and CAD act independently and antagonistically on TORC1.

398 This latter scenario predicts that, just as expressing NID-truncated Pib2 semi-dominantly activates
399 TORC1 (Figure 6C), expressing CAD-truncated Pib2 should semi-dominantly inhibit it. To test this
400 prediction, we expressed the two CAD truncations Pib2^{Δ533-620} and Pib2¹⁻⁶²⁰ in an otherwise wild-type
401 strain. The resulting strains were significantly more sensitive to rapamycin than their counterparts
402 expressing only full length Pib2 (Figure 6H). Furthermore, when *pib2Δ* cells expressed the Pib2 CAD
403 truncation alleles, they became even more sensitive to rapamycin. Therefore, Pib2-NID does not act in
404 an auto-inhibitory manner, but rather inhibits TORC1 independently of the presence of a Pib2-CAD.

405 Since the Rag GTPase Gtr1-Gtr2 module of the EGO complex also mediates amino acid signals to
406 TORC1 (Binda et al., 2009; Dubouloz et al., 2005, see also Figure 6D), we tested the possibility that
407 Pib2-NID inhibits TORC1 by antagonizing Gtr1-Gtr2. This does not appear to be the case; first, the
408 expression of Pib2 $\Delta^{533-620}$ or Pib2 $^{1-620}$ further enhanced the rapamycin sensitivity of *gtr1* Δ *gtr2* Δ cells
409 (Figure 6 – figure supplement 1C), and second, the Pib2 $\Delta^{533-620}$ - or Pib2 $^{1-620}$ -mediated rapamycin
410 hypersensitivity was not suppressed by expression of the constitutively active, TORC1-activating
411 Gtr1 Q65L -Gtr2 S23L module (Binda et al., 2009; Figure 6 – figure supplement 1D). These results suggest
412 that Pib2-NID inhibits TORC1 independently of the EGO complex.

413 In summary, Pib2 is targeted to TORC1 by binding to the vacuolar membrane through its FYVE domain
414 and to Kog1 via its middle portion. Pib2 harbors two antagonistic activities, one activating and the
415 other repressing TORC1. The dose-independent semi-dominant nature of the respective truncations
416 indicate that both repressing and activating activities influence TORC1 independently and do not
417 appear to compete for the same sites on TORC1.

418 We speculate that high-quality amino acids, such as glutamine, balance the antagonistic TORC1-
419 activating and -repressing activities of Pib2 to tune growth rate according to available resources. In
420 this context, it will be interesting to elucidate how the activities of Pib2 and the EGO complex are
421 coordinated to stimulate TORC1 in response to amino acids.

422 Discussion

423 Here we present a novel method based on random transposon insertion and next-generation
424 sequencing, to functionally screen the genome of *Saccharomyces cerevisiae*. SATurated Transposon
425 Analysis in Yeast (SATAY) can reveal positive and negative genetic interactions, auxotrophies, drug-
426 sensitive or -resistant mutants, and map functional protein domains. SATAY combines advantages
427 from both classical genetics and high-throughput robotic screens. SATAY can in principle be

428 implemented in any strain background, since it does not rely on the existence of available deletion
429 libraries and does not necessitate markers to follow genetic traits. Moreover, SATAY explores a wide
430 genetic space; exotic alleles can be generated as exemplified by *PIB2* (Figure 6 and Figure 6 – figure
431 supplement 1), where transposon insertions in different regions of the gene generate opposite
432 phenotypes. Transposon insertion is not limited to CDSs; we observe that promoters of essential genes
433 are often transposon-intolerant (Figure 2, see *GAL10*, *SGV1*, *MMS21*, *RET2*, *HRR25*, *NPA3*, *SEC9*, *SW11*).
434 We also observe that known essential tRNA, snRNA, as well as SRP RNA genes are transposon
435 intolerant (see Supplementary Dataset). Finally, our data reveal transposon-intolerant areas of the
436 genome that do not correspond to any annotated feature, indicating that SATAY could help discover
437 yet-unknown functional elements.

438 SATAY yields unprecedented insight on the domain structure- function relationship of important
439 proteins, and allows the mapping of important functional domains, without prior knowledge.
440 Dispensable domains in essential proteins might not be required for the essential function of these
441 proteins, but may have other roles. The sub-gene resolution enabled by SATAY may thus unveil yet-
442 unsuspected accessory or regulatory functions, even in otherwise well-studied proteins. In addition,
443 structure-function information revealed by SATAY may guide 3D-structure determination efforts by
444 indicating possibly flexible accessory domains.

445 The resolution of a SATAY screen is directly proportional to the number of transposons mapped onto
446 the genome. The current resolution is ~1/40 bp, which is amply sufficient to confidently identify
447 essential genes and protein domains. This resolution is achieved by mapping ~300,000 transposons,
448 starting from a 1.6E6-colonies library. Not every colony generates a detectable transposon. This is due
449 to several reasons. (1) Excised transposons only reinsert in 60% of the cases (our observations and
450 Lazarow et al., 2012). (2) 7% of the sequencing reads mapped onto repetitive DNA elements (such as
451 rDNA, Ty-elements and subtelomeric repeats) and were discarded because of ambiguous mapping.

452 (3) Two transposons inserted in the same orientation within two bp of each other will be considered
453 as one by our algorithm. This might be exacerbated at densely covered areas of the genome, such as
454 pericentromeric regions. (4) Some transposon insertion products may not be readily amplifiable by
455 our PCR approach.

456 We observe that increasing both the size of the original library and the sequencing depth leads to an
457 increase in mapped transposon number (albeit non-proportional, Table 1). Therefore, the resolution
458 of a screen can be tailored according to the question and the available resource.

459 We could not detect a preferred sequence for transposon insertion (Figure 1 -figure supplement 2A),
460 yet two features of the yeast genome biased insertion frequency in select regions. The first is
461 nucleosome position; the Ac/Ds transposon has a tendency to insert more frequently within inter-
462 nucleosomal regions, indicating that the transposase might have better access to naked DNA (Figure 1
463 -figure supplement 2B-C). The second pertains to a tendency of the transposon to integrate in the
464 spatial proximity of its original location (Lazarow et al., 2012). Indeed, when originated from a
465 centromeric plasmid, the transposon has an increased propensity to reinsert in the pericentromeric
466 regions of other chromosomes. This is not due to a particular feature of pericentromeric chromatin,
467 since this propensity is lost when the transposon original location is on the long arm of ChrXV (Figure
468 1B). Instead, the increased propensity is likely resulting from the clustering of centromeres in the
469 nuclear space (Jin et al., 2000), indicating that centromeric plasmids cluster with the chromosomal
470 centromeres. Thus, SATAY can be utilized to probe, not only the function of the genome, but also its
471 physical and regulatory features, such as nucleosome position and 3D architecture.

472 Finally, SATAY does not require any particular equipment besides access to a sequencing platform,
473 and involves a limited amount of work. It can be easily multiplexed to perform several genome-wide
474 screens simultaneously. Each screen yields two measures, the number of transposons and the number

of sequencing reads, both of which, for each gene, reveal the fitness of the cognate mutant. While the number of transposons per gene is appropriate to look for genes that become important for growth, as in genetic interaction screens, the number of sequencing reads is better suited to identify strains that are positively selected, like drug-resistant mutants. Both metrics suffer from intrinsic noise, stemming from the inherently discrete structure of the data, and probably also from unavoidable biases in the amplification and sequencing of the libraries. We show that this noise can be reduced by comparing multiple libraries against each other (Figure 4 – figure supplement 1). Moreover, comparing multiple libraries allows to tailor the composition of each library set to needs. For instance, grouping the *VPS13(D716H)* with the *mmm1Δ VPS13(D716H)* libraries allows to selectively detect synthetic interactions with *VPS13(D716H)* (e.g. ERMES components). By contrast, comparing the *mmm1Δ VPS13(D716H)* library with all others, selectively finds genes important for the ERMES suppression phenomenon. Thus, while signal-to-noise ratio might be a limiting factor for the detection of genetic interactions, we anticipate that increasing the number of libraries, for instance by generating multiple libraries in each conditions, will likely decrease the incidence of false positive and false negative. With the increasing number of screens performed in various conditions will also come the ability to find correlation patterns among genes that are required or dispensable for growth in similar sets of conditions. Such correlations are accurate predictors of common functions and have been extensively used in synthetic genetic screens, such as the E-MAP procedure (Kornmann et al., 2009; Schuldiner et al., 2005). However, while E-MAP screens compute patterns of genetic interaction on a subset of chosen genetic interaction partners, SATAY allows to detect genetic interactions at the genome scale.

Because SATAY only necessitates a transposon and a transposase, it should be portable to other industrially-, medically- or scientifically-relevant haploid fungi, such as *S. pombe*, *Y. lipolytica*, *C. glabrata*, *K. lactis* and *P. pastoris*.

499 The Ds transposon can in principle accommodate extra sequences with no known length limitation
500 (Lazarow et al., 2013). An interesting future development will be to incorporate functional units in
501 the transposon DNA, for instance strong promoters, repressors or terminators, IRESs, recognition sites
502 for DNA-binding proteins (LacI or TetR), recombination sites (LoxP, FRT), or coding sequences for in-
503 frame fusion, such as GFP, protein- or membrane-binding domains, signal sequences, etc. Improved
504 designs will not only permit finer mapping of protein domains without reliance on spurious
505 transcription and translation, but might allow the exploration of an even wider genetic space, for
506 instance by generating gain-of-function variants, thus enabling the development of novel approaches
507 to interrogate the yeast genome.

508 Methods

509 Plasmids and strains

510
511 All Yeast strains, oligonucleotides and plasmids used herein are listed in Tables 2, 3 and 4,
512 respectively. To generate pBK257, the *ADE2* gene interrupted with the MiniDs transposon was PCR
513 amplified from strain CWP1 (Weil and Kunze, 2000), using PCR primers #4 and #5. The PCR product
514 and pWL80R_4x (plasmid encoding the Ac transposase under the control of the *GAL1* promoter,
515 Lazarow et al., 2012) were digested with *SacI*, then ligated together. This plasmid does not confer
516 Adenine prototrophy to *ade2Δ* cells unless the Ac transposase excises the MiniDS transposon, and
517 repairs the *ADE2* gene.

518 Deletion strains were generated by PCR-mediated gene replacement using the Longtine toolbox for
519 *KanMX6* and *HIS3* replacement (Longtine et al., 1998) and the Janke toolbox for *NATnt2* (Janke et al.,
520 2004), with primers listed in Table 3. Strain YJM3916 carrying *YEN1^{ON}* at the endogenous locus was
521 generated using the *delitto perfetto* method (Storici and Resnick, 2003).

522 **Library generation**

523 *ade2Δ* strains were transformed with the pBK257 plasmid. These strains are phenotypically *ade*-,
524 since the *ADE2* gene borne on the plasmid is interrupted by the MiniDs transposon. One liter of freshly
525 prepared SD -Ura +2% Raffinose + 0.2% Dextrose is inoculated with *ade2Δ* cells freshly transformed
526 with pBK257, directly scraped off the transformation plates, at a final OD600=0.15. The culture is
527 grown to saturation for 18 to 24hr at 30°C. Cells are spun for 5min at 600x g, 20°C) and resuspended
528 in their supernatant at a final OD600=39. 200 µl of this resuspension are plated on ~250-300 X 8.5cm
529 plates containing 25 ml of SD +2%Galactose -Adenine using glass beads. Plates are incubated in
530 closed but not sealed plastic bags for 3 weeks at 30°C. Clones in which transposon excision has led to
531 the repair of the *ADE2* gene on pBK257 start to appear after 10-12 days. The density of clones on the
532 plate reaches 150-200 colonies/cm², i.e. 8000-11000 colonies/plates after 3 weeks. All colonies are
533 then scraped off the plates using minimal volume of either water or SD +2% Dextrose -Adenine,
534 pooled, and used to inoculate a 2-liter SD +2% Dextrose -Adenine culture at a density of 2.5 10⁶
535 cells/ml, which is allowed to grow to saturation. This step is used to dilute any remaining *ade*- cells,
536 which represent about 20% of the total number of cells, and ensures that each transposition event is
537 well represented. For example, reseeding a 2.10⁶ clones library in 2L at a density of 2.5 10⁶ cells/ml
538 will ensure that each clone is represented by ((2.500.000X1000X2)*0.8)/2.000.000= 2000 cells. The
539 saturated culture is harvested by centrifugation (5 min, 1600x g), washed with ddH2O, then cell
540 pellets are frozen as ~500 mg aliquots.

541 **Rapamycin treatment**

542 Cells scraped off the plates were used to inoculate a 1 liter SD +2% Dextrose -Adenine culture at OD
543 0.08. After growing for 15 h to OD 0.5, the culture was diluted to OD 0.1 in 500 ml SD +2% Dextrose -
544 Adenine, treated with 10 nM (9.14 ng/ml) rapamycin (Sigma) and grown for 24 h to OD 0.9. The
545 culture was then diluted again to OD 0.1 in 500 ml SD +2% Dextrose -Adenine +10 nM rapamycin.

546 The treated culture was grown to saturation (OD 1.9), harvested by centrifugation and processed for
547 genomic DNA extraction.

548 Genomic DNA

549 A 500-mg cell pellet is resuspended with 500 μ l Cell Breaking Buffer (2% Triton X-100, 1% SDS, 100
550 mM NaCl, 100 mM Tris-HCl pH8.0, 1 mM EDTA) and distributed in 280 μ l aliquots. 200 μ l
551 Phenol:Chloroform:Isoamylalcool 25:25:1 and 300 μ l 0.4-0.6mm unwashed glass beads are added to
552 each aliquot. Samples are vortexed for 10 min at 4°C using a Disruptor Genie from Scientific Industrial
553 (US Patent 5,707,861). 200 μ l TE are added to each lysate, which are then centrifuged for 5 min at
554 16100x g, 4°C. The upper layer (~400 μ l) is transferred to a fresh tube, 2.5vol 100% EtOH are added
555 and the sample mixed by inversion. DNA is pelleted for 5 min at 16100x g, 20°C. The supernatant is
556 removed and the pellets resuspended in 200 μ l RNase A 250 μ g/ml for 15 min at 55°C, 1000 rpm on a
557 Thermomixer comfort (Eppendorf). 2.5 vol 100% EtOH and 0.1vol NaOAc 3 M pH5.2 are added and the
558 samples mixed by inversion. DNA is pelleted by centrifugation for 5 min at 16100x g, 20°C. The pellets
559 are washed with 70% EtOH under the same conditions, the supernatant removed completely, and the
560 pellets dried for 10 min at 37°C. The pellets are resuspended in a total volume of 100 μ l water for 10
561 min at 55°C, 700 rpm on a Thermomixer comfort (Eppendorf).

562 DNA is run on a 0.6% 1X TBE agarose gel against a standard 1 kb GeneRuler, and quantified using Fiji.
563 500 mg cell pellet should yield 20-60 μ g DNA.

564 Library Sequencing

565 Sequencing involves the following steps: (1) Digestion of genomic DNA with two four-cutter
566 restriction enzymes, (2) ligase-mediated circularization of the DNA, (3) PCR of the transposon-
567 genome junctions using outward-facing primers. (4) Illumina-sequencing of the combined PCR
568 products.

