1. Plant Biology
Download icon

Regulation of plant immune receptor accumulation through translational repression by a glycine-tyrosine-phenylalanine (GYF) domain protein

  1. Zhongshou Wu
  2. Shuai Huang
  3. Xiaobo Zhang
  4. Di Wu
  5. Shitou Xia  Is a corresponding author
  6. Xin Li  Is a corresponding author
  1. University of British Columbia, Canada
  2. Howard Hughes Medical Institute, Yale University School of Medicine, United States
  3. Hunan Agricultural University, China
Research Article
  • Cited 12
  • Views 1,890
  • Annotations
Cite this article as: eLife 2017;6:e23684 doi: 10.7554/eLife.23684

Abstract

Plant immunity is tightly regulated to ensure proper defense against surrounding microbial pathogens without triggering autoimmunity, which negatively impacts plant growth and development. Immune receptor levels are intricately controlled by RNA processing and post-translational modification events, such as ubiquitination. It remains unknown whether, and if yes, how, plant immune receptor homeostasis is regulated at the translational level. From a mutant, snc1-enhancing (muse) forward genetic screen, we identified MUSE11/EXA1, which negatively regulates nucleotide-binding leucine-rich repeat (NLR) receptor mediated defence. EXA1 contains an evolutionarily conserved glycine-tyrosine-phenylalanine (GYF) domain that binds proline-rich sequences. Genetic and biochemical analysis revealed that loss of EXA1 leads to heightened NLR accumulation and enhanced resistance against virulent pathogens. EXA1 also associates with eIF4E initiation factors and the ribosome complex, likely contributing to the proper translation of target proteins. In summary, our study reveals a previously unknown mechanism of regulating NLR homeostasis through translational repression by a GYF protein.

Article and author information

Author details

  1. Zhongshou Wu

    Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Shuai Huang

    Departments of Microbial Pathogenesis and Immunobiology, Yale Systems Biology Institute, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaobo Zhang

    Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Di Wu

    Department of Botany, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Shitou Xia

    Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, China
    For correspondence
    xstone0505@yahoo.com
    Competing interests
    The authors declare that no competing interests exist.
  6. Xin Li

    Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    For correspondence
    xinli@interchange.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6354-2021

Funding

Natural Sciences and Engineering Research Council of Canada

  • Xin Li

University of British Columbia (Dewar Funds)

  • Xin Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Nürnberger, University of Tubingen, Germany

Publication history

  1. Received: November 26, 2016
  2. Accepted: March 14, 2017
  3. Accepted Manuscript published: March 31, 2017 (version 1)
  4. Version of Record published: April 24, 2017 (version 2)

Copyright

© 2017, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,890
    Page views
  • 541
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Plant Biology
    Elvira Hernandez-Lagana et al.
    Research Article

    In multicellular organisms, sexual reproduction requires the separation of the germline from the soma. In flowering plants, the female germline precursor differentiates as a single spore mother cell (SMC) as the ovule primordium forms. Here, we explored how organ growth contributes to SMC differentiation. We generated 92 annotated 3D images at cellular resolution in Arabidopsis. We identified the spatio-temporal pattern of cell division that acts in a domain-specific manner as the primordium forms. Tissue growth models uncovered plausible morphogenetic principles involving a spatially confined growth signal, differential mechanical properties, and cell growth anisotropy. Our analysis revealed that SMC characteristics first arise in more than one cell but SMC fate becomes progressively restricted to a single cell during organ growth. Altered primordium geometry coincided with a delay in the fate restriction process in katanin mutants. Altogether, our study suggests that tissue geometry channels reproductive cell fate in the Arabidopsis ovule primordium.

    1. Ecology
    2. Plant Biology
    Ella Katz et al.
    Research Article

    Plants produce diverse metabolites to cope with the challenges presented by complex and ever-changing environments. These challenges drive the diversification of specialized metabolites within and between plant species. However, we are just beginning to understand how frequently new alleles arise controlling specialized metabolite diversity and how the geographic distribution of these alleles may be structured by ecological and demographic pressures. Here we measure the variation in specialized metabolites across a population of 797 natural Arabidopsis thaliana accessions. We show a combination of geography, environmental parameters, demography, and different genetic processes all combine to influence the specific chemotypes and their distribution. This showed that causal loci in specialized metabolism contain frequent independently generated alleles with patterns suggesting potential within species convergence. This provides a new perspective about the complexity of the selective forces and mechanisms that shape the generation and distribution of allelic variation that may influence local adaptation.