Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome

  1. Richard G Dorrell  Is a corresponding author
  2. Gillian Gile
  3. Giselle McCallum
  4. Raphaël Méheust
  5. Eric P Bapteste
  6. Christen M Klinger
  7. Loraine Brillet-Guéguen
  8. Katalina D Freeman
  9. Daniel J Richter
  10. Chris Bowler
  1. École Normale Supérieure, CNRS, Inserm, PSL Research University, France
  2. Arizona State University, United States
  3. Université Pierre et Marie Curie, France
  4. University of Alberta, Canada
  5. CNRS, UPMC, FR2424, ABiMS, Station Biologique, France
  6. Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, France

Abstract

Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Richard G Dorrell

    IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
    For correspondence
    dorrell@biologie.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6263-9115
  2. Gillian Gile

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giselle McCallum

    IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Raphaël Méheust

    Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4847-426X
  5. Eric P Bapteste

    Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Christen M Klinger

    Department of Cell Biology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Loraine Brillet-Guéguen

    CNRS, UPMC, FR2424, ABiMS, Station Biologique, Roscoff, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Katalina D Freeman

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel J Richter

    Adaptation et Diversité en Milieu Marin, Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Roscoff, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9238-5571
  10. Chris Bowler

    IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

EMBO (ALTF 1124/2014)

  • Richard G Dorrell

ERC (Diatomite)

  • Chris Bowler

LouisD Foundation

  • Chris Bowler

FP7 (615274)

  • Eric P Bapteste

Gordon and Betty Moore Foundation

  • Chris Bowler

MEMO-LIFE (ANR- 10-LABX-54)

  • Chris Bowler

ANR (ANR-11-IDEX-0001-02)

  • Chris Bowler

ANR (ANR-11-BTBR-0008)

  • Daniel J Richter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Debashish Bhattacharya, Rutgers University, United States

Publication history

  1. Received: November 28, 2016
  2. Accepted: May 8, 2017
  3. Accepted Manuscript published: May 12, 2017 (version 1)
  4. Version of Record published: June 7, 2017 (version 2)

Copyright

© 2017, Dorrell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,684
    Page views
  • 606
    Downloads
  • 84
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard G Dorrell
  2. Gillian Gile
  3. Giselle McCallum
  4. Raphaël Méheust
  5. Eric P Bapteste
  6. Christen M Klinger
  7. Loraine Brillet-Guéguen
  8. Katalina D Freeman
  9. Daniel J Richter
  10. Chris Bowler
(2017)
Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome
eLife 6:e23717.
https://doi.org/10.7554/eLife.23717

Further reading

    1. Cell Biology
    Vi T Tang, Joseph McCormick ... David Ginsburg
    Research Advance

    PCSK9 negatively regulates low-density lipoprotein receptor (LDLR) abundance on the cell surface, leading to decreased hepatic clearance of LDL particles and increased levels of plasma cholesterol. We previously identified SURF4 as a cargo receptor that facilitates PCSK9 secretion in HEK293T cells (Emmer et al., 2018). Here, we generated hepatic SURF4-deficient mice (Surf4fl/fl Alb-Cre+) to investigate the physiologic role of SURF4 in vivo. Surf4fl/fl Alb-Cre+ mice exhibited normal viability, gross development, and fertility. Plasma PCSK9 levels were reduced by ~60% in Surf4fl/fl Alb-Cre+ mice, with a corresponding ~50% increase in steady state LDLR protein abundance in the liver, consistent with SURF4 functioning as a cargo receptor for PCSK9. Surprisingly, these mice exhibited a marked reduction in plasma cholesterol and triglyceride levels out of proportion to the partial increase in hepatic LDLR abundance. Detailed characterization of lipoprotein metabolism in these mice instead revealed a severe defect in hepatic lipoprotein secretion, consistent with prior reports of SURF4 also promoting the secretion of apolipoprotein B. Despite a small increase in liver mass and lipid content, histologic evaluation revealed no evidence of steatohepatitis or fibrosis in Surf4fl/fl Alb-Cre+ mice. Acute depletion of hepatic SURF4 by CRISPR/Cas9 or liver-targeted siRNA in adult mice confirms these findings. Together, these data support the physiologic significance of SURF4 in the hepatic secretion of PCSK9 and APOB-containing lipoproteins and its potential as a therapeutic target in atherosclerotic cardiovascular diseases.

    1. Cell Biology
    Jing Zhao, Anahid B Ahmadi ... Paul Sharpe
    Research Article

    Telocytes (TCs) or interstitial cells are characterised in vivo by their long projections that contact other cell types. Although telocytes can be found in many different tissues including the heart1, lung2 and intestine3, their tissue-specific roles are poorly understood. Here we identify a specific cell signalling role for telocytes in the periodontium whereby telocytes regulate macrophage activity. We performed scRNA-seq and lineage tracing to identify telocytes and macrophages in mouse periodontium in homeostasis and periodontitis and carried out HGF signalling inhibition experiments using Tivantinib. We show that telocytes are quiescent in homeostasis, however, they proliferate and serve as a major source of HGF in periodontitis. Macrophages receive telocyte-derived HGF signals and shift from an M1 to a M1/M2 state. Our results reveal the source of HGF signals in periodontal tissue and provide new insights into the function of telocytes in regulating macrophage behaviour in periodontitis through HGF/Met cell signalling, that may provide a novel approach in periodontitis treatment.