569 2x 2 µg of genomic DNA are digested in parallel in Non-Stick microfuge tubes (Ambion AM12450)
570 with 50 units of DpnII (NEB #R0543L) and NlaIII (NEB #R0125L), in 50 µl for 16 hours at 37°C. The
571 reactions are then heat inactivated at 65°C for 20 min and circularized in the same tube by ligation
572 with 25 Weiss units T4 Ligase (Thermo Scientific #EL0011) for 6 hours at 22°C, in a volume of 400µl.
573 DNA is precipitated overnight or longer at -20°C in 0.3 M NaOAc pH5.2, 1 ml 100% EtOH, using 5 µg
574 linear acrylamide (Ambion AM9520) as a carrier, then centrifuged for 20 min at 16100x g, 4°C. Pellets
575 are washed with 1 ml 70% EtOH, for 20 min at 16100 x g, 20°C. After complete removal of the
576 supernatant, pellets are dried for 10 min at 37°C. Each circularized DNA preparation is then
577 resuspended in water and divided into 10X 100 µl PCR reactions. Each 100 µl PCR reaction contains: 10
578 µl 10X Taq Buffer (500 mM Tris-HCl pH9.2, 22.5 mM MgCl₂, 160 mM NH₄SO₄, 20% DMSO, 1% Triton
579 X-100 – stored at -20°C), 200 µM dNTPs, 1 µM primer #1, 1 µM primer #2, 2.4 µl homemade Taq
580 polymerase. PCR are performed in an MJ Research Peltier Thermal Cycler PTC-200 using the following
581 conditions:

582 Block: calculated –95°C 1 min, 35X [95°C 30 sec, 55°C 30 sec, 72°C 3 min], 72°C 10 min.

583 The 2X 10 PCR reactions are pooled into one NlaIII-digested pool and one DpnII-digested pool. 100µl
584 from each pool are purified using a PCR clean-up/gel extraction kit (Macherey-Nagel) according to the
585 manufacturer protocol, with the following modifications. DNA is bound to the column for 30s at
586 3000x g; 30 µl of elution buffer (10 mM Tris-HCl pH8.5, 0.1% Tween) is applied to the column and
587 incubated for 3 min, then spun for 1 min at 11000x g at 20°C. The eluate is reapplied to the column
588 and a second elution is performed under the same conditions. Purified PCR products are quantified by
589 absorbance at 260 nm. On a 1% agarose gel, the product runs as a smear from 250 bp to 1.2 kb, with
590 highest density centered around 500 bp. The 867 bp size band present in the NlaIII treated sample
591 and the 465 bp size band present in the DpnII treated sample correspond to untransposed pBK257.
592 Equal amounts of DpnII- and NlaIII-digested DNA are pooled and sequenced using MiSeq v3

593 chemistry, according to manufacturer, adding 3.4 μ l of 100 μ M primer #3 into well 12 of the
594 sequencing cartridge.

595 Bioinformatics Analyses

596 The fastq file generated is uploaded into the CLC genomics workbench, trimmed using adaptor
597 sequences 'GATC' and 'TAGC' (the recognition sites for NlaIII and DpnII, respectively), allowing 2
598 ambiguities and a quality limit of 0.05. The trimmed sequence is then aligned to the reference
599 genome, using the following parameters (mismatch cost, 2; Insertion and deletion costs, 3; length
600 fraction, 1; similarity fraction, 0.95; non-specific match handling, ignore). The alignment is then
601 exported as a BAM file, which is further processed in MatLab, using the MatLab Script 1, to detect
602 individual transposition events. The outputted bed file is uploaded to the UCSC genome browser.
603 Yeast annotations were downloaded from the Saccharomyces Genome Database (SGD). To generate
604 our list of essential genes, we used YeastMine and searched the SGD for genes for which the null
605 mutant has an "inviable" phenotype (Balakrishnan et al., 2012).

606 Volcano plots were computed as follows using MatLab Script 3. Two sets of libraries were defined. For
607 each gene and each library, the number of transposons per gene (tnpergene variable) was normalized
608 to the total number of transposon mapped in the library. For each gene, the fold-change is calculated
609 as the mean of the normalized number of transposons per gene in the experimental set, divided by
610 that in the reference set. The p-value is computed using the Student's t-test by comparing, for each
611 gene, the normalized number of transposons per gene for each library in the experimental and
612 reference sets.

613 Western blotting

614 Cells were grown to mid-log phase in synthetic minimal medium containing 0.5 g/L proline as a sole
615 nitrogen source and stimulated with 3 mM glutamine for 2 minutes. Cells were treated with 6.7%

616 w/v trichloroacetic acid (final concentration), pelleted, washed with 70% ethanol and then lysed in
617 urea buffer (50 mM Tris-HCl [pH 7.5], 5 mM EDTA, 6 M urea, 1% SDS, 0.1 mg/ml
618 Pefabloc/phosphatase inhibitor mix). After disrupting cells with glass beads and incubating with
619 Laemmli SDS sample buffer, samples were subjected to regular SDS-PAGE and immunoblotting. The
620 phosphorylation level of Sch9-Thr⁷³⁷ and the total amount of Sch9 were assessed using the
621 phosphospecific anti-Sch9-pThr⁷³⁷ and anti-Sch9 antibodies, respectively (Péli-Gulli et al., 2015).

622 Split-ubiquitin yeast two-hybrid assay

623 The split-ubiquitin yeast two-hybrid system from Dualsystems Biotech AG was used following the
624 manufacturer's instructions.

625 Pib2 fragments (full-length or truncated) and full-length Kog1 were cloned into pCabWT and pPR3N
626 plasmids, respectively, and transformed into the strain NMY51 as indicated. Protein-protein
627 interactions were detected as growth of the resultant strains on agar plates lacking adenine.

628 Accession Numbers

629 Sequencing data have been deposited at EMBL-EBI ArrayExpress: E-MTAB-4885.

630 Acknowledgements

631 We thank Beat Christen for inspiring this work and expert insight on Tn-seq, Reinhard Kunze for kind
632 gift of plasmid and strain, Asun Monfort Pineda and Anton Wutz for invaluable help with Illumina
633 Sequencing, Jeremy Thorner, Karsten Weis, Jeffrey Tang, Judith Berman and Vladimir Gritsenko for
634 helpful discussions, Christine Doderer for preliminary experiments, Alicia Smith for comments on the
635 manuscript, and the Kornmann lab for comments and ideas. This work is supported by grants of the
636 Swiss National Science Foundation (PP00P3_13365 to BK, 310030_166474 to CDV, 31003A_153058

637 and 155823 to JM), the European Research Council (337906-OrgaNet) to BK, and PK is supported by
638 the Human Frontier Science Program Organization.

639 **References**

640 AhYoung, A.P., Jiang, J., Zhang, J., Khoi Dang, X., Loo, J. a., Zhou, Z.H., and Egea, P.F. (2015). Conserved SMP domains of the ERMES complex
641 bind phospholipids and mediate tether assembly. *Proc. Natl. Acad. Sci.* 201422363.

642 Balakrishnan, R., Park, J., Karra, K., Hitz, B.C., Binkley, G., Hong, E.L., Sullivan, J., Micklem, G., and Cherry, J.M. (2012). YeastMine—an
643 integrated data warehouse for *Saccharomyces cerevisiae* data as a multipurpose tool-kit. *Database (Oxford)*. 2012, bar062.

644 Bertin, A., McMurray, M.A., Grob, P., Park, S.-S., Garcia, G., Patanwala, I., Ng, H.-L., Alber, T., Thorner, J., and Nogales, E. (2008).
645 *Saccharomyces cerevisiae* septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. *Proc. Natl.
646 Acad. Sci. U. S. A.* 105, 8274–8279.

647 Bertin, A., McMurray, M.A., Thai, L., Garcia, G., Votin, V., Grob, P., Allyn, T., Thorner, J., and Nogales, E. (2010). Phosphatidylinositol-4,5-
648 bisphosphate promotes budding yeast septin filament assembly and organization. *J. Mol. Biol.* 404, 711–731.

649 Binda, M., Péli-Gulli, M.-P., Bonfils, G., Panchaud, N., Urban, J., Sturgill, T.W., Loewith, R., and De Virgilio, C. (2009). The Vam6 GEF Controls
650 TORC1 by Activating the EGO Complex. *Mol. Cell* 35, 563–573.

651 Birner, R., Bürgermeister, M., Schneiter, R., and Daum, G. (2001). Roles of phosphatidylethanolamine and of its several biosynthetic
652 pathways in *Saccharomyces cerevisiae*. *Mol. Biol. Cell* 12, 997–1007.

653 Blanco, M.G., Matos, J., and West, S.C. (2014). Dual Control of Yen1 Nuclease Activity and Cellular Localization by Cdk and Cdc14 Prevents
654 Genome Instability. *Mol. Cell* 54, 94–106.

655 Brennwald, P., Kearns, B., Champion, K., Keränen, S., Bankaitis, V., and Novick, P. (1994). Sec9 is a SNAP-25-like component of a yeast
656 SNARE complex that may be the effector of Sec4 function in exocytosis. *Cell* 79, 245–258.

657 Budd, M.E., and Campbell, J.L. (1995). A yeast gene required for DNA replication encodes a protein with homology to DNA helicases. *Proc.
658 Natl. Acad. Sci. U. S. A.* 92, 7642–7646.

659 Chantranupong, L., Wolfson, R.L., and Sabatini, D.M. (2015). Nutrient-Sensing Mechanisms across Evolution. *Cell* 161, 67–83.

660 Christen, B., Abeliuk, E., Collier, J.M., Kalogeraki, V.S., Passarelli, B., Collier, J. a., Fero, M.J., McAdams, H.H., and Shapiro, L. (2011). The
661 essential genome of a bacterium. *Mol. Syst. Biol.* 7, 528.

662 Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L.Y., Toufighi, K., Mostafavi, S., et al. (2010). The
663 genetic landscape of a cell. *Science* 327, 425–431.

664 Doerks, T., Copley, R.R., Schultz, J., Ponting, C.P., and Bork, P. (2002). Systematic identification of novel protein domain families associated
665 with nuclear functions. *Genome Res* 12, 47–56.

666 Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E., and De Virgilio, C. (2005). The TOR and EGO Protein Complexes Orchestrate
667 Microautophagy in Yeast. *Mol. Cell* 19, 15–26.

668 Elbaz-Alon, Y., Rosenfeld-Gur, E., Shinder, V., Futerman, A.H., Geiger, T., and Schuldiner, M. (2014). A Dynamic Interface between Vacuoles
669 and Mitochondria in Yeast. *Dev. Cell* 30, 95–102.

670 Ernst, R., Ejsing, C.S., and Antonny, B. (2016). Homeoviscous Adaptation and the Regulation of Membrane Lipids. *J. Mol. Biol.* 428, 4776–
671 4791.

672 Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., et al. (2002). Functional
673 profiling of the *Saccharomyces cerevisiae* genome. *Nature* 418, 387–391.

674 Girgis, H.S., Liu, Y., Ryu, W.S., and Tavazoie, S. (2007). A comprehensive genetic characterization of bacterial motility. *PLoS Genet.* 3, 1644–
675 1660.

676 Hall, M.N. (1996). The TOR signalling pathway and growth control in yeast. *Biochem. Soc. Trans.* 24, 234–239.

677 Heitman, J., Movva, N.R., Hiestand, P.C., and Hall, M.N. (1991). FK 506-binding protein proline rotamase is a target for the
678 immunosuppressive agent FK 506 in *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci. U. S. A.* 88, 1948–1952.

679 Hönscher, C., Mari, M., Auffarth, K., Bohnert, M., Griffith, J., Geerts, W., van der Laan, M., Cabrera, M., Reggiori, F., and Ungermann, C.
680 (2014). Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria. *Dev. Cell* 30, 86–94.

681 Hoppins, S., Collins, S.R., Cassidy-Stone, a., Hummel, E., DeVay, R.M., Lackner, L.L., Westermann, B., Schuldiner, M., Weissman, J.S., and
682 Nunnari, J. (2011). A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane
683 organization in mitochondria. *J. Cell Biol.*

684 Ip, S.C.Y., Rass, U., Blanco, M.G., Flynn, H.R., Skehel, J.M., and West, S.C. (2008). Identification of Holliday junction resolvases from humans
685 and yeast. *Nature* **456**, 357–361.

686 Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schieberl, E., et al.
687 (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution
688 cassettes. *Yeast* **21**, 947–962.

689 Jin, Q.W., Fuchs, J., and Loidl, J. (2000). Centromere clustering is a major determinant of yeast interphase nuclear organization. *J. Cell Sci.*
690 1903–1912.

691 Kim, A., and Cunningham, K.W. (2015). A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in
692 response to endoplasmic reticulum membrane stress. *Mol. Biol. Cell* **26**, 4631–4645.

693 Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., and Walter, P. (2009). An ER-mitochondria tethering
694 complex revealed by a synthetic biology screen. *Science* **325**, 477–481.

695 Lang, A., John Peter, A.T., and Kornmann, B. (2015a). ER–mitochondria contact sites in yeast: beyond the myths of ERMEs. *Curr. Opin. Cell
696 Biol.* **35**, 7–12.

697 Lang, A.B., John Peter, A.T., Walter, P., and Kornmann, B. (2015b). ER-mitochondrial junctions can be bypassed by dominant mutations in
698 the endosomal protein Vps13. *J. Cell Biol.* **210**, 883–890.

699 Lazarow, K., Du, M.-L., Weimer, R., and Kunze, R. (2012). A hyperactive transposase of the maize transposable element activator (Ac).
700 *Genetics* **191**, 747–756.

701 Lazarow, K., Doll, M.-L., and Kunze, R. (2013). Molecular biology of maize Ac/Ds elements: an overview. *Methods Mol. Biol.* **1057**, 59–82.

702 Lee, W., Tillo, D., Bray, N., Morse, R.H., Davis, R.W., Hughes, T.R., and Nislow, C. (2007). A high-resolution atlas of nucleosome occupancy in
703 yeast. *Nat Genet* **39**, 1235–1244.

704 Longtine, M.S., McKenzie, A., Demarini, D.J., Shah, N.G., Wach, A., Brachet, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules
705 for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae*. *Yeast* **14**, 953–961.

706 Majumdar, S., Ghatak, J., Mukherji, S., Bhattacharjee, H., and Bhaduri, A. (2004). UDPgalactose 4-epimerase from *Saccharomyces cerevisiae*:
707 A bifunctional enzyme with aldose 1-epimerase activity. *Eur. J. Biochem.* **271**, 753–759.

708 Matos, J., Blanco, M.G., Maslen, S., Skehel, J.M., and West, S.C. (2011). Regulatory control of the resolution of DNA recombination
709 intermediates during meiosis and mitosis. *Cell* **147**, 158–172.

710 McMurray, M.A., Bertin, A., Garcia, G., Lam, L., Nogales, E., and Thorner, J. (2011). Septin Filament Formation Is Essential in Budding Yeast.
711 *Dev. Cell* **20**, 540–549.

712 Ölmezter, G., Levikova, M., Klein, D., Falquet, B., Fontana, G.A., Cejka, P., and Rass, U. (2016). Replication intermediates that escape Dna2
713 activity are processed by Holliday junction resolvase Yen1. *Nat. Commun.* **7**, 13157.

714 van Opijken, T., Bodi, K.L., and Camilli, A. (2009). Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in
715 microorganisms. *Nat. Methods* **6**, 767–772.

716 Parsons, A.B., Brost, R.L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G.W., Kane, P.M., Hughes, T.R., and Boone, C. (2004). Integration of
717 chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. *Nat. Biotechnol.* **22**, 62–69.

718 Péli-Gulli, M.-P., Sardu, A., Panchaud, N., Raucci, S., and De Virgilio, C. (2015). Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-
719 Activating Protein Complex for the Rag Family GTPase Gtr2. *Cell Rep.* **13**, 1–7.

720 Powis, K., and De Virgilio, C. (2016). Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling. *Cell Discov.* **2**,
721 15049.

722 Saba, J.D., Nara, F., Bielawska, A., Garrett, S., and Hannun, Y.A. (1997). The BST1 gene of *Saccharomyces cerevisiae* is the sphingosine-1-
723 phosphate lyase. *J. Biol. Chem.* **272**, 26087–26090.

