Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome

  1. Richard G Dorrell  Is a corresponding author
  2. Gillian Gile
  3. Giselle McCallum
  4. Raphaël Méheust
  5. Eric P Bapteste
  6. Christen M Klinger
  7. Loraine Brillet-Guéguen
  8. Katalina D Freeman
  9. Daniel J Richter
  10. Chris Bowler
  1. École Normale Supérieure, CNRS, Inserm, PSL Research University, France
  2. Arizona State University, United States
  3. Université Pierre et Marie Curie, France
  4. University of Alberta, Canada
  5. CNRS, UPMC, FR2424, ABiMS, Station Biologique, France
  6. Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, France

Abstract

Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Richard G Dorrell

    IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
    For correspondence
    dorrell@biologie.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6263-9115
  2. Gillian Gile

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giselle McCallum

    IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Raphaël Méheust

    Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4847-426X
  5. Eric P Bapteste

    Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Christen M Klinger

    Department of Cell Biology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Loraine Brillet-Guéguen

    CNRS, UPMC, FR2424, ABiMS, Station Biologique, Roscoff, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Katalina D Freeman

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel J Richter

    Adaptation et Diversité en Milieu Marin, Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Roscoff, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9238-5571
  10. Chris Bowler

    IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

EMBO (ALTF 1124/2014)

  • Richard G Dorrell

ERC (Diatomite)

  • Chris Bowler

LouisD Foundation

  • Chris Bowler

FP7 (615274)

  • Eric P Bapteste

Gordon and Betty Moore Foundation

  • Chris Bowler

MEMO-LIFE (ANR- 10-LABX-54)

  • Chris Bowler

ANR (ANR-11-IDEX-0001-02)

  • Chris Bowler

ANR (ANR-11-BTBR-0008)

  • Daniel J Richter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Dorrell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,194
    views
  • 678
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard G Dorrell
  2. Gillian Gile
  3. Giselle McCallum
  4. Raphaël Méheust
  5. Eric P Bapteste
  6. Christen M Klinger
  7. Loraine Brillet-Guéguen
  8. Katalina D Freeman
  9. Daniel J Richter
  10. Chris Bowler
(2017)
Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome
eLife 6:e23717.
https://doi.org/10.7554/eLife.23717

Share this article

https://doi.org/10.7554/eLife.23717

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.