724 Sanders, S.L., Garbett, K.A., and Weil, P.A. (2002). Molecular characterization of *Saccharomyces cerevisiae* TFIID. *Mol. Cell. Biol.* 22, 6000–
725 6013.

726 Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B.J., Boone, C., Greenblatt, J.F., et al.
727 (2005). Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniaarray profile. *Cell* 123,
728 507–519.

729 Storici, F., and Resnick, M.A. (2003). Delitto perfetto targeted mutagenesis in yeast with oligonucleotides. *Genet. Eng. (N. Y.)* 25, 189–207.

730 Stracka, D., Jozefczuk, S., Rudroff, F., Sauer, U., and Hall, M.N. (2014). Nitrogen source activates TOR (target of rapamycin) complex 1 via
731 glutamine and independently of Gtr/Rag proteins. *J. Biol. Chem.* 289, 25010–25020.

732 Tan, T., Ozbalci, C., Brügger, B., Rapaport, D., and Dimmer, K.S. (2013). Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid
733 homeostasis. *J. Cell Sci.* 126, 3563–3574.

734 Teng, X., Dayhoff-Brannigan, M., Cheng, W.-C., Gilbert, C.E., Sing, C.N., Diny, N.L., Wheelan, S.J., Dunham, M.J., Boeke, J.D., Pineda, F.J., et
735 al. (2013). Genome-wide consequences of deleting any single gene. *Mol. Cell* 52, 485–494.

736 Trotter, P.J., and Voelker, D.R. (1995). Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast
737 *Saccharomyces cerevisiae*. *J. Biol. Chem.* 270, 6062–6070.

738 Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G., Riezman, H., et al.
739 (2007). Sch9 Is a Major Target of TORC1 in *Saccharomyces cerevisiae*. *Mol. Cell* 26, 663–674.

740 Vollbrecht, E., Duvick, J., Schares, J.P., Ahern, K.R., Deewatthanawong, P., Xu, L., Conrad, L.J., Kikuchi, K., Kubinec, T.A., Hall, B.D., et al.
741 (2010). Genome-wide distribution of transposed Dissociation elements in maize. *Plant Cell* 22, 1667–1685.

742 Wan, R., Yan, C., Bai, R., Huang, G., and Shi, Y. (2016). Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. *Science* 353, 895–
743 904.

744 Weil, C.F., and Kunze, R. (2000). Transposition of maize Ac/Ds transposable elements in the yeast *Saccharomyces cerevisiae*. *Nat. Genet.* 26,
745 187–190.

746 Weissman, J. (2010). Guide to Yeast Genetics: Functional Genomics, Proteomics, and Other Systems Analysis. In *Methods in Enzymology*, C.
747 Guthrie, and G. Fink, eds. p. 470.

748 Xie, M.W., Jin, F., Hwang, H., Hwang, S., Anand, V., Duncan, M.C., and Huang, J. (2005). Insights into TOR function and rapamycin response:
749 chemical genomic profiling by using a high-density cell array method. *Proc. Natl. Acad. Sci. U. S. A.* 102, 7215–7220.

750 Zhang, X., Skrzypek, M.S., Lester, R.L., and Dickson, R.C. (2001). Elevation of endogenous sphingolipid long-chain base phosphates kills
751 *Saccharomyces cerevisiae* cells. *Curr. Genet.* 40, 221–233.

752

753

754 **Figure legends**

755 **Figure 1**

756 Principle of the method.

757 A) Outline of the experimental procedure. Left, the transposon (green) can insert either into non-
758 essential DNA (blue) and give rise to a clone, or into essential DNA (orange), in which case no clone is
759 formed. Right, procedure to identify transposon insertion sites by deep-sequencing.

760 B) Profile of the transposon density across the whole genome, when the transposon original
761 location is either a centromeric plasmid (top) or the endogenous *ADE2* locus on chromosome XV
762 (bottom). The dashed lines indicate the chromosome centromeres.

763 C) Six examples of genomic regions and their corresponding transposon coverage in seven
764 independent transposon libraries of indicated genotypes. Each vertical grey line represents one
765 transposon insertion event. Genes annotated as essential are shown in orange, others in blue. Green
766 arrowheads indicate the places where the absence of transposon coverage coincides with an essential
767 gene.

768 D) Histogram of the number of transposons found in every annotated gene (CDS). The vertical
769 dashed line is the median of the distribution.

770 E) Same as D, with genes categorized as non-essential (blue) and essential (orange) according to
771 previous annotations.

772 **Figure 1 – figure supplement 1**

773 Size distribution of the colonies appearing on SD +Galactose -Ade. A) Histogram of colony area for a
774 randomly chosen sample of 402 colonies. B) Example of picture of colonies (top) and segmentation
775 thereof (bottom) used to calculate histogram in (A). Scale bar, 1 mm

776 **Figure 1 - figure supplement 2**

777 Genome-wide analysis of transposon insertion sites. A) Frequency plot of nucleotide composition
778 around transposon insertion site. The strand is determined according to the orientation of the
779 transposon insertion. Plot was calculated with a random sample of 50,000 transposon in the wild-
780 type library 1. Note that GC-content of the yeast genome is 38%. B) Preferential transposon insertion
781 into internucleosomal DNA. Three genomic regions are shown. For each, the top panel shows the
782 nucleosomal density as determined in (Lee et al., 2007), and the bottom panels shows transposon
783 insertion as in Figures 2-5. C) Correlation analysis of nucleosome and transposon density. Transposon
784 densities were calculated on the wild-type library 1 by averaging transposon number within a 40 bp
785 moving average. Top, correlation coefficient calculated between the nucleosome and the transposon
786 data offset by the indicated number of bp. The correlation is most negative when offset=0. The
787 periodicity is ~160 bp. Middle, autocorrelation of transposon data. The periodicity is identical as
788 above. Bottom, autocorrelation of the nucleosome density data. The periodicity is identical as above.
789 D) Analysis of transposon number relative to distance from centromere. For each chromosome, the
790 number of transposons mapping within a certain distance from their respective centromere was
791 computed and plotted (grey lines). The number of transposons increases linearly with the distance,
792 except in the vicinity of the centromere, where transposon enrichment can be observed. The intercept
793 of the linear regression, computed on the linear part of the plot and multiplied by 16 chromosomes,
794 gives a rough estimate of the numbers of transposons enriched at pericentromeric regions (~20% of
795 the total transposon number).

796 **Figure 1 - figure supplement 3**

797 Transposon density in essential and non-essential genes. As in Figure 1D-E, except that, for each
798 gene, the transposon density (i.e. number of transposons divided by length of the gene) is shown.

799 **Figure 2**

800 Examples of genes showing partial loss of transposon coverage. The grey level is proportional to the
801 number of sequencing reads. Known functional domains are indicated.

802 A) Essential genes for which C-terminal truncations yield a viable phenotype.

803 B) Essential genes for which N-terminal truncations yield a viable phenotype.

804 C) Essential genes for which various truncations yield a viable phenotype.

805 Figure 2 - figure supplement 1

806 Detection of essential protein domains. Top, algorithm to detect essential protein domains.

807 This algorithm is implemented in MatLab Script 2. For each gene, a score is computed as

808 follows: the longest interval between transposon n and transposon n+5, multiplied by the

809 total number of transposons mapping to that gene, divided by the gene length to the

810 power of 1.5. A score of 0 is assigned to genes targeted by less than 20 transposons, in

811 which the longest interval is smaller than 300 bp, and/or in which the longest interval

812 represents more than 90% or less than 10% of the CDS length. Bottom, yeast genes sorted

813 according to their domain likelihood score. Vertical black bars above the graph indicate

814 previously annotated essential genes.

815 Figure 2 - figure supplement 2

816 Transposon maps in the 100 highest scoring genes. Grey scale indicates the number of

817 sequencing reads as in Figure 2.

818 Figure 2 - figure supplement 3

819 Transposon maps in the genes scoring 101 to 200.

820 Figure 2 - figure supplement 4

821 Transposon maps in the genes scoring 201 to 300.

822 Figure 2 - figure supplement 5

823 Transposon maps in the genes scoring 301 to 400.

824 **Figure 3**

825 *TAF3* and *PRP45* can be truncated without visible effects on cell growth.

826 A) A truncation of *TAF3* was generated in a heterozygous diploid strain (left) by introduction of an HA
827 tag and a G418-resistance cassette (HA kan'). The strain was tetrad dissected (middle). Tetrads 2 and
828 3 were further analyzed by PCR to confirm the mendelian segregation of the truncated allele (right).

829 B) A complete *TAF3* deletion was generated in a heterozygous diploid strain (left) by introduction of a
830 G418-resistance cassette (kan'). Meiosis yields only two viable, G418-sensitive spores per tetrad,
831 confirming that *TAF3* complete deletion is lethal.

832 C-D) As in (A-B) but applied to *PRP45*. Asterisks in the right panel designate PCR reactions that were
833 inefficient at amplifying the large truncated allele. The genotype of these spores can nevertheless be
834 inferred from the mendelian segregation of the G418 resistance.

835 E) Top, cryo-EM structure of the *S. cerevisiae* spliceosome (PDB accession 5GMK (Wan et al., 2016)).
836 Bottom, the same structure stripped of every protein except Prp45. The essential portion of Prp45 as
837 defined in (C) is in green and the non-essential part is in red and yellow. U2, U6, U5 and substrate
838 RNAs are depicted in pale blue, pink, dark blue and orange, respectively. The red circle indicates the
839 catalytic active site of the spliceosome.

840 F) Alignment of the Human, *S. cerevisiae*, and *S. pombe* Prp45 orthologs. The green, red and yellow boxes
841 are colored as in (E). The yellow box features the most conserved region of the protein.

842 **Figure 4**

843 Genetic interaction analyses. Libraries in panels B, C, E and G are displayed in the same order as in
844 Figure 1C.

845 A) Comparison of the number of transposons inserted in each of the 6603 yeast CDSs in the wild-type (x-

846 axis) and *mmm1Δ VPS13(D716H)* (y-axis) libraries.

847 B) Transposon coverage of genes encoding ERMES components is increased in libraries from strains

848 bearing the *VPS13(D716H)* allele.

849 C) Examples of genes showing synthetic sick/lethal interaction with *mmm1Δ VPS13(D716H)*.

850 D) Comparison of the number of transposons inserted in each of the 6603 yeast CDSs in the wild-type

851 (x-axis) and *dpl1Δ* (y-axis) libraries.

852 E) Transposon coverage of the *HIP1* locus in the *dpl1Δ his3Δ* library and in all the other libraries (*HIS3*).

853 F) Comparison of the number of transposons inserted in each of the 6603 yeast CDSs in the *dpl1Δ* (x-

854 axis) and *dpl1Δ psd2Δ* (y-axis) libraries.

855 G) Transposon coverage of the *PSD1* locus in the *dpl1Δ psd2Δ* and in all other libraries.

856 Figure 4 – figure supplement 1

857 Volcano plots comparing libraries or combinations of libraries as indicated. The calculated fold-change

858 in transposon density between the two sets of libraries is plotted in \log_2 scale on the x-axis. The -

859 $\log_{10}(p\text{-value})$ (computed using the Student's t-test) is plotted on the y-axis. ⁽¹⁾The *VPS13(D716H)* and

860 the *mmm1Δ VPS13(D716H)* strains were generated in a *MET17* background while all other libraries

861 where generated in a *met17Δ* background. As a result *MET17* and the overlapping ORF *YLR302C*

862 appear as transposon free in the reference set. *MET6* is more targeted by transposons in *met17Δ*

863 libraries, likely because Met17 produces homocysteine, which needs to be converted to methionine by

864 Met6, or might otherwise accumulate to toxic levels. ⁽²⁾The *VPS13(D716H)* and *mmm1Δ*

865 *VPS13(D716H)* strains were generated in a *Mata* background, while the others were generated in a

866 *Mata* background. ⁽³⁾*YGR190C* overlaps with *HIP1*. ⁽⁴⁾*GPP1* shows synthetic lethality with a recessive

867 mendelian variant present in the *psd2Δ dpl1Δ* strain. However, this variant is neither linked to *DPL1*

868 nor to *PSD2* (data not shown). ⁽⁵⁾ERMES component genes scores very high with respect to fold
869 change, because two of the five libraries in the reference set bear the *VPS13(D716H)* allele. The *p*-
870 value, by contrast, is not significant.

871 **Figure 5**

872 **Synthetic rescue of lethal phenotypes**

873 A) Transposon coverage of *CDC10* in the seven libraries. The coverage is increased in the *dpl1Δ psd2Δ*
874 library.

875 B) Tetrad dissection of a *PSD2/psd2Δ DPL1/dpl1Δ CDC10/cdc10Δ* triple heterozygote at 30°C (left) and
876 25°C (right). The *cdc10Δ* spores of ascertained genotype are circled with a color-coded solid line.
877 *cdc10Δ* spores for which the genotype can be inferred from the other spores of the tetrad are circled
878 with a color-coded dashed line.

879 C) Quantification of growing and non-growing *cdc10Δ* spores of the indicated genotype obtained
880 from 48 tetrads (three independent diploids).

881 D) Transposon coverage of *DNA2* in the seven libraries. The coverage is increased in the *YEN1^{on}* library.

882 E) Tetrad dissection of a *DNA2/dna2Δ YEN1/YEN1* single heterozygote and of a *DNA2/dna2Δ*
883 *YEN1/YEN1^{on}* double heterozygote at 30°C (left) and 25°C (right). All viable *dna2Δ* spores additionally
884 carry the *YEN1^{on}* allele (red circle).

885 F) FACS profile of propidium-iodide-stained DNA content in *DNA2* and *dna2Δ YEN1^{on}* strains
886 exponentially growing at 30°C (left) and 25°C (right). For *DNA2* panels, each profile is an overlay of
887 two independent strains. For *dna2Δ YEN1^{on}* panels, each profile is an overlay of four independent
888 strains.

889 **Figure 6**

890 Detection of rapamycin resistant strains.

891 A) Comparison of the number of sequencing reads mapping to each of the 6603 yeast CDSs in
892 rapamycin-untreated (x-axis) and -treated (y-axis) libraries. Note the difference in scale between
893 both axis due to the high representation of rapamycin-resistant clones.

894 B) Distribution of transposons and number of associated sequencing reads on the *PIB2* gene.
895 Transposons with high number of sequencing reads in the rapamycin-treated library are clustered at
896 the 5'-end of the CDS.

897 C) Wild-type (WT) and *pib2Δ* strains were transformed with either an empty plasmid (☒) or plasmids
898 encoding full-length (FL) or indicated fragments of Pib2 (see E, numbers refer to the amino acid
899 position in the full-length Pib2 protein). 5-fold serial dilutions of these strains were spotted on YPD
900 or YPD containing 10 ng/ml rapamycin. Centromeric plasmids were used in all strains, except in
901 those denoted with 2μ, which carried multi-copy plasmids.

902 D) Strains of the indicated genotypes, transformed with either an empty plasmid (☒) or plasmids
903 encoding full length (*pPIB2*) or truncated (*pPIB2¹⁶⁵⁻⁶³⁵*) versions of Pib2, were grown exponentially in
904 minimal medium with proline as nitrogen source. 3 mM glutamine was added to the culture and the
905 cells were harvested 2 minutes later. Protein extracts were resolved on an SDS-page and probed
906 with antibodies either specific for Sch9-pThr⁷³⁷ (P-Sch9), or for total Sch9 to assess TORC1 activity.

907 E) Schematic overview of Pib2 architecture and of the fragments used for genetic studies.

908 F) Summary of yeast-two-hybrid interactions between Pib2 fragments and the TORC1 subunit Kog1
909 (Figure 6 – figure supplement 1). Fragments indicated by a black box interacted with Kog1,
910 fragments indicated by a white box did not.

911 G) *pib2Δ* cells expressing the indicated Pib2 fragments from plasmids (see E) were assayed for their
912 sensitivity to rapamycin (2.5 or 5 ng/ml) as in C.

913 H) WT or *pib2Δ* cells expressing the indicated Pib2 fragments from plasmids were assayed as in G,
914 except that cells were spotted on synthetic medium to apply a selective pressure for plasmid
915 maintenance.

916 Figure 6 – figure supplement 1

917 A) Transposon coverage of the *PIB2* gene. Top row is the rapamycin treated library and rows below
918 are presented as in Figure 2-5. The gray scale has been adjusted to account for the large number of
919 sequencing reads mapping in the 5' region of the gene.

920 B) Yeast-two-hybrid assay assessing the interaction of the indicated Pib2 fragments encoded on the
921 pCAB plasmid, with full-length Kog1 encoded on the pPR3N plasmid.

922 C) *gtr1Δ gtr2Δ* cells expressing indicated, plasmid-encoded Pib2 fragments (see Figure 6E) were
923 assayed for their sensitivity to rapamycin. Note that expressing Pib2^{Δ533-620} in *gtr1Δ gtr2Δ* cells appears
924 to inhibit growth even in the absence of rapamycin.

925 D) *gtr1Δ gtr2Δ* cells, transformed with centromeric plasmids expressing Pib2 fragments (see Figure
926 6E) and alleles of Gtr1 and Gtr2 as indicated, were assayed for their sensitivity to rapamycin.

927 Supplementary File 1

928 Processed dataset containing (1) the position and number of reads for all transposons in each library
929 (in the WIG format),

- 930 • Processed dataset - Dpl1del.wig
- 931 • Processed dataset - Mmm1Del_Vps13D716H.wig
- 932 • Processed dataset - Psd2Del_Dpl1del.wig
- 933 • Processed dataset - V13D716H.wig

934 • Processed dataset - WildType1.wig
935 • Processed dataset - WildType2.wig
936 • Processed dataset - WT_plus_rapamycin.wig
937 • Processed dataset - Yen1on.wig

938 (2) summaries of the number of transposon and number of reads per gene, for all genes in each
939 library (in the TXT format).

940 • Processed dataset - Dpl1del_perGene.txt
941 • Processed dataset - Mmm1Del_Vps13D716H_perGene.txt
942 • Processed dataset - Psd2Del_Dpl1del_perGene.txt
943 • Processed dataset - V13D716H_perGene.txt
944 • Processed dataset - WildType1_perGene.txt
945 • Processed dataset - WildType2_perGene.txt
946 • Processed dataset - WT_plus_rapamycin_perGene.txt
947 • Processed dataset - Yen1on_perGene.txt

949 Supplementary File 2

950 Table of genes appearing as essential in our analysis (i.e., their density of transposon is below 1/400
951 bp), but were not previously annotated as essential. The likely explanation for the low transposon
952 density is written in column B for each gene.

953 Supplementary File 3

954 Data computed to draw the volcano plots (Figure 4 – figure supplement 1)

956

Tables

957 **Table 1: Characteristics of the libraries**

<i>library</i>	<i>Number of colonies</i>	<i>reads mapped</i>	<i>transposons mapped</i>	<i>median read per transposon</i>	<i>number of MiSeq runs</i>	<i>overlap between MiSeq runs</i>
Wild-type 1	$\sim 1.6 \times 10^6$	31794831	284162	22	2 ⁽¹⁾	54%, 88% ⁽¹⁾
Wild-type 2	$\sim 2.4 \times 10^6$	15303285	258568	12	1	NA
<i>VPS13(D716H)</i>	$\sim 4.7 \times 10^6$	24958456	414114	13	2 ⁽²⁾	41%, 42% ⁽²⁾
<i>Mmm1Δ VPS13(D716H)</i>	$\sim 1.9 \times 10^6$	17799948	303323	12	1	NA
<i>dpl1Δ</i>	$\sim 2.3 \times 10^6$	15077156	401126	8	1	NA
<i>dpl1Δ psd2Δ</i>	$\sim 2.9 \times 10^6$	11649561	363179	9	1	NA
<i>YEN1^{on}</i>	$\sim 2.8 \times 10^6$	9517877	495125	6	1	NA
Wild-type 2 + rapamycin	$\sim 2.4 \times 10^6$	9664956	169322	9	1	NA

958

959

⁽¹⁾ The harvested library was grown in two flasks, one at 30°C and the other at 37°C. DNA was

960

extracted separately from the two cultures and sequenced in two separate MiSeq runs

961

⁽²⁾ The library was harvested as ten subpools, which were grown in ten separate flasks. DNA was

962

extracted separately. In one case, DNA from all ten subpools was pooled and processed to sequencing

963

in one MiSeq run. In the other case, DNAs were kept separate and processed until the PCR step (1x

964

100 µl PCR by subpool). PCR products were pooled and sequenced as another MiSeq run.

965

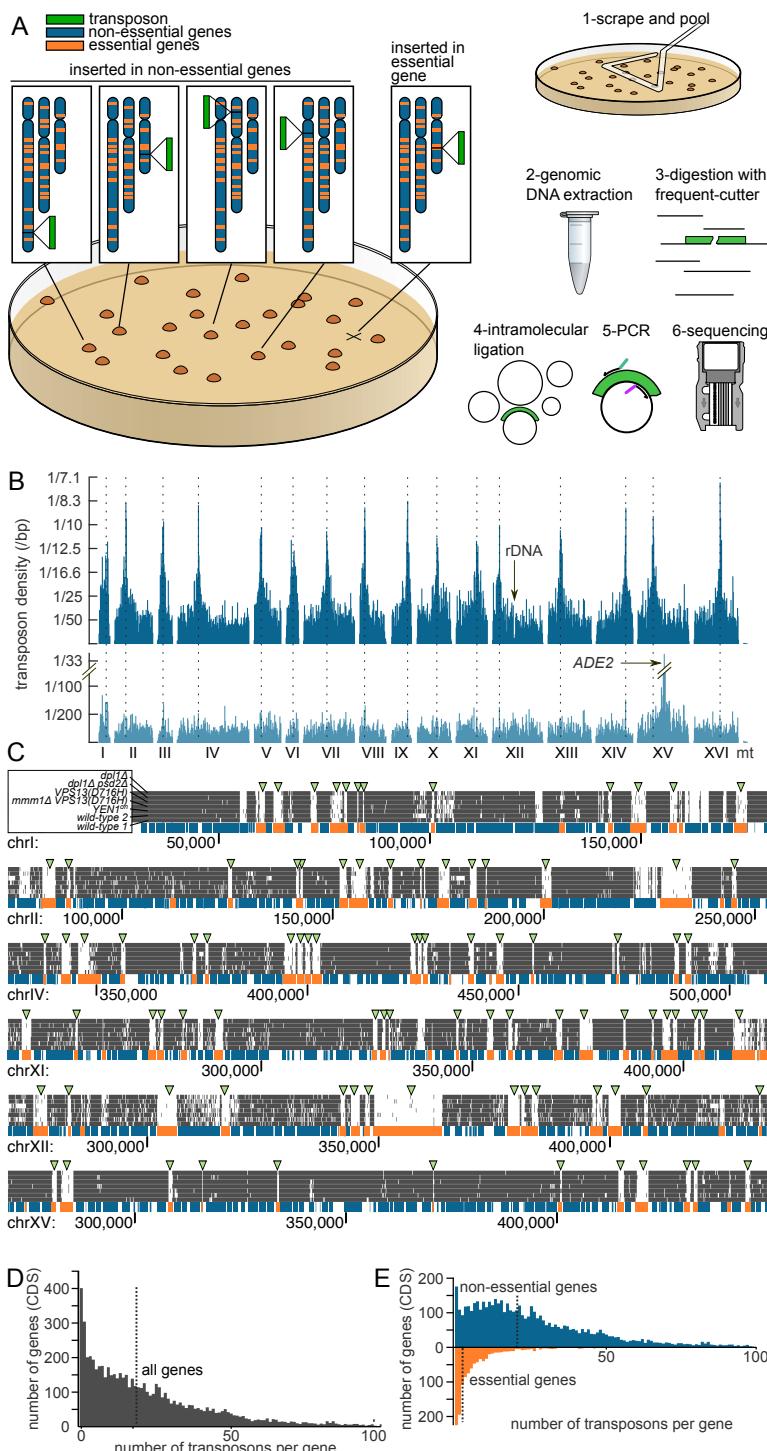
Table 2: Yeast strains used in this study.

Name	Parent	Genotype	Reference
CWY1	BY4723	MA _T <i>his3Δ0 ura3Δ0 ade2Δ::Ds-1</i>	Weil et al., 2000
ByK157	BY4743	MA _T <i>his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 VPS13(D716H)</i>	Lang et al. 2015
ByK352	BY4741	MA _T <i>his3Δ1 leu2Δ0 met17Δ0 ura3Δ0 ade2Δ::HIS3*</i>	This study
ByK484	BY4742	MA _T <i>his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 ade2Δ::HIS3*</i>	This study
ByK485	ByK352 and ByK484	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3*</i>	This study
ByK446	ByK157	MA _T <i>his3Δ1 leu2Δ0 ura3Δ0 ade2Δ::HIS3* VPS13(D716H)</i>	This study
ByK528	ByK446	MA _T <i>his3Δ1 leu2Δ0 ura3Δ0 ade2Δ::HIS3* VPS13(D716H) mmm1Δ::KanMX6</i>	This study
ByK530	ByK352	MA _T <i>his3Δ1 leu2Δ0 met17Δ0 ura3Δ0 ade2Δ::NAT* dpl1Δ::KanMX6</i>	This study
ByK533	ByK352	MA _T <i>his3Δ1 leu2Δ0 met17Δ0 ura3Δ0 ade2Δ::HIS3* psd2Δ::KanMX6 dpl1Δ::NAT</i>	This study
ByK576	ByK485	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3* prp45Δ::KanMX6/PRP45</i>	This study
ByK579	ByK485	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3* prp45Δ¹⁻⁴⁶²-HA(KanMX6)/PRP45</i>	This study
ByK583	ByK485	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3* taf3Δ::KanMX6/TAF3</i>	This study
ByK588	ByK485	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3* TAF3¹⁻²⁷⁰-HA(KanMX6)/TAF3</i>	This study
ByK725	ByK533 and ByK484	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3* psd2Δ::KanMX6/PSD2 dpl1Δ::NAT/DPL1</i>	This study
ByK726	ByK533 and ByK484	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3* psd2Δ::KanMX6/PSD2 dpl1Δ::NAT/DPL1</i>	This study
ByK739	ByK725	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3* psd2Δ::KanMX6/PSD2 dpl1Δ::NAT/DPL1 cdc10Δ::URA3/CDC10</i>	This study
ByK740	ByK726	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3* psd2Δ::KanMX6/PSD2 dpl1Δ::NAT/DPL1 cdc10Δ::URA3/CDC10</i>	This study
ByK741	ByK726	MA _{T/a} <i>his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met17Δ0/MET17 ura3Δ0/ura3Δ0 ade2Δ::HIS3*/ade2Δ::HIS3* psd2Δ::KanMX6/PSD2 dpl1Δ::NAT/DPL1 cdc10Δ::URA3/CDC10</i>	This study
YJM3916	ByK352	MA _T <i>his3Δ1 leu2Δ0 met17Δ0 ura3Δ0 ade2Δ::HIS3* YEN1^{on}</i>	This study
YL516	BY4741/BY4742	MA _T <i>his3Δ1 leu2Δ0 ura3Δ0</i>	Binda et al, 2009
MB32	YL516	MA _T <i>his3Δ1 leu2Δ0 ura3Δ0 gtr1Δ::kanMX</i>	Binda et al, 2009
RKH106	YL516	MA _T <i>his3Δ1 leu2Δ0 ura3Δ0 pib2Δ::kanMX</i>	This study
RKH241	MB32	MA _T <i>his3Δ1 leu2Δ0 ura3Δ0 gtr1Δ::kanMX gtr2Δ::hphMX4 his3Δ200 trp1-901 leu2-3,112 ade2 LYS::(lexAop)4-HIS3 ura3::(lexAop)8-lacZ ade2::(lexAop)8-ADE2 GAL4</i>	This study
NMY51			Dualsystems Biotech AG

*ADE2 deleted -56 before ATG + 62 after STOP with PCR primers #6 and #7 on pFA6a-His3MX6.

Table 3: Oligonucleotides used in this study.

#	Original name	Sequence	Purpose
1	P5_MiniDs	AATGATACGGCGACCCAGGAGATCTACtcgtccgcagaatataaa	amplify library
2	MiniDs_P7	CAAGCAGAACGGCATACGAGATCAGaaaacgaaacgggtaaaa	amplify library
3	688_minidsSEQ1210	tttacccggatccggccatccatccca	sequence library
4	ADE2Fwd	GGTCGAGCTCCCTTTGATGCGGAATGAC	clone <i>ADE2</i> MiniDS
5	ADE2Rev	GACTGAGCTTACTGGATATGATGATG	clone <i>ADE2</i> MiniDS
6	Ade2PriFwd	GTATAAATTGGTGTGCTAAAATCGTTGGATCTCTCTAAcgatccccgggttaattaa	delete <i>ADE2</i>
7	Ade2PriRev	TATGTATGAAGTCCACATTGATGTAATCATAAACAAAGCCaaatcgagctgtttaaac	delete <i>ADE2</i>
8	Dpl1_Janke_S1	AGCAAGTAGGCTAGCTCTGTAAGGGATTTTCCATCTAATACgtacgcgtcaggctcg	delete <i>DPL1</i>
9	Dpl1_Janke_S2	GCACCTCGTCTCTTAAATTATGATGAGATTGATTCTATATAAGtcgtatcgacgtcg	delete <i>DPL1</i>
10	Psd2_pringle_F	GATGCTGTATCAATTGTAAGAATCTGATTTCAAGGAGCATCCAAACGcgatcgctcgacgtcgac	delete <i>PSD2</i>
11	Psd2_pringle_R	CTTGTGTTACACGTATAGTCATAATAAAGTCTGAGGGAGATGTCATGatcgatgaaatcgagctcg	delete <i>PSD2</i>
12	TAF3_R1	TGGATGAGATAATGACGAAAGAAAATGCAGAAATGTCGTGaaatcgagctgtttaaac	<i>TAF3</i> partial deletion
13	TAF3_aa90_F2	AGGTTGTTAACGCTACGACGCTGGATGTCTATGATCggatccccgggttaattaa	<i>TAF3</i> partial deletion
14	Taf3_Fwd	GGCAAGATGTCGAGGACG	check <i>TAF3</i> partial deletion
15	Taf3_Rev	TCTTGAAGAACGAAAGTACACT	check <i>TAF3</i> partial deletion
16	TAF3_R1	TGGATGAGATAATGACGAAAGAAAATGCAGAAATGTCGTGaaatcgagctgtttaaac	<i>TAF3</i> complete deletion
17	TAF3_aa1_F1	GAAAACAGCGATATCTGGTCAATAGAGTCTCTGCTgaggcgccactctaa	<i>TAF3</i> complete deletion
18	PRP45_R1	ACTCAAGCACAAGAATGCTTGTCTAGTGTCTCATCTGGGCGaattcgagctgtttaaac	<i>PRP45</i> partial deletion
19	PRP45_aa154_F2	AACGACGAAGTCGTGCTCTCATATGGATGGCAGCAATGATCggatccccgggttaattaa	<i>PRP45</i> partial deletion
20	PRP45_Fwd	AGGTTGTTAGCACCCACAGAA	check <i>PRP45</i> partial deletion
21	PRP45_Rev	CAATCATCACACCTCAGCGA	check <i>PRP45</i> partial deletion
22	PRP45_R1	ACTCAAGCACAAGAATGCTTGTCTAGTGTCTCATCTGGGCGaattcgagctgtttaaac	<i>PRP45</i> complete deletion
23	PRP45_aa1_F1	GCTCTGAGCCGAGGAGGACTATCGAACCTCAACCAAATtgaggcgccactctaa	<i>PRP45</i> complete deletion
24	CDC10-Ura3_fwd	AAGGCCAAGCCCCACGGTTACTACAAGCCTCTATAATATATTAtgcggtaaaacctctgc	<i>CDC10</i> complete deletion
25	URA3-CDC10_rev	TTCCTTAATAACATAAGATATATAATCACCACATTCTATGAGATtcctgtcggtttttctcc	<i>CDC10</i> complete deletion
26	OJM370	ATGGGTGTCCTACAAATATGGG	Amplify <i>YEN1</i>
27	OJM371	TTCAATAGTGTACTGTATCAC	Amplify <i>YEN1</i>
28	OJM372	TTCAATAGTGTACTGTATCACTGTACAGGCTAAACCGGTGACTG	<i>Delitto perfetto</i> on <i>YEN1</i>
29	OJM373	TTGGTGTCTACAAATATGGGAAATTGGAGCCATATCTGCAAGATTCCGGCTGGCCATT	<i>Delitto perfetto</i> on <i>YEN1</i>
30	o3958	cat	
31	o3959	gacggtatcgataagctgtatcgGCGCTGGCATCTTAATCTC	<i>PIB2</i> cloning
32	o3224	actatggatccccgggtcgaggTGCTTGGATCTCTTGGTC	<i>PIB2</i> cloning
33	o3225	TAATA CGACT CACTA TAGGG	various <i>PIB2</i> truncations
34	o4034	ATTAA CCCTC ACTAA AGGGAA	various <i>PIB2</i> truncations
35	o4010	atctgttcagggttcgacattctggcttcactac	<i>PIB2</i> ¹⁶⁵⁻⁶³⁵ truncation
36	o4012	gtatgtggagaccagaatgtcgaaacctgtactatgt	<i>PIB2</i> ¹⁶⁵⁻⁶³⁵ truncation
37	o4035	tagtggagaccagaatgttaccgcagctgt	<i>PIB2</i> ³⁰⁴⁻⁶³⁵ truncation
38	o4011	tcaaaattaaactagcattctgttccactacaactgt	<i>PIB2</i> ²²¹⁻⁶³⁵ truncation
39	o4062	cacatgttgtggagaccagaatgtactgttcaatttg	<i>PIB2</i> ²²¹⁻⁶³⁵ truncation
40	o3996	atagttgttataatgtgttctattctgttccactacaactgt	<i>PIB2</i> ⁴²⁶⁻⁶³⁵ truncation
41	o4063	cgttgtgtcgatgtgtcgctgtcgaaataga	<i>PIB2</i> ⁴²⁶⁻⁶³⁵ truncation
42	o3997	tctatccggaaacgcgacaaacataacgcgaaacacg	<i>PIB2</i> ⁴²⁶⁻⁶³⁵ truncation
43	o4064	cacagagccgataacactctgggtgaaagggttc	<i>PIB2</i> ⁴⁵³³⁻⁶²⁰ truncation
44	o3998	gagaacccccaacccacgtgttacgttgcgttgcgt	<i>PIB2</i> ⁴⁵³³⁻⁶²⁰ truncation
45	o4065	gttcggaaaaatgttcatcgccccaaacatattacccct	<i>PIB2</i> ¹⁻⁶²⁰ truncation
46	o3999	agaaggtaatgtgtttgggtgtatgcacatttttgcgagac	<i>PIB2</i> ¹⁻⁶²⁰ truncation
47	o1440	GCTAGAGCGGCCATTACGGCCCCGGAGATTATGACCTC	<i>KOG1</i> cloning into pPR3N
48	o1442	CGATCTCGGGCGAGGCGGCCCTAAATAATCAATTCTCTGTC	<i>KOG1</i> cloning into pPR3N
49	o3787	GCTAGAGCGGCCATTACGGGCCAATTTGACAAATCTAGAACTAGT	cloning <i>PIB2</i> fragments into pCabWT*
50	o3788	CGATCTCGGGCGAGGCGGCCAAAGACCTCAATTCCAGTTGC	cloning <i>PIB2</i> fragments into pCabWT*
51	o3872	CGATCTCGGGCGAGGCGGCCAAATCTCGCCCTCTCAACGT	cloning <i>PIB2</i> fragments into pCabWT*
52	o3871	CGATCTCGGGCGAGGCGGCCAAAGTTGATTCTGCGCTGTTCG	cloning <i>PIB2</i> fragments into pCabWT*
53	o3870	GCTAGAGCGGCCATTACGGCCAGGAAGAAATTACGCAATTACTAC	cloning <i>PIB2</i> fragments into pCabWT*
54	o3933		cloning <i>PIB2</i> fragments into pCabWT*


55	03934	GCTAGAGGGCCATTACGGCC AGTGTATCGGCTCTGTGCC	cloning <i>PIB2</i> fragments into pCabWT*
56	03868	CGATCTGGGCCAGGCGGCAAATTAGTGCCTGAAGCAGGCT	cloning <i>PIB2</i> fragments into pCabWT*
57	03867	CGATCTGGGCCAGGCGGCAAAGTCATCCGTGAATGGCAACG	cloning <i>PIB2</i> fragments into pCabWT*
58	03866	CGATCTGGGCCAGGCGGCAAAGCTGCCCTGAGCTCT	cloning <i>PIB2</i> fragments into pCabWT*
59	03865	CGATCTGGGCCAGGCGGCAAAGTCAGCACCGCTTCTCAT	cloning <i>PIB2</i> fragments into pCabWT*

970 Oligonucleotides #1 and #2, ordered as PAGE-purified and lyophilized, are resuspended at 100 μ M in
 971 water. Oligonucleotide #3, ordered as HPLC-purified and lyophilized, is resuspended at 100 μ M in
 972 water and distributed into single-use aliquots.

Table 4: Plasmids used in this study.

Name	Parent	Description	Reference
pBK257	pWL80R_4x	CEN/URA3, carries MiniDs in ADE2 and hyperactive Ac transposase under GAL1 promoter	This study
pWL80R_4x		CEN/URA3, carries hyperactive Ac transposase under GAL1 promoter	Lazarow et al. 2012
pCORE-UH		<i>Delitto perfetto</i> URA3 cassette	Storici et al. 2003
pJM7		pENTRY-YEN ¹⁰	This study
pRS413		CEN/HIS3, empty vector	Sikorski et al., 1989
pRS415		CEN/LEU2, empty vector	Sikorski et al., 1989
pRS416		CEN/URA3, empty vector	Sikorski et al., 1989
p1822	pRS413	CEN/HIS3, GTR1	This study
p1451	pRS415	CEN/LEU2, GTR2	This study
p1821	pRS413	CEN/HIS3, GTR1 ^{Q65L}	This study
p1452	pRS415	CEN/LEU2, GTR2 ^{S23L}	This study
p3084	pRS416	CEN/URA3, PIB2	This study
p3099	p3084	CEN/URA3, PIB2 ¹⁶⁵⁻⁶³⁵	This study
p3097	p3084	CEN/URA3, PIB2 ³⁰⁴⁻⁶³⁵	This study
p3101	p3084	CEN/URA3, PIB2 ²²¹⁻⁶³⁵	This study
p3253	pRS426	2μ/URA3, PIB2	This study
p3255	pRS426	2μ/URA3, PIB2 ¹⁶⁵⁻⁶³⁵	This study
p3163	p3084	CEN/URA3, PIB2 ⁴²⁶⁻⁶³⁵	This study
p3153	p3084	CEN/URA3, PIB2 ⁴⁴²⁶⁻⁵³²	This study
p3154	p3084	CEN/URA3, PIB2 ⁴⁵³³⁻⁶²⁰	This study
p3156	p3084	CEN/URA3, PIB2 ¹⁻⁶²⁰	This study
pPR3N		2μ/TRP1, NubG-HA	Dualsystems Biotech AG
pCabWT		CEN/LEU2, Aβ-Cub-LexA-VP16	Dualsystems Biotech AG
p3081	pPR3N	2μ/TRP1, NubG-HA-KOG1	This study
p2966	pCabWT	CEN/LEU2, Aβ-PIB2-Cub-LexA-VP16	This study
p3002	pCabWT	CEN/LEU2, Aβ-PIB2 ¹⁻⁶²⁰ -Cub-LexA-VP16	This study
p3007	pCabWT	CEN/LEU2, Aβ-PIB2 ¹⁻⁵⁵⁰ -Cub-LexA-VP16	This study
p3001	pCabWT	CEN/LEU2, Aβ-PIB2 ¹⁻⁴²⁸ -Cub-LexA-VP16	This study
p3051	pCabWT	CEN/LEU2, Aβ-PIB2 ³⁴⁰⁻⁵⁵⁰ -Cub-LexA-VP16	This study
p3054	pCabWT	CEN/LEU2, Aβ-PIB2 ⁵⁵⁶⁻⁶²⁰ -Cub-LexA-VP16	This study
p3052	pCabWT	CEN/LEU2, Aβ-PIB2 ⁶²¹⁻⁶³⁵ -Cub-LexA-VP16	This study
p3000	pCabWT	CEN/LEU2, Aβ-PIB2 ¹⁻³¹² -Cub-LexA-VP16	This study
p2987	pCabWT	CEN/LEU2, Aβ-PIB2 ³⁰⁴⁻⁶³⁵ -Cub-LexA-VP16	This study
p2999	pCabWT	CEN/LEU2, Aβ-PIB2 ¹⁻¹⁶² -Cub-LexA-VP16	This study
p2986	pCabWT	CEN/LEU2, Aβ-PIB2 ¹⁶⁵⁻⁶³⁵ -Cub-LexA-VP16	This study
p2998	pCabWT	CEN/LEU2, Aβ-PIB2 ¹⁻¹⁰¹ -Cub-LexA-VP16	This study
p2991	pCabWT	CEN/LEU2, Aβ-PIB2 ¹⁰²⁻⁶³⁵ -Cub-LexA-VP16	This study
p2997	pCabWT	CEN/LEU2, Aβ-PIB2 ¹⁻⁴⁹ -Cub-LexA-VP16	This study
p2990	pCabWT	CEN/LEU2, Aβ-PIB2 ⁵⁰⁻⁶³⁵ -Cub-LexA-VP16	This study

Figure 1

Figure 1 Supplement 1

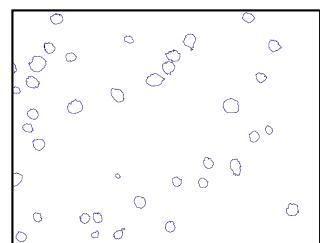
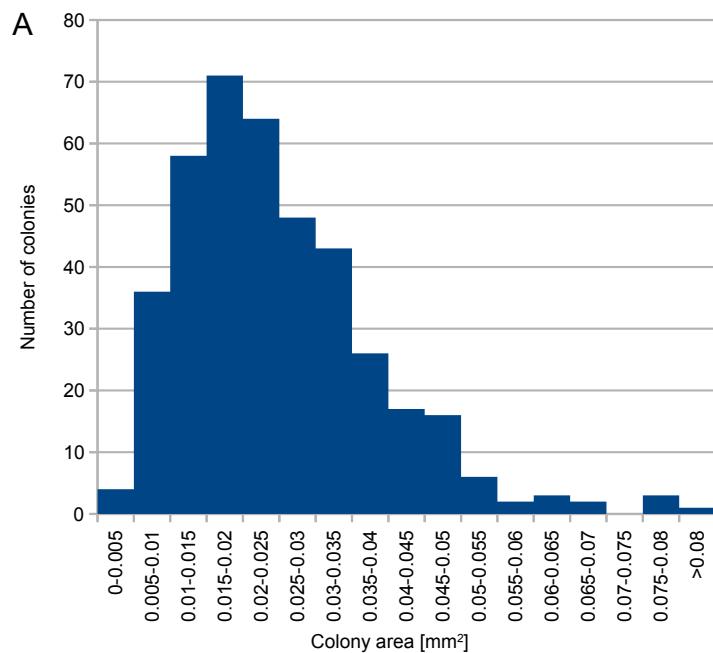



Figure 1 Supplement 2

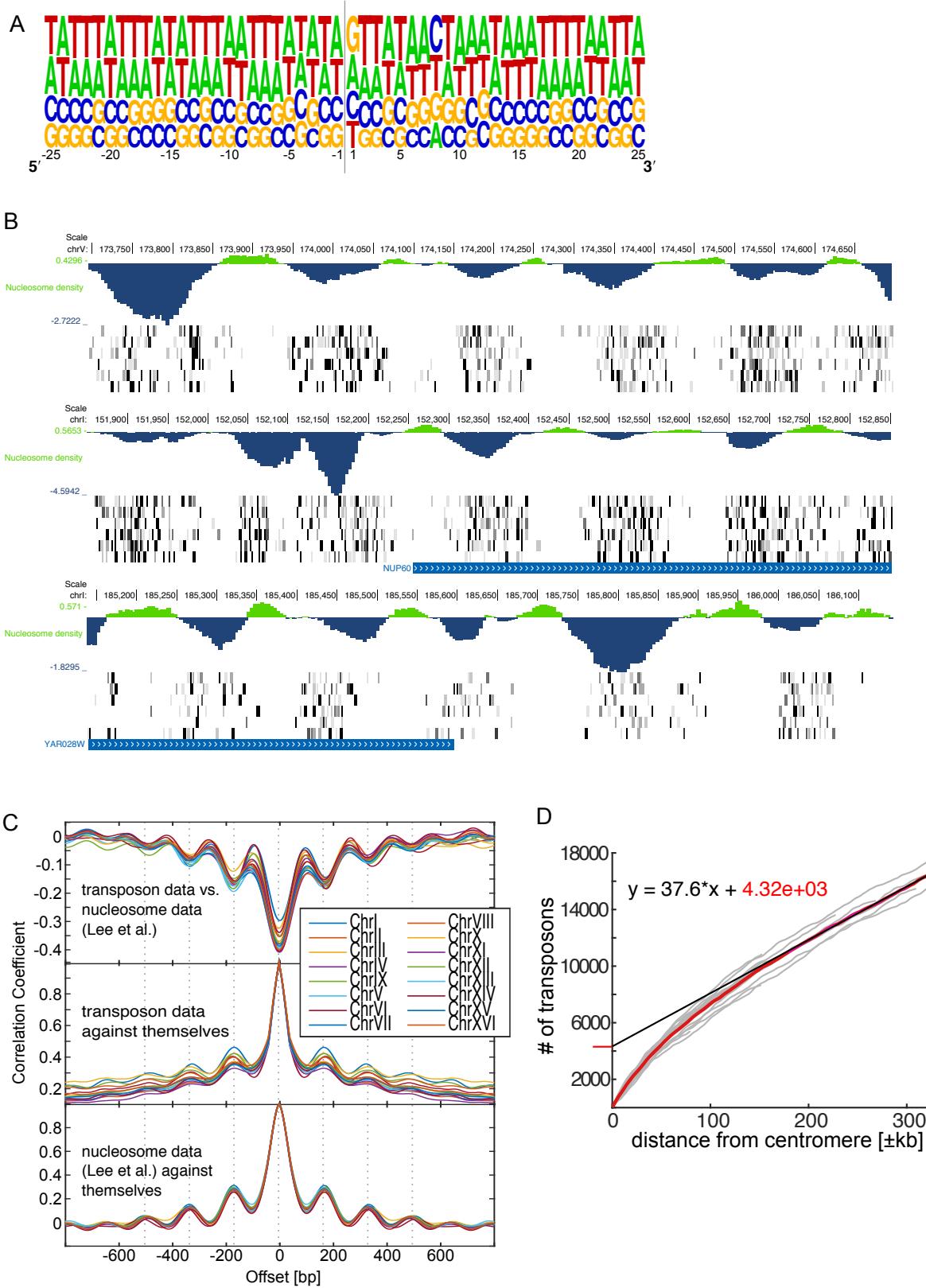
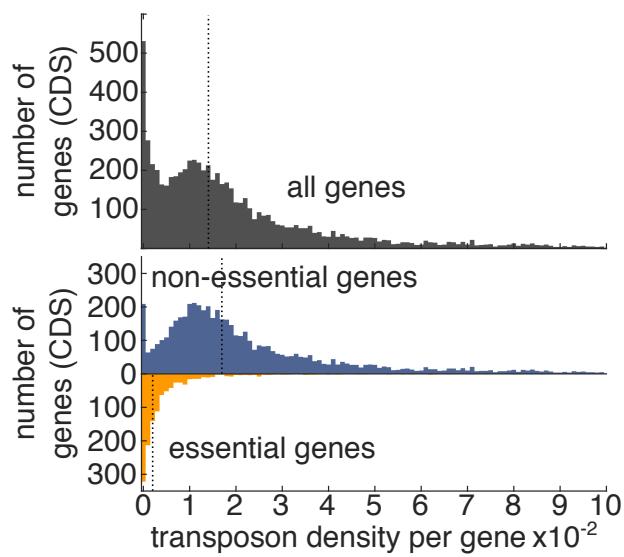
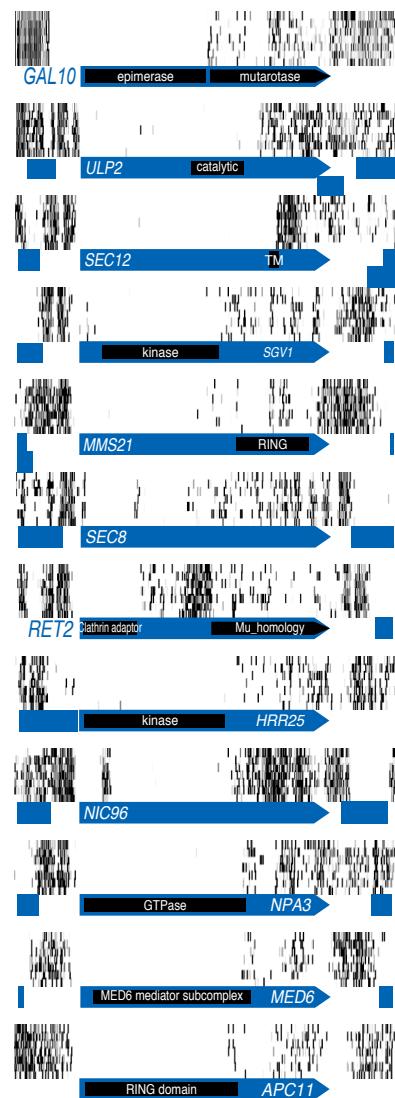




Figure 1 Supplement 3

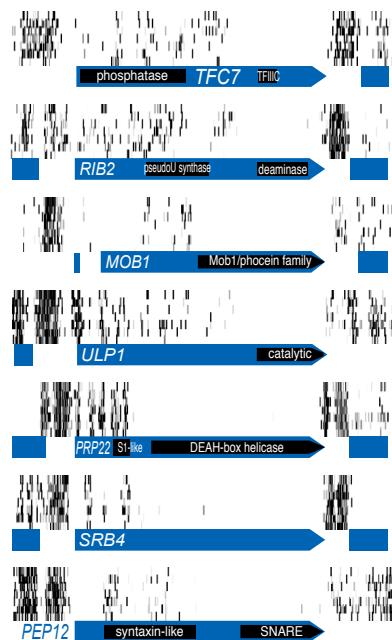
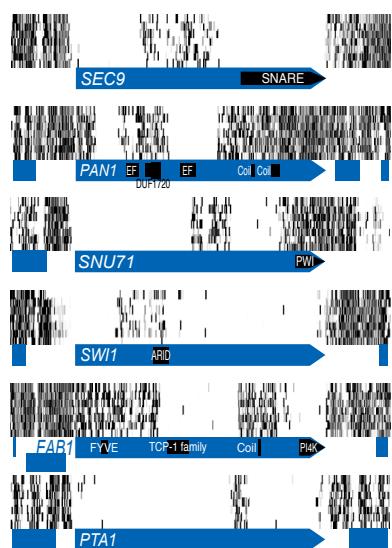


Figure 2


A C-terminal truncations

B N-terminal truncations

C mixed truncations

Figure 2 Supplement 1

$$\text{Domain likelihood score} = \frac{\text{longest interval} * \text{tn_number}}{\text{gene length}^{1.5}}$$

Domain likelihood score = 0 IF tn_number < 20
OR longest interval > 90% of CDS
OR longest interval < 10% of CDS
OR longest interval < 300 bp

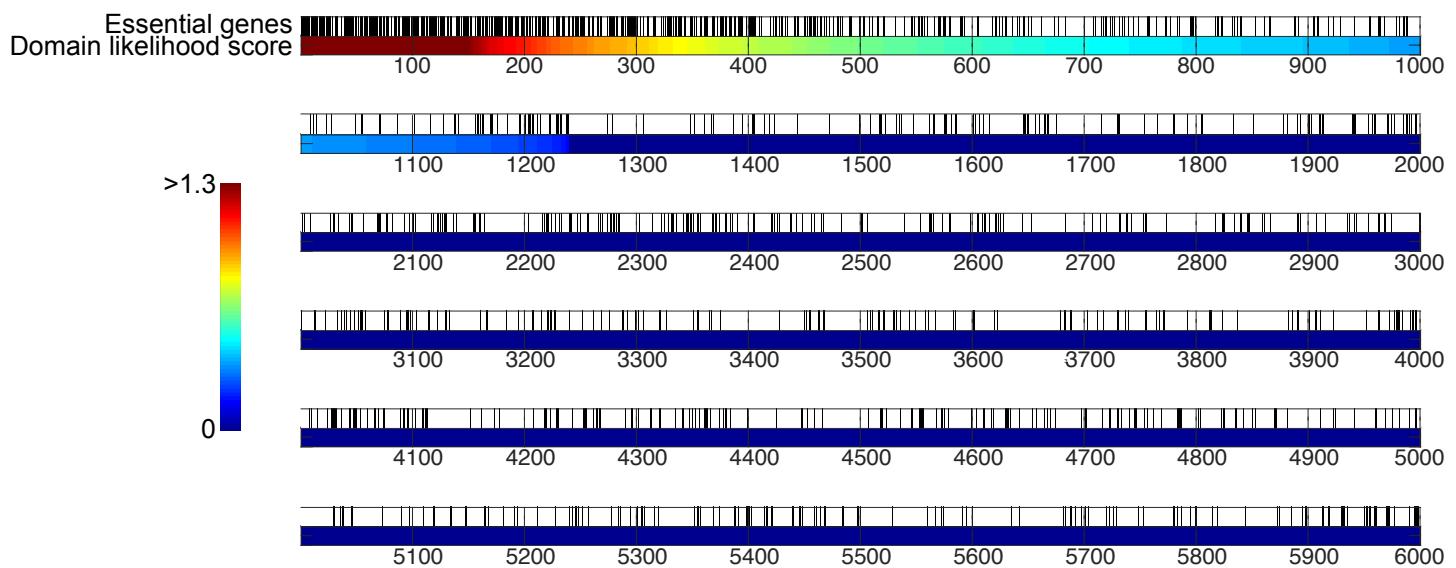


Figure 2 - supplement 2

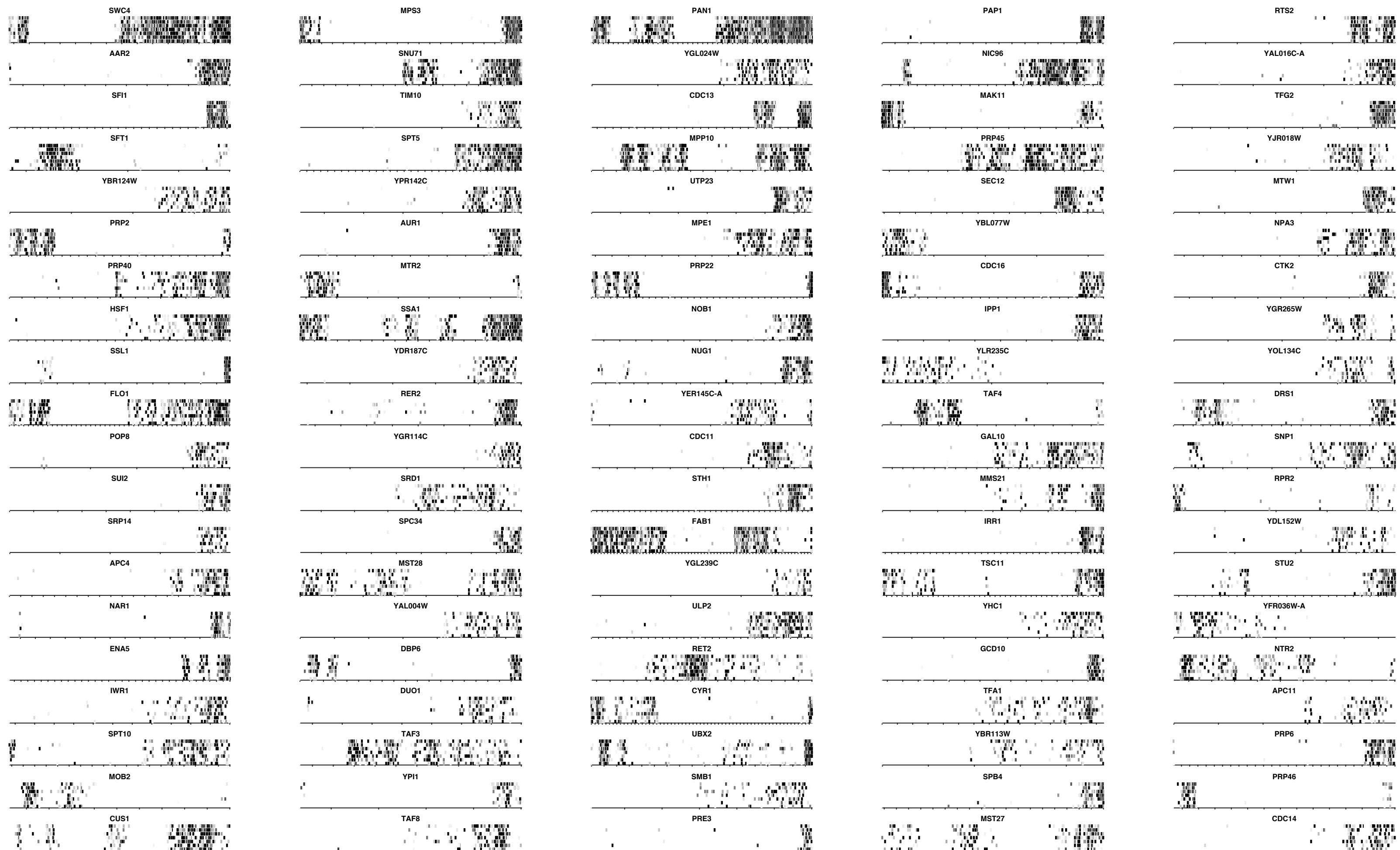


Figure 2 - supplement 3

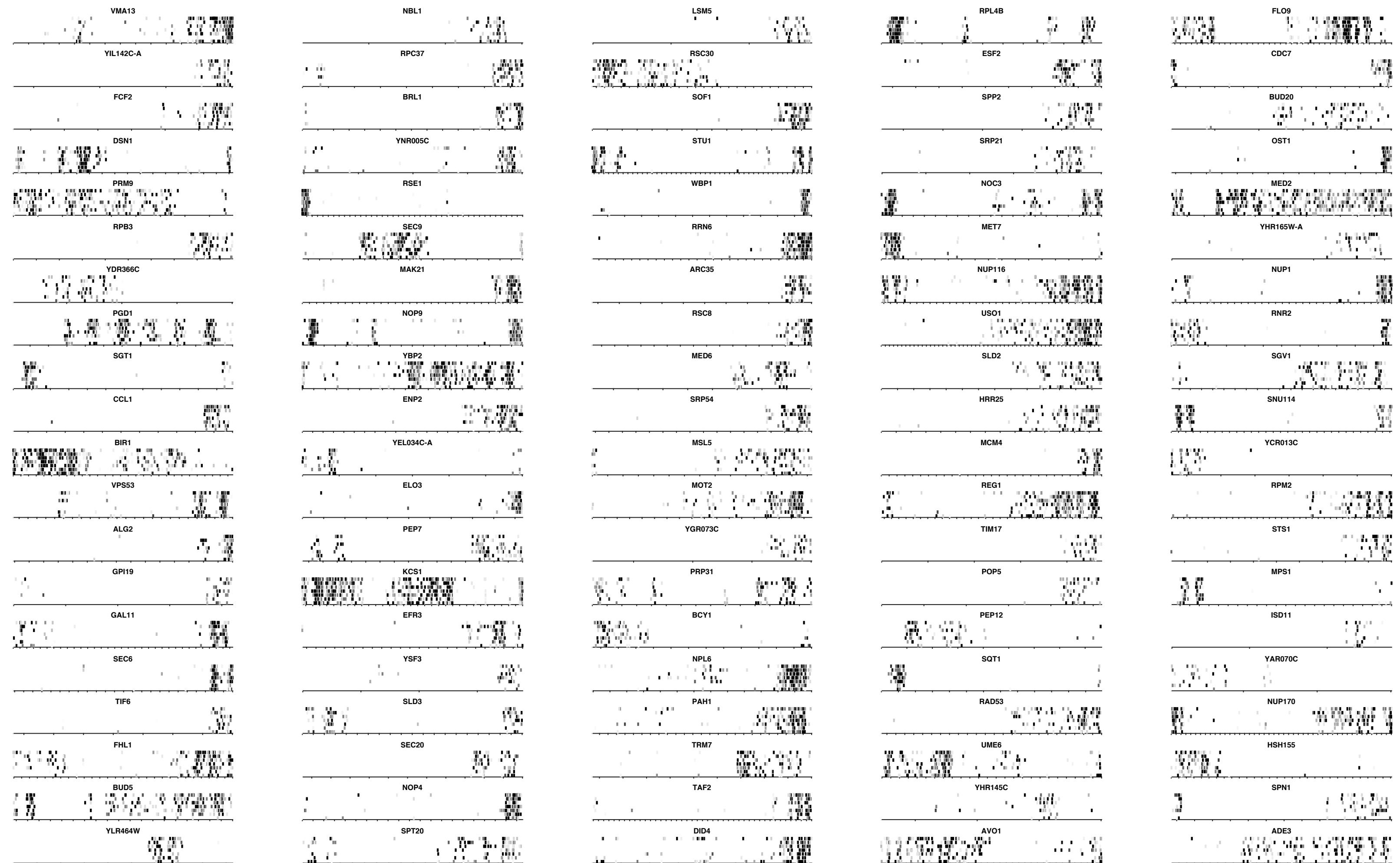


Figure 2 - supplement 4

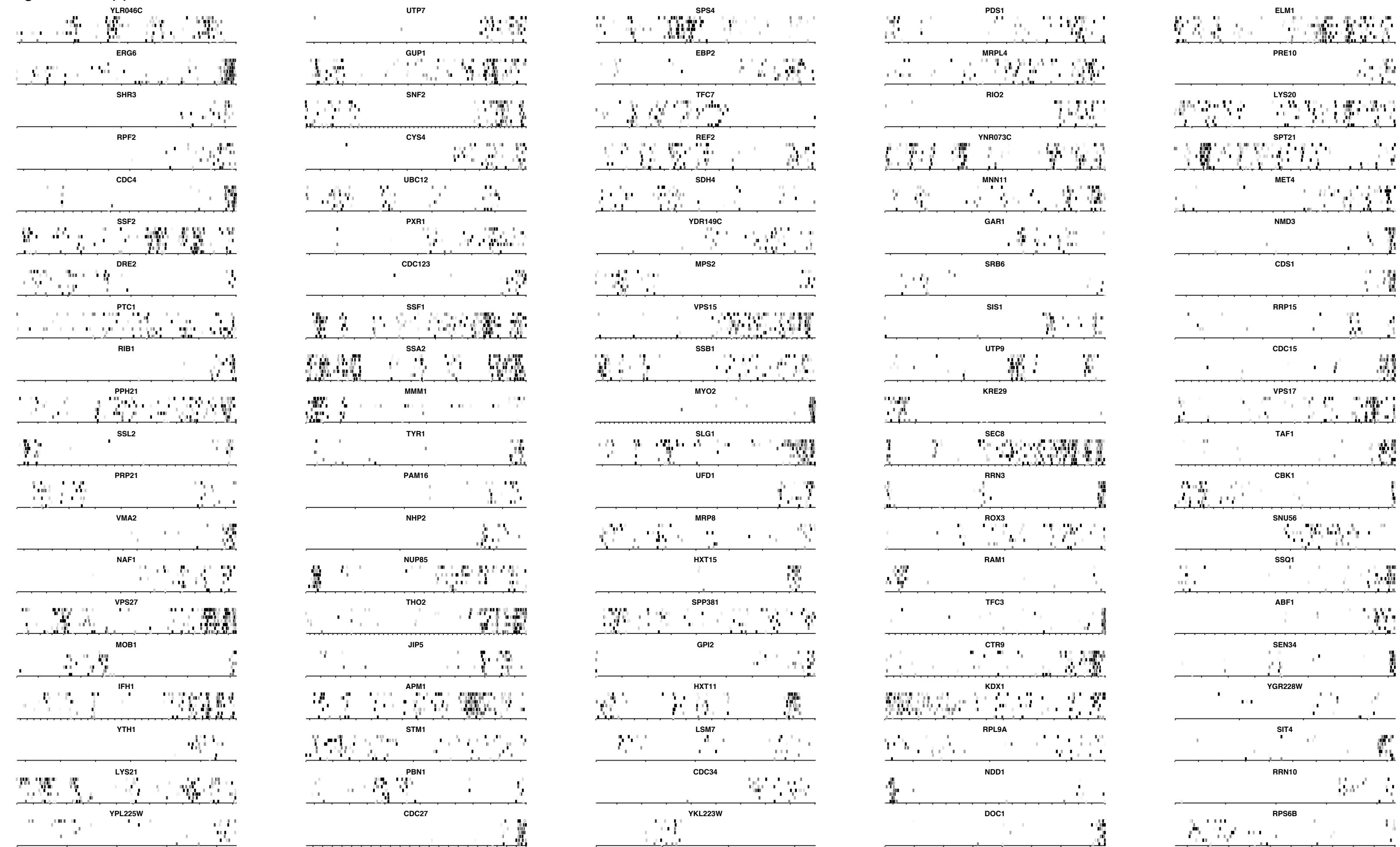
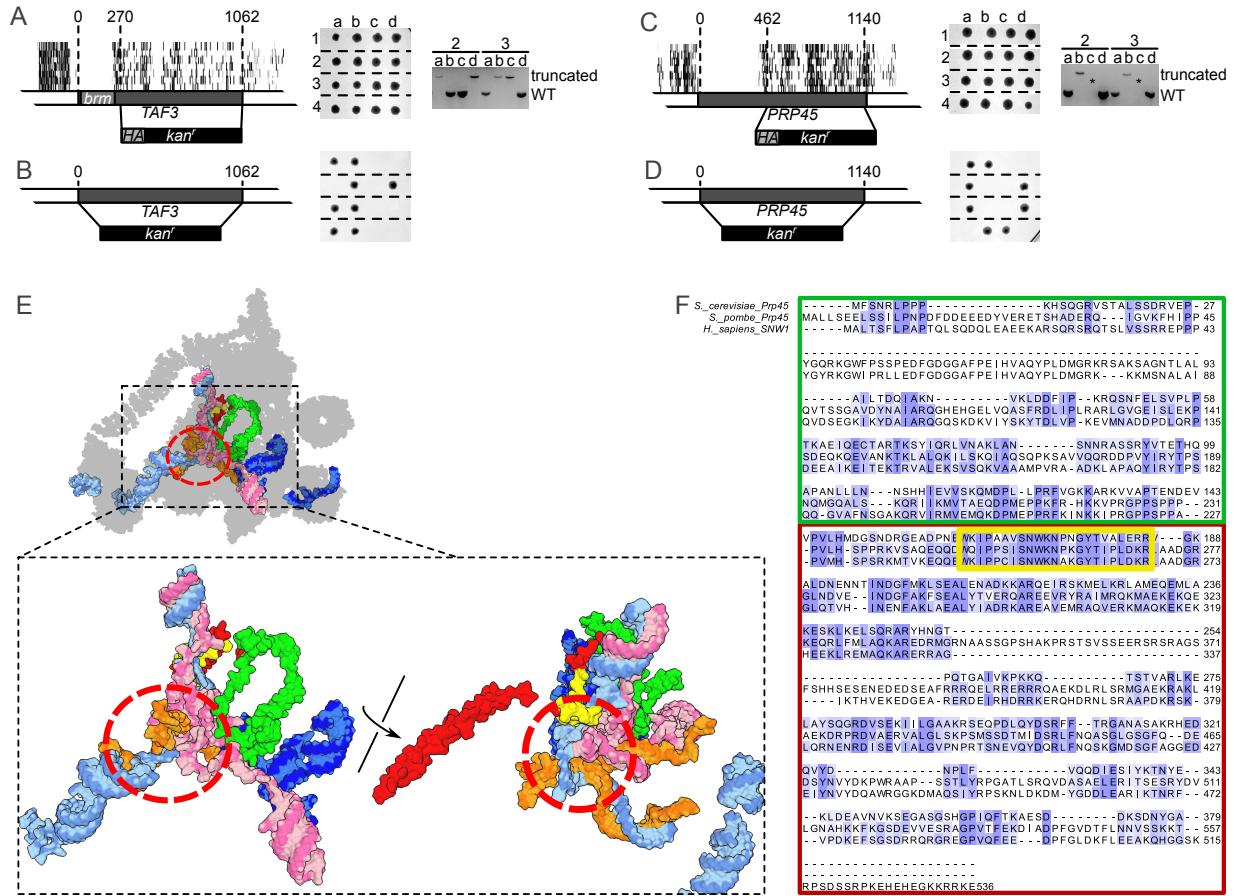



Figure 2 - supplement 5

Figure 3

Figure 4

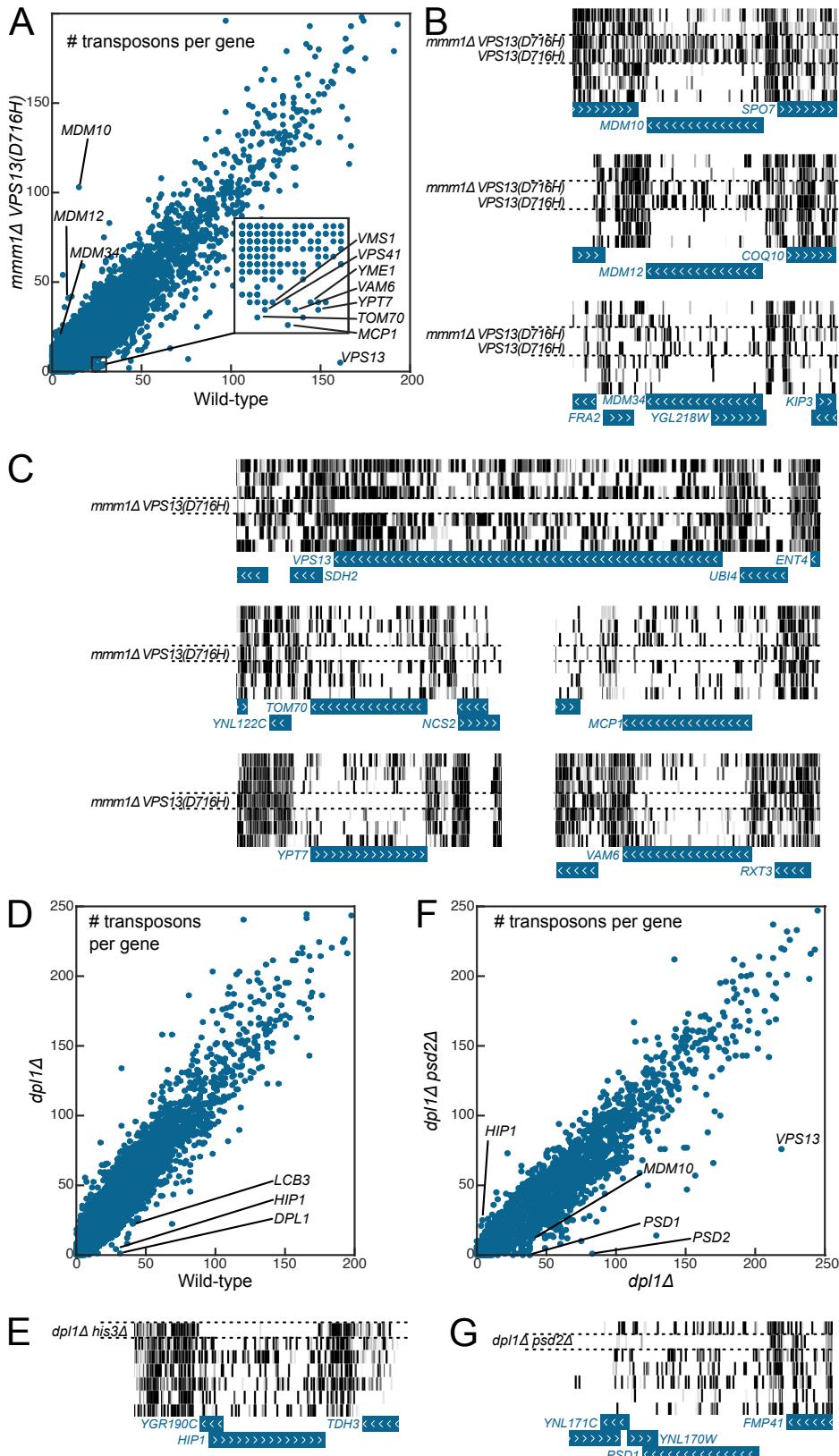
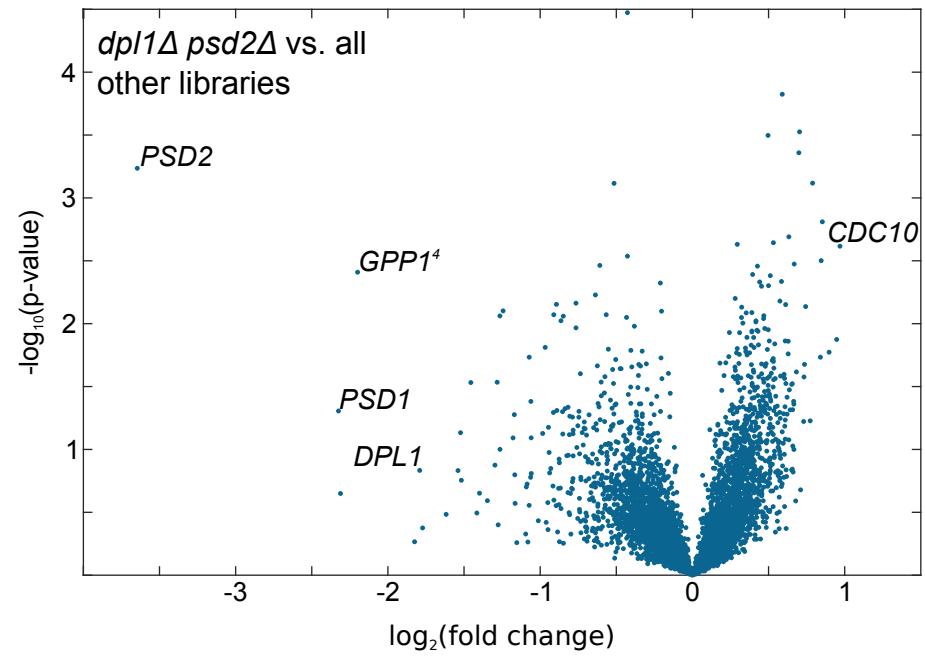
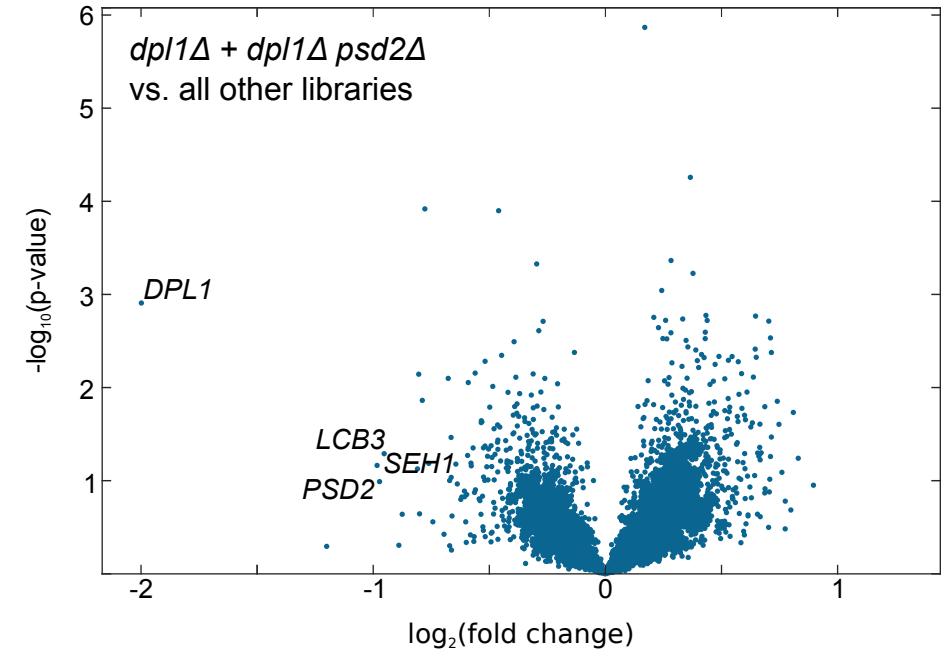
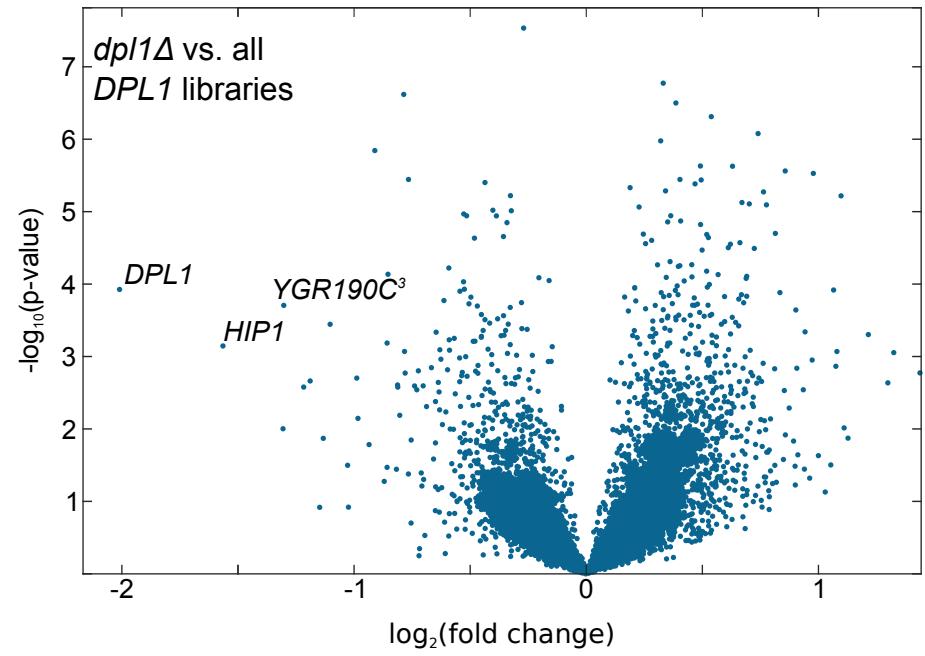
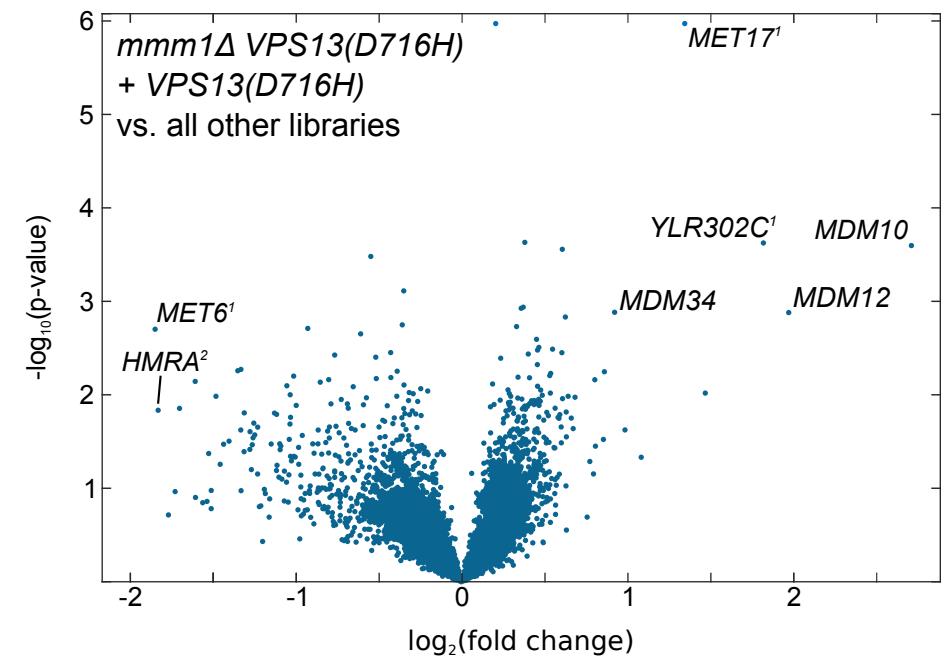
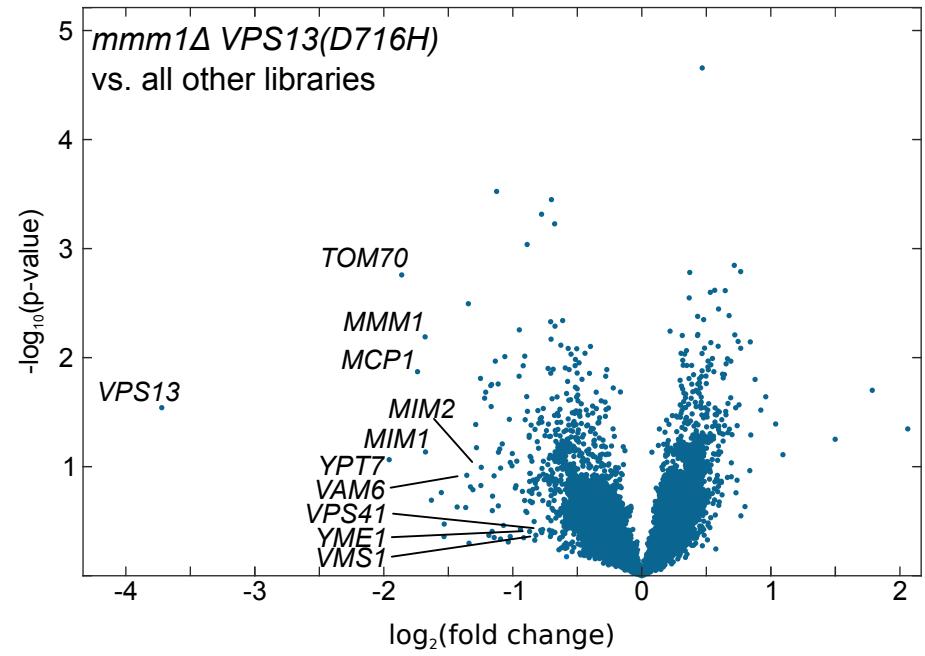
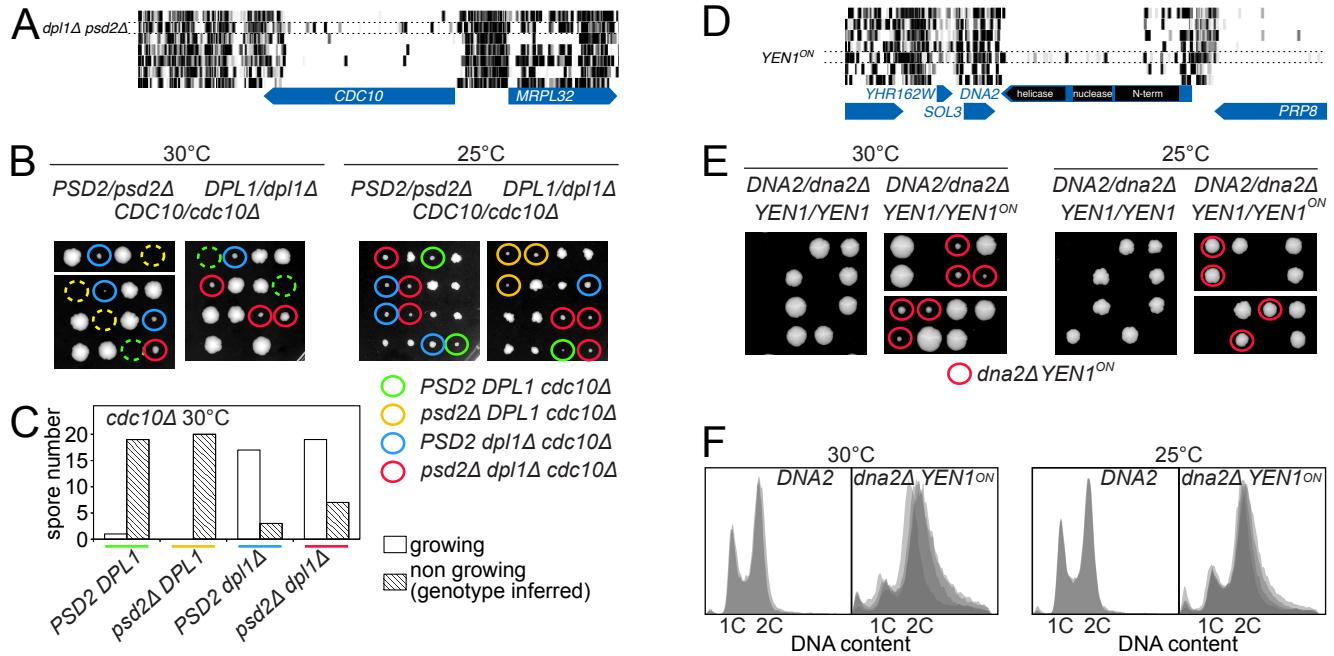








Figure 4 Supplement 1

Figure 5

Figure 6

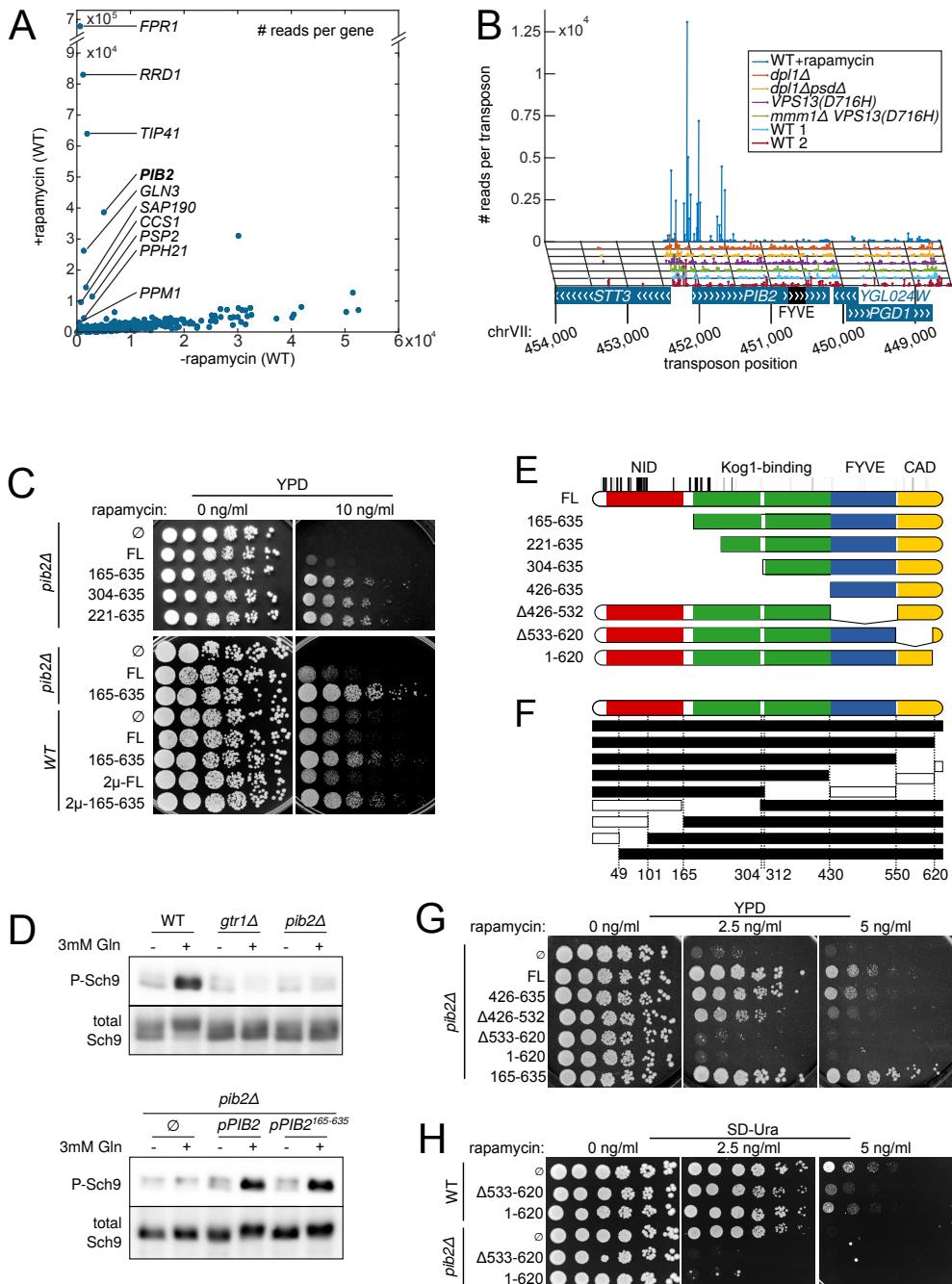
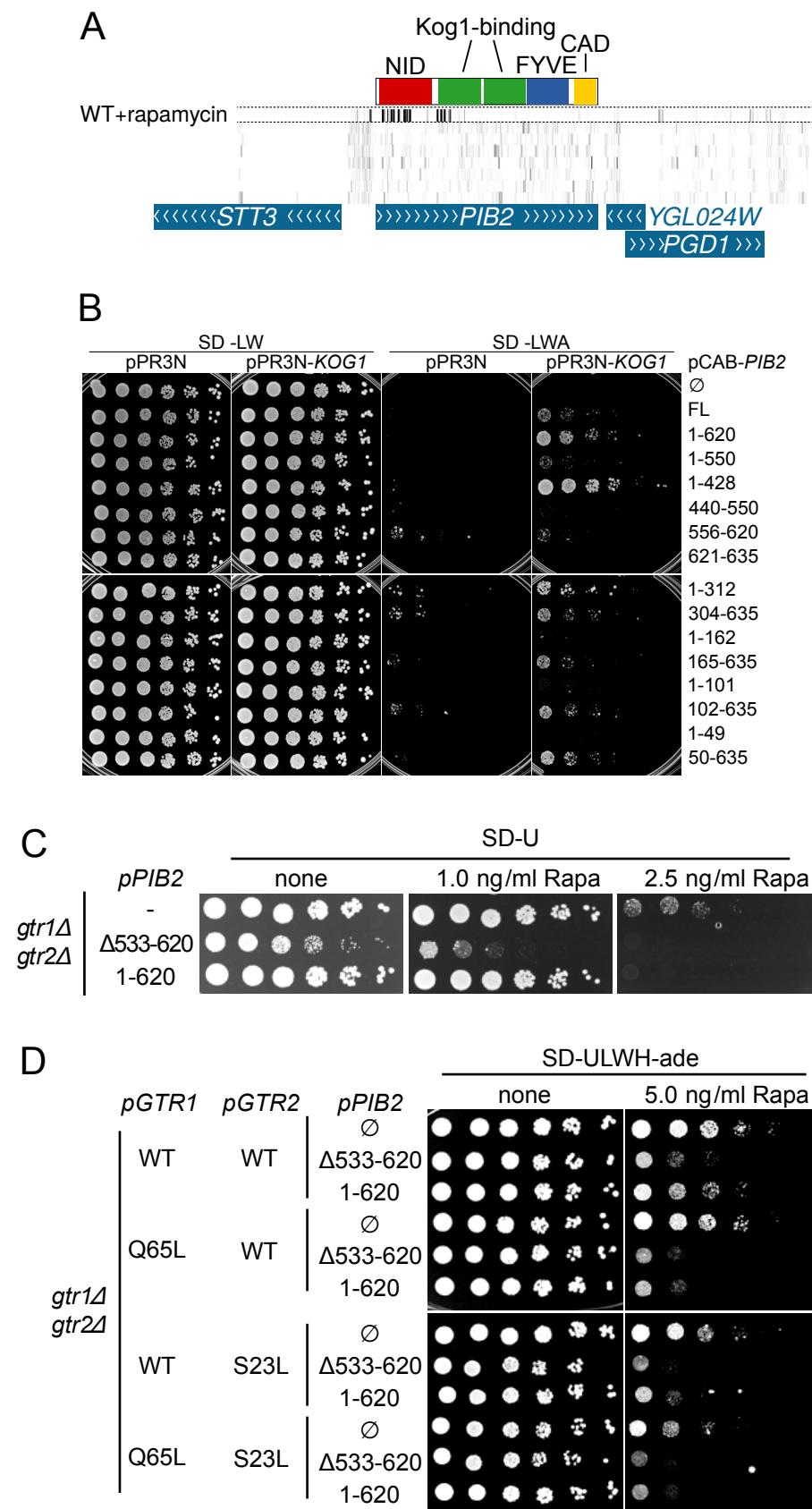



Figure 6 Supplement 1

